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SUMMARY
This paper presents a dynamic model of a planar parallel
manipulator including structural flexibility of several link-
ages. The equations of motion are formulated using the
Lagrangian equations of the first type and Lagrangian
multipliers are introduced to represent the geometry of
multiple closed loop chains. Then, an active damping
approach using a PZT actuator is described to attenuate
structural vibration of the linkages. Overall dynamic
behavior of the manipulator, induced from structural
flexibility of the linkage, is well illustrated through
simulations. This analysis will be used to develop a
prototype parallel manipulator.
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1. INTRODUCTION
A high speed pick-and-place positioning mechanism is an
indispensable element in various industrial fields, especially
in electronic manufacturing, where small product size and
short assembly times characterize the manufacturing proc-
ess. The essential functions of these mechanisms are their
speed and precision. Current manipulators, carrying out this
task, typically consist of multiple linear orthogonal axes.
This serial type structure is easy to develop and analyze.
However, the inertia of the axis hardware, including
actuators, has a very significant influence on the perform-
ance of supporting axis.

To overcome inherent disadvantages of serial types
structures such as X-Y tables and gantry robots, planar
parallel manipulators have been proposed and investi-
gated.1–3 These devices usually consist of three closed
chains with one platform, which corresponds to an end-
effector. Depending on which types of joints are used in one
chain, these devices are classified as RRR, RPR, PPP, etc.
Here, R stands for a revolute joint and P for a prismatic
joint. Since the actuators are fixed to the base and three
linkages support the moving platform, this structure has
high mechanical stiffness and low inertia, which results in
high positioning accuracy and rapid motion capability.
However, dynamic modeling of a parallel manipulator is
more complex than that of a serial type manipulator because
there are several closed chains between the actuators and the

platform. Previous approaches include the traditional New-
ton-Euler method,4 the Lagrangian formulation,5 and the
principle of virtual work.6, 7 A review of these approaches
can be found in Tsai.8

Moreover, we must consider structural flexibility of
linkages in modeling a parallel manipulator as industry
demands high-speed machines, and hence lightweight
linkages which deform under high inertial forces. For a
serial type manipulator with structural flexibility, results of
an unconstrained manipulation have been presented in
Book9 and Low,10 and results of a constrained manipulation
in Hu11 and Krishnamurthy.12 If serial types manipulators
with structural flexibility cooperate with each other12, 13 or
rigid manipulators work together to handle a flexible
payload14 or follow prescribed trajectories, keeping contact
with stiff environment,11 the system is then configured as a
closed loop chain with rigid-flexible combination. This is
similar to a parallel manipulator with flexibility. However, a
direct dynamic model for a parallel manipulator, including
structural flexibility, has been the subject of few studies.
Yuan15 formulated dynamics of a parallelogram mechanism
with flexible links by the assumed mode method and
Fattah16 modeled a 3-DOF spatial parallel manipulator with
flexible links using the finite element method.

In this paper, the equations of motion for a planar parallel
manipulator with structurally flexible linkages are formu-
lated using the Lagrangian equations of the first type. With
constraint equations representing the geometry of multiple
closed loop chains – typical characteristic of a parallel
manipulator, Lagrangian multipliers are introduced to avoid
complexity in calculating passive coordinates of the parallel
manipulator. Then, an active damping approach using a
piezoelectric material, lead zirconium titanate (PZT), is
described to attenuate structural vibration of linkages.
Attaching to the surface of the linkages, the PZT actuator
produces a bending moment according to a linear velocity
(L-type) feedback control scheme17 so that vibration of the
linkage can be damped. Simulations are performed to verify
the proposed equations of motion and investigate feasibility
of active structural vibration damping using PZT actuators.

The paper is organized as follows. Section 2 describes the
architecture of a parallel manipulator and its dynamic
modeling. Section 3 gives an active damping method for
vibration of linkages and Section 4 gives simulation results.
Finally, conclusions are given in Section 5.
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2. DYNAMIC MODELING

2.1. Architecture
The architecture of the parallel mechanism considered is
illustrated in Figure 1. The platform has a regular triangular
shape and is supported by three intermediate links assumed
to exhibit structural flexibility. Therefore, vibration of the
linkage gives a direct influence on motions of the platform.
Both ends of the intermediate link are composed of non-
actuated revolute joints. A slider connecting with the
linkage is driven by a linear actuator. The proposed planar
manipulator is categorized as a PRR type, because one
closed chain consists of the prismatic joint and two
consecutive revolute joints. In contrast to well-known RPR
type parallel manipulators, the actuator hardware of the
proposed PRR configuration remains stationary, resulting in
low inertia of moving parts. With appropriately selected
kinematic parameters, listed in Table I, the reachable
workspace of the manipulator is approximately
400 mm * 400 mm.

Generalized coordinates for dynamic formulation of the
manipulator are shown in Figure 2. The position and
orientation of the platform at its mass center is written with
respect to the fixed X-Y coordinate system as

X̄P =[xP yP �]T (1)

The origin of the fixed coordinate system is located on the
point where imaginary extended lines of three actuators
intersect. The distances of sliders from Ai, which correspond
to solutions to an inverse kinematic problem, are expressed
as

�̄=[�1 �2 �3]
T (2)

Three linkages including associated coordinates are num-
bered with a subscript starting from the right linkage, in a
counterclockwise direction. �i is defined as the angle
between the X-axis of the fixed frame and the ith

intermediate link and �i is the constant angle between the X-
axis of the fixed coordinate frame and the ith linear
actuator.

From the geometry of Figure 2, coordinates of point Ci

are written as

xci =xai +�i cos �i + l cos �i �wi(l ) sin �i (3)

yci =yai +�i sin �i + l sin �i +wi(l ) cos �i (4)

where xai and yai are coordinates of point Ai and l is length
of the linkage. wi(l ) is defined as a lateral deformation at the
end of the linkage, Ci, due to flexibility of the linkage. Since
length of the linkage is long compared with the thickness of
the linkage, the linkage can be treated as an Euler-Bernoulli
beam. The coordinates of point Ci can be formulated using
the platform coordinates as

xci =xp +x�ci cos ��y�ci sin � (5)

yci =yp +x�ci sin �+y�ci cos � (6)

x�ci and y�ci are constant coordinates measured from mass
center of the platform when � is zero. From equations (3–6),
a closed-form solution is calculated as

�i =Mi ±�l 2 +w 2
i �S 2

i i=1, 2, 3 (7)

where:

Mi =(xci �xai) cos �i + ( yci �yai) sin �i

Si =(xci �xai) sin �i � ( yci �yai) cos �i

Since there are two possible solutions for each chain, this
manipulator can take on a maximum of eight configurations
for a set of given coordinates of the platform. Additionally,
large linkage deformation may lead to no solution because
the right-hand side of equation (7) has a negative value.

2.2. Dynamic analysis
Evaluation of the derivative of equations (3)–(6) with
respect to time, gives

(ẋP ī+ ẏP j̄ )+ �̇(k̄� ēi )= �̇i āi + ( �̇i + ẇi(l )/l )(k̄� b̄i ) (8)

Fig. 1. Configuration of the parallel manipulator.

Table I. Kinematic parameters.

Platform (side length) 100 mm
Intermediate link 200 mm
Linear actuator 400 mm
Angle of linear actuator (�) 120,270,30

(degree)

Fig. 2. Coordinate system of parallel manipulator.
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where:

āi =cos(�i)ī+sin(�i ) j̄

ẋP , ẏP , �̇ are a linear velocity and an angular velocity of the
platform respectively. Dot-multiplication of equation (8) by
b̄i leads to

�̇i =
1

āi · b̄i

[bix biy eix biy �eiy bix ][ẋP ẏP �̇]T =JPi
˙̄XP (9)

where:

b̄i =bix ī+biy j̄ and ēi =eix ī+eiy j̄

Cross-multiplication of equation (8) by b̄i gives

�̇i =
1
l 2 {[�biy bix eix bix +eiy biy]� (b̄i� āi ) JPi }

˙̄XP � ẇi (l )/l

(10)

Acceleration of the moving part can be formulated through
a similar procedure as follows;

�̈i =
1

āi · b̄i

{[bix biy eix biy �eiy bix]
¨̄XP � b̄i · ēi �̇

2 + �̇ 2
i l

2

+ �̇i ẇi(l )l } (11)

�̈i =
1
l 2 {[�biy bix eix bix +eiy biy]

¨̄XP � (b̄i� ēi )�̇
2 � (b̄i� āi )�̈i }

� ẅi(l )/l (12)

Flexible deformations can be expressed by the product of
time-dependant functions and position-dependant functions,
i.e. an assumed modes model;

wi (x, t )=�r

j=1

	(t )ij
j (� ) i=1, 2, 3 (13)

where �=x/l. r is the number of assumed modes. Consider-
ing boundary conditions of the linkage on Bi and Ci,
normalized shape functions satisfying a pin-free boundary
condition are selected as


j (� )=
1

2 sin( �j ) 
[sin( �j � )+

sin( �j )
sinh( �j ) 

sinh( �j � )] (14)

where:

0≤�≤1 and �j = ( j+0.25)
l j=1, 2, . . . , r

Figure 3 shows shape functions within the first four modes.
Integrating all generalized coordinates into a single vector X
as

X=[ �̄ �̄ X̄P 	̄]T�R 9+3r (15)

where:

�̄=[ �1 �2 �3]
T

	̄=[	11 · · · 	1r 	21 · · · 	2r 	31 · · · 	3r ]T

Using inertia parameters of the manipulator and gener-
alized coordinates, the kinetic energy is written as

T=�3

i=1

1
2 

ms �̇2
i +

1
2 

mP (ẋ 2
P + ẏ 2

P )+
1
2 

IP �̇ 2

+�3

i=1

1
2 � �A[ �̇ 2

i + (x�̇i + ẇi)
2 +2�̇i(x�̇i + �̇i) sin(�i ��i )] dx

(16)

and potential energy due to deformation of the linkage is
given as

V=�3

i=1
� EI (w �i )

2 dx (17)

where ms is mass of the slider, and mp, Ip are mass and mass
moment of inertia of the platform respectively. �A, E, I are
mass per length, elastic modulus, and area moment of
inertia of the linkage. Evaluating Lagrangian equations of
the first type given by

d
dt ��T

�Ẋi
��

�(T�V )
�Xi

=Qi +�m

k=1

�k

��k

�Xi

(18)

where Qi is generalized force. �k and �k are the kth

Lagrangian multiplier and constraint equation respectively,

Fig. 3. Amplitude of first four mode shapes of straight beam vs.
location along beam �
(dashed line: first mode; dash-dot line: second mode; dotted line:
third mode; solid line: fourth mode).
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the left-hand side of equation of motions is formulated as
follows:

d
dt��T

��̇i
��

�(T�V )
��i

= (ms +m)�̈i +0.5ml sin(�i ��i )�̈i

+�r

j=1

	̈ij sin(�j ��i ) � �A
j dx�0.5ml cos(�i ��i )�̇
2
i

��r

j=1

	̇ij �̇i cos(�i ��i ) � �A
j dx i=1, 2, 3 (19)

d
dt��T

��̇i
��

�(T�V )
��i

=0.5ml sin(�i ��i )�̈i +ml 2�̈i /3+�r

j=1

	̈ij � �Ax
j dx

+�r

j=1

	̇ij �̇i cos(�i ��i ) � �A
j dx i=1, 2, 3 (20)

d
dt� �T

�ẊP
��

�(T�V )
�XP

=
mP

0
0

0
mP

0

0
0
IP

ẍP

ÿP

�̈

(21)

d
dt� �T

�	̇ij
��

�(T�V )
�	ij

=sin(�i ��i )�̈i � �A
j dx+ �̈i � �Ax
j dx+ 	̈ij � �A
 2
j dx

�� �A
j dx cos(�i ��i )�̇i �̇i +� EI (
 �j )
2 dx

i=1, 2, 3 and j=1, 2, . . , r (22)

From the geometry of three closed loop chains, equations
(3)–(6), six constraint equations are given by

�2i�1 =�i cos �i + l cos �i ��r

j=1

	ij sin �i �xP �r cos(�i +�)

(23)

�2i =�i sin �i + l sin �i +�r

i=1

	ij cos �i �yP �r sin(�i +�)

(24)

where:

r cos(�i )=x �ci , r sin(�i )=y �ci i=1, 2, 3

Through equations (23) and (24), the right-hand side of
equation (18) is

Fi +�6

k=1

�k

��k

��i

=Fi +�2i�1 cos �i +�2i sin �i

i=1, 2, 3 (25)

where Fi is output of the ith linear actuator.

�6

k=1

�k

��k

��i

=�2i�1�� l sin �i ��r

j=1

	ij cos �i�

+�2i�l cos �i ��r

j=1

	ij sin �i� i=1, 2, 3

(26)

Fext +�6

k=1

�k

��k

�XP

=

fx

fy

�

+
�1
0

s31

0
�1
c3i

�1
0

s32

0
�1
c32

�1
0

s33

0
�1
c33

(27)

where:

s3i =r sin(�i +�) c3i =r cos(�i +�)

Fext, [ fx fy �]T, is an external force, such as payload, exerted
on the platform.

�6

k=1

�k

��k

�	1j

=��1 sin �1 +�2 cos �1 j=1, 2, . . , r (28)

�6

k=1

�k

��k

�	2j

=��3 sin �2 +�4 cos �2 j=1, 2, . . , r (29)

�6

k=1

�k

��k

�	3j

=��5 sin �3 +�6 cos �3 j=1, 2, . . , r (30)

Putting equations (19)–(22) and equations (25)–(30)
together, the equations of motion for the planar parallel
manipulator are complete with a total of 9+3� r equations;
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M11 M12 0 M14
¨̄� V1 0 0 0 0 �̄

M T
12 M22 0 M24

¨̄� V2 0 0 0 0 �̄
+ +

0 0 M33 0 ¨̄XP 0 0 0 0 0 X̄P

M T
14 M T

24 0 M44
¨̄	 V4 0 0 0 K 	̄

�1

F J�1 �2

0 J�2 �3= +
Fext J�3 �4

0 J�4 �5

�6

Each component is expressed in the Appendix.

3. VIBRATION CONTROL
If the intermediate link is very stiff, an appropriate rigid
body control method for three linear actuators can yield
good tracking performance of the platform.7 However,
structural flexibility of the linkages transfers unwanted
vibration to the platform, and may even lead to instability of
the system. Since it’s hard for three linear actuators to
achieve trajectory tracking of the platform and vibration
attenuation of linkages simultaneously, an active damping
approach is proposed through the use of smart material such
as PZT. Attached on the surface of the linkage, the PZT
produces a shear force along length of the linkage, which
can counteract structural vibration of the linkage. Therefore,
the PZT actuators play a role to damp structural vibration of
the linkages and three linear actuators produce desired
motions of the platform.

A simple proportional and derivative (PD) feedback
controller is used for three linear actuators and is given as

ui (t )=�kP ( �di ��i )�kd ( �̇di ��̇i ) i=1, 2, 3 (31)

where kp and kd are a proportional and a derivative feedback
gain respectively. �di and �̇di are desired values of the ith

slider calculated from equations (7) and (9). A linear
velocity (L-type) feedback controller is applied to the PZT
actuators as

Vi(t )=�kI [ẇi (a2, t )� ẇi (a1, t )] i=1, 2, 3 (32)

where kI is a linear velocity feedback gain for PZT. a1 and
a2 denotes positions of both ends of the PZT actuator
measured from Bi along the linkage. Assuming a perfectly
bonded static model,18 the virtual work-done by the ith PZT
actuator is evaluated as

�WPZT =cVi (t ) �r

j=1

[
 �j (a2)�
 �f (a1)]�	ij (33)

where c is a positive constant expressing the bending
moment applied voltage.

The stability of the L-type control scheme has been
addressed by Sun et al.17 In order to achieve stable control
performance, PZT’s should be placed in a region on the
linkage where 
j (x) and 
 �j (x) have the same trend of
variation within x�[a1, a2];

(
j (a2)�
j (a1))(
 �j (a2)�
 �j (a1))≥0, (34)

while being positioned away from area of zero strain.
Application of this approach to modes of higher frequency
is restricted because satisfaction of equation (34) is only
achieved in small regions on the linkage, for high fre-
quencies. For the simulation results shown here, a PZT
material, QP20N, manufactured by ACX Inc., is selected as
a PZT actuator, with its specifications listed in Table II. The
placement position of the PZT actuators is adjusted so that
the first two vibration modes can satisfy equation (34).

4. SIMULATION RESULTS
Simulations are performed to investigate the flexible
behavior of the parallel manipulator utilizing the proposed
equations of motion. Dynamic parameters are listed in
Table II. The first three modes are considered in the
dynamic model, i.e. r=3. A sinusoidal function with smooth
acceleration and deceleration is chosen as the desired
trajectory;

xP =
xf

tf

t�
xf

2

sin�2


tf

t� (35)

Considering the target-performance in an electrical assem-
bly process, such as wire bonding in integrated circuit
fabrication, the goal for the platform is to move linearly 2
mm (xf ) within 10 msec (tf ). The trajectory is defined in the
direction of the X-axis and feedback gains are listed in
Table III. A fourth order Runge-Kutta method was used to
integrate the ordinary differential equations at the integra-
tion interval of 1 msec, using MATLABTM software.

Figure 4 shows tracking error profiles of the platform
when stiffness of the linkages is changed. A rigid-body
model, which ignores structural flexibility of the linkages,
shows typical characteristics of an underdamped system
entering steady state after 30 msec with tracking error
decreasing continuously. However, the proposed model with
structural flexibility shows persistent oscillation of the
platform due to vibration of the linkages. Simulation results
with an imaginary material, of which stiffness is ten times
larger than a conventional aluminum alloy, while having the
same density of the aluminum alloy, are included for

Table II. Dynamnic parameters.

Slider Mass (kg) 0.2

Platform Mass (kg) 0.2

Density (kg/m3) 2770
Intermediate Link Young’s Modulus (GPa) 73

Dimension (mm) 200 * 25 * 1.5

Young’s Modulus (GPa) 69
PZT actuator Dimension (mm) 50 * 25 * 0.75

d31 (m/V) 179� 10–12

Table III. Feedback control gains.

kp 10,000 (N/m)
kd 500 (N-sec/m)
kI 1,500 (Volts-sec/m)
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comparison. The behavior of this system is closer to that of
rigid-body model, as shown in Figure 4. The rigid-body
model can be thought of a material with infinite stiffness.
This comparison is compatible with what is expected
intuitively.

Figure 5 shows tracking error profiles with the proposed
active damping approach applied to the PZT actuator. In

Figures 5–7, ‘active damping’ means that the PZT actuators
are activated to damp vibration of the linkage. ‘No
damping’ means that the PZT actuator is not activated.
When the PZT actuators are activated, the tracking error of
the platform does not exhibit any vibration in steady state,
and the behavior of the platform is similar to that of the
rigid-body model, shown in Figure 4. Figure 6 and Figure 7

Fig. 4. Error profile of platform for different stiffness of linkage
(solid line: rigid-body model; dotted line: aluminum alloy (Young’s Modulus: 73GPa); dash-dot line: ten times stiffer than aluminum
alloy (Young’s Modulus: 730GPa)).

Fig. 5. Error profile of X-directional movement.
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show the Y-directional movement and the orientation of the
platform respectively. These coordinates, which are to
maintain the Y-position at 0 meters and orientation at 10
degrees respectively, exhibit oscillations which have been
damped out by the active damping approach. In contrast,
persistent oscillation is seen without the action of the PZT
actuators.

With Figure 8 showing deformation of the linkage on Ci,
it reveals that the PZT actuator can damp structural
vibration of the linkage effectively. Structural vibrations of

the linkages are completely damped after 40 msec. The first
three vibration modes are illustrated in Figure 9. The
first mode has ten times the amplitude than the other modes.
The amplitude of the third mode is similar to that of the
second mode, because the third mode does not satisfy
equation (34), as discussed in last section. However, this
does has little or no effect on damping performance, as
shown in Figure 8, since the first two modes play a
dominant role in vibration. The control output for the first
linear actuator is given in the upper plot of Figure 10, and

Fig. 6. Y-directional movement.

Fig. 7. Orientation of the platform.
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control voltage for the first PZT actuator is shown in the
lower plot of Figure 10. Since moving components of the
manipulator have small mass moment of inertia, the
actuating force is correspondingly small.

5. CONCLUSIONS
The equations of motion for the planar parallel manipulator
are formulated by applying the Lagrangian equation of the
first type. Introducing Lagrangian multipliers simplifies the

complexities that arise due to multiple closed loop chains of
the parallel manipulator and the structurally flexible link-
ages. An active damping method using the PZT actuators is
proposed to attenuate structural vibration of the linkage.

Overall dynamic behavior of the parallel manipulator,
which cannot be predicted accurately using a rigid-body
model, is investigated through the equations of motion.
Simulation results show that the parallel manipulator, with
lightweight intermediate links, undergoes persistent
vibration during fast motion. Additionally, the PZT actuator

Fig. 8. Flexible deformation of each linkage
(dotted line: no damping; solid line: active damping).

Fig. 9. The first three vibration modes of the first linkage
(dotted line: no damping; solid line: active damping).
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can provide good damping performance to counteract
structural vibration of the linkage, resulting in precise
manipulations of the platform. In the near future, we will
develop a prototype parallel manipulator based on the
presented dynamic analysis.
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APPENDIX
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