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SUMMARY
In this paper, two algorithms for solving the Inverse
Dynamic Problem based on the Gibbs-Appell equations are
proposed and verified. Both are developed using mainly
vectorial variables, and the equations are expressed in a
recursive form. The first algorithm has a computational
complexity of O(n2)  and is the least efficient of the two; the
second algorithm has a computational complexity of O(n).
This algorithm will be compared with one based on
Newton-Euler equations of motion, formulated in a similar
way, and using mainly vectors in its recursive formulation.
The O(n) proposed algorithm will be used to solve the
Inverse Dynamic Problem in a PUMA industrial robot.

KEYWORDS: Robotics; Inverse dynamic problem; Gibbs-Appell
formulation.

1. INTRODUCTION
The literature about the Inverse Dynamic Problem (IDP) in
robots is vast. The interest of its potential applications has
contributed to it. These applications may be classified into
three main areas as follows:

• Industrial robot dynamic control with significant gains in
robot performance, speed, and accuracy.

• Verification that the torques/forces needed to execute a
proposed trajectory do not exceed the capabilities of the
actuators.

• The Inverse Dynamic Problem as part of the Forward
Dynamic Problem.

In order to increase their computational efficiency, many
algorithms for solving the IDP have been proposed in the
last thirty years. These algorithms are based on different

Principles of Dynamics (Lagrange, Newton-Euler, Kane),
the equations of motion are expressed in a closed-form or
recursive formulation, and using different types of variables
to express physical quantities, for instance, the angular
velocity could be represented by the time derivative of a
rotation matrix, by a vector, and can also be described by a
second order skew-symmetric Cartesian tensor. These
algorithms can be implemented by means of symbolic
programs or strictly numerical ones. Finally, according to
the computer architecture where they will be processed, the
algorithms can be sequential or parallel. In Table I are
shown some of the proposed algorithms for solving the IDP
on robots with rigid links and ideal joints.

Custom-made algorithms, which take advantage of the
special characteristics of particular industrial robots, must
be particularly mentioned. Examples of these are proposed
in Khosla and Neuman7 and Murray and Neuman,8 both
based on the Newton-Euler formulation, expressed in a
recursive way and with vectorial variables. However, the
first one is numerical and the second is symbolic.

Several authors4 showed that the computational efficiency
of the dynamic algorithms depends fundamentally on the
way the calculations are arranged rather than on the
dynamic principle in which they are based. This idea has
already been proposed by Hollerbach,1 in which the
dynamic problem was reformulated for robots by using the
Principle of Lagrange in a recursive way and using rotation
matrix 3� 3 instead of a 4� 4 homogeneous transformation
matrix. By this method, the computational complexity could
be reduced from O(n4) to O(n). Nevertheless, the computa-
tional complexity of the Hollerbach algorithm was three
times larger than the Luh, Walker and Paul algorithm.

On the other hand, it must be pointed out that important
differences can be noticed about the computational effi-
ciency assigned to algorithms of the same characteristics

Table I. Several algorithms for solving the IDP.

Authors Dynamic
Principle

Formulation Type of
variables

Type of
resolution

Type of
processing

Hollerbach1 Lagrange-Euler Recursive Matricial Numerical Sequential
Luh et al.2 Newton-Euler Recursive Vectorial Numerical Sequential

Angeles et al.3 Kane Recursive Tensorial Numerical Sequential
Balafoutis-Patel4 Newton-Euler Recursive Tensorial Numerical Sequential
Khalil-Kleifinger5 Newton-Euler Recursive Vectorial Symbolic Sequential
Lee and Chang6 Newton-Euler Recursive Vectorial Numerical Parallel
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applied to robots of the same type. An algorithm based on
Newton-Euler formulation, implemented in a recursive way,
using vectorial variables and solved in a numerical and
sequential way, can be found in Luh, Walker and Paul2

which had been assigned by Hollerbach a computational
complexity of 150n-48 multiplications and 131n-48 addi-
tions, where n is the number of degrees of freedom of the
robot. Fu, Gonzalez and Lee9 provided a version of the same
algorithm with a complexity of 117n-24 multiplications and
103n-21 additions; Zomaya10 gave a complexity of 150n
multiplications and 116n additions. Finally, Craig11 gave a
complexity of 126n-99 multiplications and 106n-92 addi-
tions. The observed differences come fundamentally from
the criteria used for counting operations; for instance, if
operations, that involve multiplications by variables with 0
or 1 values, are detected. Therefore, it seems necessary to
indicate clearly the criteria that are going to be used for
counting the operations when comparing the efficiency of
algorithms.

The Gibbs-Appell equations were introduced by Gibbs in
1879 and formalised by Appell twenty years later, and
according to Pars12 . . . provide what is probably the simplest
and most comprehensive form of the equations of motion so
far discovered. However, in the robot dynamics field there
are few published references to works based on them.
Renaud13 stands out among the first references to the
application of the Gibbs-Appell equations to dynamic
modelling of robots, in which he made remarkable com-
mentaries on the previous work of E.P. Popov. Vukobratovic
and Potkonjak14 developed a closed-form algorithm with
O(n3) computational complexity. Desoyer and Lugner15

developed a recursive algorithm for solving the IDP in
robots using the Jacobian matrix in order to avoid algebraic
or numerical derivatives. The computational complexity of
the proposed algorithm is O(n3).

In our work the Gibbs-Appell equations are applied to
solving the inverse dynamic problems of robots that have
rigid links and ideal pairs. Two algorithm are proposed, the
first one has a computational complexity of O(n2), and the
second of O(n). In both cases, the algorithms are formulated
in a recursive way, using vectors to express most of the
physical magnitudes involved in them (angular velocity,
angular acceleration, etc.). In order to achieve a higher
computational efficiency, the involved magnitudes in the
Gibbs function are expressed with respect to local reference
systems in the links. The computational efficiency of the
best of these two algorithms will be compared with that of
the Luh, Walker and Paul algorithm. That can be done since
the same type of formulation is used in both (recursive) and
the common physical magnitudes are expressed in the same
way. It must be stated that the criteria to evaluate the
number of operations will be the same in both algorithms.

This paper is organised as follows. In Section 2, the
proposed algorithms are developed. In Section 3, the
algorithms are formalised and an analysis of their computa-
tional complexity is provided, comparing them with the
Luh, Walker and Paul algorithm. In Section 4, one of the
developed algorithms is applied to a PUMA-type industrial
robot. Finally, in Section 5 we summarise the development
of the paper and suggest directions for future research.

2. THE GIBBS-APPEL FORMULATION APPLIED
TO THE INVERSE DYNAMIC PROBLEM IN
ROBOTS
In this section, the Gibbs-Appell equations are described,
and two different formulations are presented to solve the
Inverse Dynamic Problem on robot manipulators. The
robots are modelled following the Denavit-Hartenberg
modified notation,3 which considers four parameters �i, �i,
ai, and di, as shown in Figure 1. In the mentioned notation,
the reference system corresponding to link i is located on
joint i, and the z-axis is located on the axis in the same node,
which connects links i�1 and i.

The reference system i is related to the i�1 reference
system by means of the rotation matrix i�1Ri and the
position vector i�1�rOi�1,Oi

.

i�1Ri =
cos �i

cos �i · sin �i

sin �i · sin �i

�sin �i

cos �i · cos �i

sin �i · cos �i

0
�sin �i

cos �i

i�1�rOi�1,O1
=

ai

di sin �i

�di cos �i

The Gibbs-Appell dynamic equations are derived from the
Gibbs function definition (also known as the energy of the
accelerations). When we write the original form for an
arbitrary solid composed of n-elemental particles with
masses mi an acceleration ai , the Gibbs function is
(considering an inertial reference system):

G=
1
2 �

n

i=1

mia
2
i

The Gibbs function for the i-th rigid solid is given by

Gi =
1
2 

mi(�̈rGi
)T · �̈rGi

+
1
2 

( �̇�i )
T · IGi

· �̇�i + ( �̇�i )
T · [ ��i ∧ (IGi

· ��i )]

(1)

where mi is the mass of the i-th link, IGi
is the 3� 3 matrix

representing the centroidal matrix of inertia of the i-th link,
��i and �̇�i are the three-dimensional vectors representing the
angular velocity and acceleration of the i-th link and �̈rGi

is

Fig. 1. Modified Denavit-Hartenberg notation.
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the three-dimensional vector representing the acceleration
of  the mass centre of the i-th link. An inertial reference
system is considered to express these magnitudes.

It is possible for these tensorial and vectorial magnitudes
to be expressed considering a reference system located in
the i-th link, so that the previous expression could be
expressed as follows:

Gi =
1
2 

mi(
0Ri · i �̈rGi

)T · 0Ri · i �̈rGi

+
1
2 

(0Rj · i �̇�i )
T · 0Ri · i IGi

· (0Ri )
T · (0Rj · i �̇�i )

+ (0Ri · i �̇�i )
T · {0Ri · i �̇�i ∧ [0Ri · i IGi

· (0Ri )
T · 0Ri · i ��i]}

(2)

the expression (2) could be rewritten as follows:

Gi =
1
2 

mi(
i�̈rGi

)T · (0Ri )
T · 0Ri · i �̈rGi

+
1
2 

(i �̇�i )
T · (0Rj)

T · 0Ri · i IGi
· (0Ri )

T · (0Rj · i �̇�i )

+ (i �̇�i )
T · (0Ri )

T · {0Ri · i �̇�i ∧ [0Ri · i IGi
· (0Ri )

T · 0Ri · i ��i]}

(3)

and taking into account the orthogonal nature of the rotation
matrix, the scalar Gi would be given by:

Gi =
1
2 

mi(
i �̈rGi

)T · i �̈rGi

+
1
2 

(i �̇�i )
T · i IGi

· i �̇�i + (i �̇�i )
T · [i �̇�i ∧ i IGi

· i ��i ] (4)

where i �̈rGi
, i ��i , 

i �̇�i and i IGi
are expressed in the i-th reference

system.
For a system consisting of n-bodies, the Gibbs function of

the system would be given by

G=�n

i=1

Gi (i=1, 2 . . . n) (5)

The Gibbs-Appell equations of motion are obtained from
deriving the Gibbs function with respect to the generalised
accelerations q̈j , obtaining in this way the generalised
inertial forces that are to equate to the generalised external
forces, �j

�j =�n

i=j

�Gi

�q̈i

( j=1, 2 . . . n) (6)

that is,

�j =�n

i=j
�mi(

i �̈rGi
)T · 

�i �̈rGi

�q̈j

+ (i �̇�i )
T · i IGi

· 
�i �̇�i

�q̈j

+��i �̇�i

�q̈j
�T

· [i ��i ∧ (i IGi
· i ��i )]� (7)

In the following discussion, two procedures, with different
computational efficiency for obtaining the generalised
forces, will be developed.

First Method
The first formulation for the solution of the Inverse
Dynamic Problem in robots would be obtained by develop-
ing every term of the expression (7) and adding them up.
The angular velocities, angular accelerations, the accelera-
tions of the origin of reference system of links and the
accelerations of the centre of masses of the links can be
obtained using the following  known recursive expressions:

i ��i =
i Ri�1 · i�1 ��i�1 +	i

i �zi · q̇i (8)

i �̇�i =
i Ri�1 · i�1 �̇�i�1 +	i[

i �zi · q̈i +
i Ri�1 · i�1 ��i�1 ∧(i �zi · q̇i )]

(9)

i �̈rOi
= i Ri�1[

i�1 �̈rOi�1
+ i�1 ��i�1 ∧ (i�1 ��i�1 ∧ i�1�rOi�1,Oi

)i�1 �̇�i�1

∧ i�1�rOi�1,Oi
]+(1�	i )[

i �zi · q̈i +2(i ��i ∧i �zi · q̇i )] (10)

i�̈rGi
= i �̈rOi

+ i ��i ∧ (i ��i ∧ i �rOi,Gi
)+ i �̇�i ∧i �rOi,Gi

(11)

where i �zi =[0 0 1]T, and the variable 	i allows us to
distinguish between the revolute joints ( 	i =1) and the
prismatic ones ( 	i =0).

Next, the derivatives with respect to the generalised
acceleration and the acceleration of the centre of mass of the
i-th link will be obtained.

To develop the 
�i �̇�i

�q̈j

term, we start from expression (9).

This derivative could be obtained by a recursive procedure
as follows:

If i< j
� i �̇�i

�q̈j

= [0 0 0]T

If i> j
� i �̇�i

�q̈j

= i Ri�1 · i�1 Ri�2 · · · j�1 Rj · 
� j �̇�j

�q̈j

(12)

If i= j
� i �̇�i

�q̈j

= i �zi

The development of the 
� i�̈rGi

�q̈j

term  comes from deriving

expression (11), then obtaining

� i �̈rGi

�q̈j

=
� i �̈rOi

�q̈j

+
� i �̇�i

�q̈j

∧ i �rOi,Gi
(13)
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The 
� i�̈rOi

�q̈j

term for revolute joints is obtained using the

expression (10) which leads to:

� i �̈rOi

�q̈j

= i Ri�1 · �� i�1 �̈rOi�1

�q̈j

+
� i�1 �̇�i�1

�q̈j

∧ i�1 �rOi�1,Oi� (14)

This expression could also be determined by a recursive
procedure similar to the one used earlier:

If i≤ j
� i �̈rOi

�q̈j

= [0 0 0]T

(15)

If i> j
� i �̈rOi

�q̈j

= i Ri�1 · �� i�1 �̈rOi�1

�q̈j

+
� i�1 �̇�i�1

�q̈j

∧ i�1�rOi�1,Oi�
In a similar way, for prismatic joints we could obtain:

� i �̈rOi

�q̈j

= i Ri�1 · 
� i�1 �̈rOi�1

�q̈j

+ i Ri�1 · 
� i�1 �̇�i�1

�q̈j

∧ i�1 �rOi�1,Oi

+ i �zi · 
�q̈i

�q̈j

(16)

Notice that there is an additional term in expression (16) in
relation with (14), which must be included if the i-th  joint
is a prismatic one. This term is:

i �zi · 
�q̈i

�q̈j

(17)

that, depending on the type of link which it is applied to,
would be given by:

If i= j i �zi (18)

If i≠ j [0 0 0]T (19)

Terms 
�i�̈rGi

�q̇j

could be obtained from expression (13). Finally,

expression (7) allows us to obtain the generalised forces.
As will be shown in the next section, this development of

the Gibbs-Appell equations will lead to an algorithm to
solve the IDP with  a computational complexity of O(n2).
Second Method
The second formulation for the solution of the Inverse
Dynamic Problem in robots would be obtained by reorgan-
izing and identifying two different terms in expression (7) as
follows:

�j =�n

i=j
��� i �̇�i

�q̈j
�T

· [i IGi
· i �̇�i +

i ��i ∧(i IGi
· i ��i )]�

Aj

+�n

i=j
��� i�̈rGi

�q̈j
�T

· mi · i �̈rGi�
Bj (20)

It is remarkable that expression below is similar to that
proposed by Angeles, Ma and Rojas in reference [3] for
solving the IDP based on the Kane’s dynamic formulation.

Developing the Aj term:

Aj =�n

i=j
��i

Rj · 
� j �̇�j

�q̈j
�T

· [i IGi
· i �̇�i +

i ��i ∧ (i IGi
· i ��i )]�

(21)

and, taking into account the expressions in (12), this term
could be rewritten as follows:

Aj =�� j �̇�j

�q̈j
�T

· �n

i=j

{ j Ri · [i IGi
· i �̇�i +

i ��i ∧ (i IGi
· i ��i )]}

(22)

In this last expression, it can be seen that there are
concurrent terms which could reduce the calculation
complexity. Next, an expression that allows the terms to be
obtained in a reverse recursive way is presented:

Aj =�� j �̇�j

�q̈j
�T

· j ��j (23)

where
j ��j =

j IGj
· j �̇�j +

j ��j ∧ ( j IGj
· j ��j )+ j Rj+1 · j+1 ��j+1 (24)

which gives recursively the Aj terms.
To develop the Bj term, the following expression is used

(which comes from considering expressions (13) and (14)).

� i �̈rGi

�q̈j

=
� i �̇�i

�q̈j

∧ i�rOj�1,Gi

This expression, when substituted in the above description
of every Bj term, would give:

Bj =�n

i=j
��� i �̇�i

�q̈j
�T

· (i�rOj�1,Gi
∧mi

i �̈rGi
)� (25)

Applying  vectorial products properties and using again
expression (12), would give:

Bj 	�� j �̇�j

�q̈j
�T

· j �
j (26)

where

j �
j =�n

i=j

[ j Ri · (mi
i �̈rGi

∧ i �rOj�1,Gi
)] (27)

This expression could be calculated in a recursive way as
follows:

j �
j =mj
j �̈rGj

∧ j�rOj�1,Gj
+ j ��j ∧ j�rOj,Oj+1

+ j Rj+1 · j+1 �
j+1 (28)

where
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j ��j =
j Rj+1 · (mj+1

j+1 �̈rGj+1
+ j+1 ��j+1) (29)

In the next section, it will be shown that the use of this
second formulation leads to an algorithm of computational
complexity of O(n) to solve the Inverse Dynamic Problem
in robots.

3. DESCRIPTION OF ALGORITHMS AND
ANALYSIS OF THEIR COMPUTATIONAL
COMPLEXITY
In this section two algorithms for solving the Inverse
Dynamic Problem are presented. These algorithms are
based on the formulations stated in the previous section. In
order to compare their computational complexity with other
algorithms, only revolute joints are considered and the robot
base is considered fixed.

Algorithm 1 (based on Method 1)
Note: For robots with only revolute joints, the vector
i�1�rOi�1,Oi

could be computed off-line.

Step 1.–Computation of the velocities and accelerations

Initialise:
0 �̈rO0

=[0 0 g]T

0 �̈rG0
= 0 �̈rO0

do:
1 ��1 = 1�z1 · q̇1

1 �̇�1 = 1�z1 · q̈1

1 �̈rOi
= 1 R0 · 0 �̈rO0

For i=2, 3, . . . , n do:
i�ui =

i Ri�1 · i�1 ��i�1

i ��i =
i�ui +

i�zi · q̇i

i �̇�i =
i Ri�1 · i�1 �̇�i�1 + i �zi · q̈i +

i�ui ∧(i�zi · q̇i )
i �̈rOi

= i Ri�1[
i�1 �̈rOi�1

+ i�1 ��i�1

∧(i�1 ��i�1 ∧i�1�rOi�1,Oi
)+ i�1 �̇�i�1 ∧ �rOi�1,Oi

]

For i= 1, 2, . . . , n do:
i �̈rGi

= i �̈rOi
+ i ��i ∧ (i ��i ∧ i �rOi,Gi

)+ i �̇�i ∧ i �rOi,Gi

Complexity of Step 1

62n�75 (� ), 46n�61 (+)

Step 2. – Computation of the 
� i �̇�i

�q̈j

terms

For i=1, 2, . . . , n do:

� i �̇�i

�q̈i

= i�zi

For i=2, 3, . . . , n do:

� i �̇�i

�q̈i�1

= i Ri�1 · 
� i�1 �̇�i�1

�q̈i�1

For j=1, 2, . . . , n�1 do:

For i= j+2, . . . , n do:

� i �̇�i

�q̈j

= i Ri�1 · 
� i�1 �̇�i�1

�q̈j

Complexity of Step 2

4n2 �12n+8 (� ), 2n2 �6n+4 (+)

Step 3.–Computation of the 
� i�̈rOi

�q̈j

terms

For i=2, 3, . . . , n do:

� i�̈rOi

�q̈i�1

= i Ri�1 · 
� i�1 �̇�i�1

�q̈i�1

∧ i�1�rOi�1,Oi

For j=1, 2, . . . , n�1 do:

For i= j+2, . . . , n do:

� i�̈rOi

�q̈j

= i Ri�1 · �� i�1�̈rOi�1

�q̈j

+
� i�1 �̇�i�1

�q̈j

∧ i�1�rOi�1,Oi�
Complexity of Step 3

7n2 �16n+9 (� ), 5n2 �13n+8 (+)

Step 4.–Computation of the 
� i�̈rGi

�q̈j

terms

For i=1, 2, . . . , n do:

� i�̈rGi

�q̈i

=
� i �̇�i

�q̈i

∧ i�rOi,Gi

For j=1, 2, . . . , n� do:

For i= j+1, . . . , n do:

� i�̈rGi

�q̈j

=
� i�̈rOi

�q̈j

+
� i �̇�i

�q̈j

∧ i�rOi,Gi

Complexity of Step 4

3n2 �3n (� ), 3n2 �3n (+)

Step 5.–Computation of the 
�Gi

�q̈j

terms

For i=1, 2, . . . , n do:

�Gi

�q̈i

=mi · �(i �̈rGi
)T · 

� i �̈rGi

�q̈i
�

+(i �̇�i )
T · i IGi

· 
� i �̇�i

�q̈i

+�� i �̇�i

�q̈i
�T

· [i ��i ∧ (i IGi
· i ��i )]
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For j=1, 2, . . . , n�1 do:

For i= j+1, . . . , n do:

�Gi

�q̈j

=mi · �(i �̈rGi
)T · 

� i �̈rGi

�q̈j
�

+(i �̇�i )
T · i IGi

· 
� i �̇�i

�q̈j

+�� i �̇�i

�q̈j
�T

· [i ��i ∧ (i IGi
· i ��i )]

Complexity of Step 5
1
2 (15n2 �3n+30) (� ), 6n2 �4n+12 (+)

Step 6.–Computation of the generalised forces

For j=1, 2, . . . , n�1 do:

For i= j, j+1, . . . , n do:

�j =�j +
�Gi

�q̈j

Complexity of Step 6

0 (� ), 1
2 (n2 �n) (+)

Algorithm 2 (based on Method 2)

Step 1.–Same as step 1 of algorithm 1.

Step 2.–Computation of the 
� i �̇�i

�q̈i

terms.

For i=1, 2, . . . , n do:

� i �̇�i

�q̈i

= i �zi

Complexity of Step 2

0 (� ) , 0 (+)

Step 3.–Computation of the Ai terms. In this step the
calculation of i Ri+1 · i+1 ��i+1 has been omitted and it
has been added to the calculations involved in the B
term, in order to achieve some savings in the
number of operations. Since the Ai terms are scalar
ones and as a consequence of the Denavit-Harten-
berg notation, these are equal to the third
component of the �� vectors. Calculations for i=1
can be simplified because only 1�1

(3) is needed.
Also, we take into account that 1 ��1 and 1 �̇�1 have
components one and two equal to zero.

For i=n, n�1, . . . , 1 do:
i ��i =

i IGi
· i �̇�i +

i ��i ∧ (i IGi
· i ��i )

For i=1, 2, . . . , n do:

Ai =�� i �̇�i

�q̈i
�T

· i ��i

Complexity of Step 3

24n�23 (� ), 18n�18 (+)

Step 4.–Computation of the Bi terms.

For i=1, 2, . . . , n do:
i�ki =mi · i �̈rGi

Do:
n�1 ��n�1 = n�1 Rn · n �kn

For i=n�2, n�3, . . . , 1 do:
i ��i =

i Ri+1 · (i+1 �ki+1 + i+1 ��i+1)
Do

n �
n = n �kn ∧ n�rOn,Gn

For i=n�1, n�2, . . . , 1 do:
i �
i =

i �ki ∧ i�rOi,Gi
+ i ��i ∧i�rOi,Oi+1

+ i Ri+1 · (i+1 �
i+1 � i+1 ��i+1)

For i=1, 2, . . . , n do:

Bi =��� i �̇�i

�q̈i
�T

· i �
i

Complexity of Step 4

31n�38 (� ), 26n�37 (+)

Step 5.–Computation of the generalised forces

For i=1, 2, . . . , n do:

�i =Bi +Ai

Complexity of Step 5.

0 (� ), n (+)

The computational complexity of the two proposed algo-
rithms are summarised in Table II. Furthermore, the
computational complexity of the Luh, Walker and Paul
algorithm is reported. In all three cases, the criteria for
counting operations are the same and are indicated in
Table III.

As can be appreciated from Table II, the computational
complexity of the proposed algorithm is very close to the
Newton-Euler based algorithm. It is also remarkable that
using the Denavit-Hartenberg notation under Paul’s conven-
tion, no substantial differences are observed, being in this
case the computational complexity 129n�74 (� ) and
97n�71 (+) for a robot with only rotational joints, so that,
for a six degree of freedom robot, the computational
complexity would be 700 (� ) and 511 (+).

Table II. Computational complexity for robots with n≥3

Algorithm Complexity n=6

Luh, Walker and Paul (� )
(+)

121n�112
90n�82

614
458

Algorithm 1 (� )
(+)

1
2 (43n2 +59n�43)
1
2 (33n2 +39n�74)

908
674

Algorithm  2 (� )
(+)

117n�136
91n�116

566
430
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4. NUMERICAL EXAMPLE
The presented algorithms have been developed and verified
with the symbolic algebra software MACSYMA. Computer
code has been written in FORTRAN for Algorithm 2. The
robot we have applied the formulation to, is a PUMA 600
model, taken from the scientific literature. The Denavit-
Hartenberg constant parameters are shown in Table IV.

The masses (kg.) of the links are as follows:

m1 =10.521, m2 =15.781, m3 =8.767, m4 =1.052,

m5 =1.052, m6 =0.351

The coordinates (m.) of the centre of masses in the local
reference system of the links, are:

1 �rO1,G1
=[0 –0.054 0]T, 2 �rO2,G2

=[0.1398 0 0.14909]T,
3 �rO3,G3

=[–0.32 . 10–3 –0.197 0]T, 4 �rO4,G4
=[0 0 –0.057]T,

5 �rO5,G5
=[0 –0.007 0]T, 6 �rO6,G6

=[0 0 0.03725]T

The inertial tensor of links (kg.m2), defined with respect to
parallel axes to the local links and passing through their
centre of masses are:

1 IG1
=

1.612
0
0

0
0.5091

0

0
0

1.612
,

2 IG2
=

0.4898
0
0

0
8.0783

0

0
0

8.2672
,

3 IG3
=

3.3768
0
0

0
0.3009

0

0
0

3.3768
,

4 IG4
=

0.181
0
0

0
0.181

0

0
0

0.1273
,

5 IG5
=

0.0735
0
0

0
0.0735

0

0
0

0.1273
,

6 IG6
=

0.0071
0
0

0
0.0071

0

0
0

0.0141
,

In order to verify the proposed algorithm, a straight-line
trajectory has been considered. The start point has coor-
dinates [0.600 0.175 0.250]T m and the end point
[0.018 0.757 0]T m, the constant orientation given by Euler
angles ZYZ is (45° 60° 90°). The constant linear velocity
prescribed for the robot end-effector is 0.1 m/s, the total
time needed for the prescribed robot motion is 8.6 seconds
(s). In Figure 2 the initial configuration of the robot, an
intermediate and the final one are depicted. The Inverse
Dynamic Problem was solved at 0.1 s intervals. The torques
required in each joint are depicted in Figure 3 as a function
of time. Using a Personal Computer with a Pentium 200
Mhz Processor, the average CPU time required for calculat-
ing each Inverse Dynamic Problem was 0.15 ms.

5. CONCLUSIONS
In this paper, two algorithms for solving the Inverse
Dynamic Problem based on the Gibbs-Appell equations

Table III. Number of elementary operations considered

Operation* Multiplications Additions

iIi · �a 9 6
i�1Ri · �a, iRi�1 · �a 8 4

�a∧ �b 6 3
�a∧ �c 2 0
�aT ∧ �b 3 2
�aT ∧ �d 1 0
�a∧ �bT 9 0
�a∧ �aT 6 0

* Where: �a, �b, �c and �d�R3� 1 with c1, d1 and d2 =0

Table IV. Denavit-Hartenberg parameters

Joint � (rad) a (m) d (m)

1 0 0 0
2 ��/2 0 0
3 0 0.432 �0.15
4 �/2 �0.02 �0.433
5 ��/2 0 0
6 �/2 0 0

Fig. 2. Prescribed trajectory for the Puma robot.
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have been proposed and verified. The most efficient of the
proposed algorithms has a computational complexity
slightly lower than the algorithm based on Newton-Euler
equations of motion, formulated in a similar way, and using
mainly vectors in its recursive formulation. This fact
confirms the conclusion from other authors who claim that
the efficiency of the dynamic algorithms arises from the
type of formulation used, rather than the Principle of
Dynamics considered. In this way, it can be expected that
further reductions in computational complexity may be
achieved by using tensorial notation rather than vectorial
notation. For instance, important savings could be obtained

developing the term corresponding to the Moment of Inertia
(Euler equation) in the A terms in a tensorial form.
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