Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-06T09:01:52.939Z Has data issue: false hasContentIssue false

Inverse dynamic problem in robots using Gibbs-Appell equations

Published online by Cambridge University Press:  23 January 2002

V. Mata
Affiliation:
Departamento de Ingeniería Mecánica y de Materiales, Universidad Politécnica de Valencia, Camíno de Vera s/n, 46022 Valencia (Spain)
S. Provenzano
Affiliation:
Escuela de Ingeniería Mecánica, Universidad de Los Andes (Venezuela)
J.L. Cuadrado
Affiliation:
Departamento de Ingeniería Mecánica y de Materiales, Universidad Politécnica de Valencia, Camíno de Vera s/n, 46022 Valencia (Spain)
F. Valero
Affiliation:
Departamento de Ingeniería Mecánica y de Materiales, Universidad Politécnica de Valencia, Camíno de Vera s/n, 46022 Valencia (Spain)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, two algorithms for solving the Inverse Dynamic Problem based on the Gibbs-Appell equations are proposed and verified. Both are developed using mainly vectorial variables, and the equations are expressed in a recursive form. The first algorithm has a computational complexity of O(n2) and is the least efficient of the two; the second algorithm has a computational complexity of O(n). This algorithm will be compared with one based on Newton-Euler equations of motion, formulated in a similar way, and using mainly vectors in its recursive formulation. The O(n) proposed algorithm will be used to solve the Inverse Dynamic Problem in a PUMA industrial robot.

Type
Research Article
Copyright
© 2002 Cambridge University Press