Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-02-07T09:56:35.923Z Has data issue: false hasContentIssue false

Dynamic modeling of structurally-flexible planar parallel manipulator

Published online by Cambridge University Press:  07 May 2002

Bongsoo Kang
Affiliation:
Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario (Canada) M5S 3G8 kang@mie.utoronto.ca
James K. Mills
Affiliation:
Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario (Canada) M5S 3G8 mills@mie.utoronto.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents a dynamic model of a planar parallel manipulator including structural flexibility of several linkages. The equations of motion are formulated using the Lagrangian equations of the first type and Lagrangian multipliers are introduced to represent the geometry of multiple closed loop chains. Then, an active damping approach using a PZT actuator is described to attenuate structural vibration of the linkages. Overall dynamic behavior of the manipulator, induced from structural flexibility of the linkage, is well illustrated through simulations. This analysis will be used to develop a prototype parallel manipulator.

Type
Research Article
Copyright
2002 Cambridge University Press