Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-02-06T04:40:21.892Z Has data issue: false hasContentIssue false

PROOF-THEORETIC ANALYSIS OF THE QUANTIFIED ARGUMENT CALCULUS

Published online by Cambridge University Press:  10 June 2019

EDI PAVLOVIĆ*
Affiliation:
Department of Philosophy, History and Art Studies, University of Helsinki
NORBERT GRATZL*
Affiliation:
Fakultät Für Philosophie, Wissenschaftstheorie Und Religionswissenschaft, Munich Center for Mathematical Philosophy (MCMP), Ludwig-Maximilians-Universität München
*
*DEPARTMENT OF PHILOSOPHY, HISTORY AND ART STUDIES UNIVERSITY OF HELSINKI P.O. BOX 24 FI-00014 HELSINKI, FINLAND E-mail: Edi.Pavlovic@helsinki.fi
FAKULTÄT FÜR PHILOSOPHIE WISSENSCHAFTSTHEORIE UND RELIGIONSWISSENSCHAFT MUNICH CENTER FOR MATHEMATICAL PHILOSOPHY (MCMP) LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN GESCHWISTER-SCHOLL-PLATZ 1, D-80539 MÜNCHEN, GERMANY E-mail: N.Gratzl@lmu.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article investigates the proof theory of the Quantified Argument Calculus (Quarc) as developed and systematically studied by Hanoch Ben-Yami [3, 4]. Ben-Yami makes use of natural deduction (Suppes-Lemmon style), we, however, have chosen a sequent calculus presentation, which allows for the proofs of a multitude of significant meta-theoretic results with minor modifications to the Gentzen’s original framework, i.e., LK. As will be made clear in course of the article LK-Quarc will enjoy cut elimination and its corollaries (including subformula property and thus consistency).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2019 

References

BIBLIOGRAPHY

Baaz, M. & Leitsch, A. (2011). Methods of Cut-Elimination. Trends in Logic, Vol. 34. Dordrecht: Springer.Google Scholar
Bencivenga, E. (2002). Free logics. In Gabbay, D. and Guenthner, F., editors. Handbook of Philosophical Logic, Second Edition, Vol. 5. Dordrecht: Springer, pp. 147196.CrossRefGoogle Scholar
Ben-Yami, H. (2014). The Quantified Argument Calculus. The Review of Symbolic Logic, 7, 120146.CrossRefGoogle Scholar
Ben-Yami, H. (2004). Logic and Natural Language. Aldershot: Ashgate.Google Scholar
Ben-Yami, H. & Pavlovic, E. (2015). Completeness of the Quantified Argument Calculus, manuscript.Google Scholar
Buss, S. (1998). An introduction to proof theory. In Buss, S., editor. Handbook of Proof Theory. Amsterdam: Elsevier, pp. 178.Google Scholar
Gentzen, G. (1969). An introduction to proof theory. In Szabo, M., editor. The Collected Papers of Gerhard Gentzen. Amsterdam: North-Holland, pp. 68131.Google Scholar
Gratzl, N. (2010). A sequent calculus for a negative free logic. Studia Logica, 96, 331348.CrossRefGoogle Scholar
Kleene, S. C. (2000). Introduction to Metamathematics (thirteenth edition). Groningen: Wolters-Noordhoff Publishing.Google Scholar
Lambert, K. (1997). Free Logics: Their Foundations, Character, and Some Applications Thereof. Sankt Augustin: Academia Verlag.Google Scholar
Lambert, K. (2001). Free logics. In Goble, L., editor. The Blackwell Guide to Philosophical Logic. Malden, MA: Blackwell Publishers, pp. 258279.Google Scholar
Lanzet, R. & Ben-Yami, H. (2006). Logical inquiries into a new formal system with plural reference. In Hendriks, V. F., editor. First-Order Logic Revisited. Logische Philosophie, Vol. 12. Berlin: Logos Verlag, pp. 173223.Google Scholar
Negri, S. & von Plato, J. (2001). Structural Proof Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schütte, K. (1960). Beweistheorie. Berlin: Springer.Google Scholar
Takeuti, G. (1987). Proof Theory (second edition). Amsterdam: North-Holland.Google Scholar