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Abstract. This article investigates the proof theory of the Quantified Argument Calculus (Quarc)
as developed and systematically studied by Hanoch Ben-Yami [3,4]. Ben-Yami makes use of natural
deduction (Suppes-Lemmon style), we, however, have chosen a sequent calculus presentation, which
allows for the proofs of a multitude of significant meta-theoretic results with minor modifications to
the Gentzen’s original framework, i.e., LK. As will be made clear in course of the article LK-Quarc
will enjoy cut elimination and its corollaries (including subformula property and thus consistency).

§1. Introduction. This article investigates the proof theory of the Quantified Argu-
ment Calculus (Quarc) as developed and systematically studied by Hanoch Ben-Yami
[3, 4]. Ben-Yami makes use of natural deduction (Suppes-Lemmon style), we, however,
have chosen a sequent calculus presentation, which allows for the proofs of a multitude
of significant meta-theoretic results with minor modifications to the Gentzen’s original
framework, i.e., LK. LK, although it has been developed in the 1930s, serves still (as a
basis) for proof theoretic investigations [1, 6, 9, 15].

Quarc is a system of quantified logic which does away with variables and unrestricted
predicates, but etheless achieves results similar to the Predicate Calculus by employing
quantifiers applied directly to predicates which appear as arguments of other predicates
(hence the name Quantified Argument Calculus), along with anaphors and operators that
attach directly to predicates. It is in this respect arguably closer to natural language.1 A
goal of this article is to show how and to what extent some of these results are achieved.
Given that this is an interesting but not widely known system, we will present it here in
considerable detail before proceeding with the proof-theoretic analysis of it. The reason to
use sequent calculus in this analysis is to provide a constructive proof of consistency, but
first and foremost to prove an important, useful and interesting result of a cut elimination
theorem and its corollaries. We are likewise able to straightforwardly extend the system
with the identity, which does not appear in [3].

Received: February 3, 2016.
2010 Mathematics Subject Classification: 03F03, 03F05, 03B10, 03B65.
Key words and phrases: Quantified Argument Calculus, proof theory, sequent calculus, natural

deduction.
1 We thank an anonymous referee for pointing this out.

c© Association for Symbolic Logic, 2019

607 doi:10.1017/S1755020318000114

https://doi.org/10.1017/S1755020318000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000114
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The way the research on Quarc is conducted here is as follows: we observe first that
Ben-Yami’s Quarc is a rather rich system. In our analysis we split up Quarc into three
distinct subsystems, namely, (1) LK-QuarcB, (2) LK-Quarc2, (3) LK-Quarc3, and finally,
LK-Quarc—which is Ben-Yami’s (full) Quarc. LK-QuarcB does not contain either the
rules for identity or instantiation. LK-Quarc2 is an extension of LK-QuarcB with identity,
and LK-Quarc3 an extension of LK-QuarcB with the rule for instantiation. Finally, LK-
Quarc is obtained by combining LK-Quarc2 and LK-Quarc3. As will be made clear in
course of the article LK-Quarc will enjoy cut elimination and its corollaries (including
subformula property and thus consistency which is not proven in [3], although it follows
almost immediately from the soundness proof present there).

Let us note that the quantifiers in Quarc do have particular import, a fact that is expressed
semantically by the condition of nonemptiness of (unary) predicates. This is in contrast to
first-order predicate logic, where, as it is well known, (unary) predicates can be empty. On
the level of theorems we make distinctions on the strength of particular import. On the
basic level, i.e., LK-QuarcB, this is expressed by the following formulas (the notation of
Quarc and its language will be explained in some detail in §2 of this article): (1) (∀S)P →
((∃S)S → (∃S)P) – example: if all men are mortal, then if there are men, then some men are
mortal; and (2) (∀S)P → (aS → aP), e.g., if all men are mortal, then if Socrates is a man,
then Socrates is mortal. The strong version of particular import, that is, (3) (∀S)P → (∃S)P
is a theorem of LK-Quarc3. Clearly, (∃S)S, which can be read as “there are S,” is a theorem
of Quarc3 as well. However, this is not to be conflated with the existential construction “S
exist,” as noted by Ben-Yami in [3] and discussed in more detail in [4]. Following that, the
quantifier ∃ is referred to as particular quantifier in this article.

Focusing for the moment on formula (2), there is a striking similarity with quantification
in free logic [10, 11] and its most distinct axiom: ∀xA → (E!a → A[a/x]). Of course, in
free logic (as in first-order logic), predicates can be empty, but still there is a structural par-
allel. As a matter of fact, this parallel will be exploited in the corresponding formulations
of the sequent rules related to the quantifiers; more on this similarity is said below (p. 11)
of this article.

A note on some of the other special symbols—Quarc introduces additional logical sym-
bols and operations of Anaphora, Reorder and Negative Predication. Anaphora fulfills a
role roughly similar, but broader, to that of the variables in Predicate calculus and is crucial
in determining which parts of the formula a quantified argument governs. Reorder is an
operation that replaces predicates with those which contain arguments in different order.
Reordered predicates are interchangeable with identity-permutation ones in the basic case,
but not in the quantified case, and are used to determine mutual governance in a multiply
quantified formula. Negative Predication is an operation that switches between sentential
negation (e.g., ¬(a)S, it is not the case that a is S) and predication negation (e.g., (a)¬S,
a isn’t S). Again, these two uses of negation are interchangeable in the basic, but not the
quantified case (compare: ¬(∃S)P, it is not the case that some S are P and (∃S)¬P, some S
aren’t P), and are therefore used to determine the mutual scope of negations and quantifiers.
Most of the proofs in this article will focus on the quantifiers and the related additional
special symbols, as those are the primary novelty of Quarc.
Plan of the article: In §2 we present QuarcB, consisting of its language, truth-value as-
signments and derivation rules (natural deduction—following Ben-Yami) with appropriate
modifications for the purposes of this article. §3 sets out with the sequent calculus formu-
lation of QuarcB. §4 proves the deductive equivalence of the two formulations of QuarcB.
The central section of this article, §5, proves the cut elimination theorem and its corollaries
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(subformula property and consistency) for LK-QuarcB. §6 expands LK-QuarcB with the
rules for identity, proves again deductive equivalence, cut elimination and its corollaries
and furthermore conservativity over LK-QuarcB. §7 extends LK-QuarcB with a rule of
instantiation and once again proves all the results from above for LK-Quarc3.

§2. QuarcB. The system presented here will be QuarcB, which differs from the full
Quarc in containing no rules for identity and instantiation.

2.1. Vocabulary.

DEFINITION 2.1 (Vocabulary of QuarcB). QuarcB contains the following symbols:

1. Predicates: P,Q,R, . . ., denumerably many and with a fixed arity.

2. Reordered predicates: For every n-ary (n > 1) predicate R, reordered predicates
Rπ , where π is any permutation of 1, . . . , n except identity permutation.

3. Singular arguments (SA’s): a, b, c, . . .

4. Anaphors: α, β, γ, . . .

5. Sentential operators: ¬,∨,∧,→.

6. Quantifiers: ∀, ∃.

7. Numerals used as indices, comma, parentheses.

2.2. Formula. A note on notation—we use a (metalinguistic) notation A [ϕ] to de-
scribe a formula A which contains the strings of symbols ϕ, and A

[
ψ/ϕ

]
to describe a

formula A where the string of symbols ϕ is substituted by a string of symbols ψ .

DEFINITION 2.2 (Formula). The following rules specify all the ways in which formulas
can be generated.

1. (Basic formula) If P is an n-ary predicate and t1, . . . , tn SA’s, then (t1, . . . , tn)P is
a formula, called a basic formula.

2. (Reorder) If P is a reordered n-ary predicate (n > 1) and t1, . . . , tn SA’s, then
(t1, . . . , tn)P is a formula. Note that reordered predicates are a separate class of
symbols of the language, and so no formula containing a reordered predicate is
basic.

3. (Negative predication) If P is an n-ary predicate or a reordered n-ary predicate and
t1, . . . , tn SA’s, then (t1, . . . , tn)¬P is a formula.

4. (Sentential operators) If A and B are formulas, so are ¬(A), (A) ∧ (B), (A) ∨
(B), (A) → (B). The parentheses surrounding formulas are called sentential paren-
theses.

5. (Anaphora) If A is a formula containing, from left to right, t1, . . . , tn (n > 1)
occurrences of SA t, none of which is a source of any anaphora, and A does not
contain α, then A

[
tα/t1, α/t2, . . . , α/tn

]
is a formula. We call tα the source of the

anaphora α.

6. (Quantification) If P is a unary predicate, then ∀P and ∃P are quantified arguments
(QA’s). If A is a formula containing an occurrence of an SA t, and substituting a
QA qP for t will result in qP governing A, then A

[
qP/t

]
is a formula.

Obviously, to make sense of the last entry, we also need to define governance:
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7. (Governance) An occurrence qP of a QA governs a formula A just in case qP is the
leftmost QA in A and A does not contain any other string of symbols (B) in which
the parentheses are a pair of sentential parentheses, such that B contains qP and
all the anaphors of all the QA’s in B.

Closer inspection of the rules shows that some of these can be applied in multiple orders.
Namely, applications of the anaphora rule can be transposed with one or more applications
of the quantifier, sentential operator, or anaphora rules. Whenever such a situation occurs,
as a matter of convention, anaphora rules are applied first. Among the anaphora rules, first
applied is that which has then rightmost argument as its source. Given that every anaphor
has a single source, and no two anaphors have the same source, this convention produces a
unique order of applications of formula-generation rules.

DEFINITION 2.3 (Terminal symbol). The symbol introduced, for any formula, by the
last application of a formula-generation rule is called a terminal symbol of that
formula.

2.3. Truth-value assignments. We now define the truth-value assignments for formu-
las of Quarc. The semantics given in [3] are substitutional, and, even though Quarc is
not essentially substitutional (a model-theoretic approach was used for a similar system
in [12]), we will not alter it, given that no result in this article hinges on the distinction.

DEFINITION 2.4 (Truth-value assignments). For any truth-value assignment A, the follow-
ing holds:

1. (Basic formula) Every basic formula is assigned the truth-value of true or false, but
not both.

2. (Reorder) Let P be an n-ary predicate and π = π1, . . . , πn a permutation of
1, . . . , n. Then, the truth-value assigned to (tπ1, . . . , tπn)Pπ is that assigned to
(t1, . . . , tn)P.

3. (Sentential operators) Let A and B be formulas. Then, ¬(A) is true just in case A is
false. Etc.

4. (Negative predication) Let P be an n-ary predicate and t1, . . . , tn SA’s. The truth
value of (t1, . . . , tn)¬P is that of ¬(t1, . . . , tn)P.

5. (Anaphora) If A is a formula containing, from left to right, occurrences t1, . . . , tn of
SA t, none of which is the source of any anaphors, and A does not contain α, then
the truth-value of A

[
tα/t1, α/t2, . . . , α/tn

]
is that of A.

6. (Quantification) Let A [∀P] (A [∃P]) be formula A governed by the QA ∀P (∃P). If
for every (some) SA t for which (t)P is true A

[
t/∀P

]
(A

[
t/∃P

]
) is true, then A is

true, and false otherwise.
In addition to these, one of the rules needed for full Quarc is that of instantiation:

7. (Instantiation) For any unary predicate P there is an SA t such that (t)P is true.

2.4. Derivation rules. The rules presented here are taken from [3]. We only present
the rules specific to Quarc; the rules for propositional connectives are standard and will be
omitted. We begin by a definition of a proof, due to [5]:

DEFINITION 2.5 (Proof). A proof is a list of lines of the form 〈L, (i),A,R〉, where L
is a (possibly empty) sequence of formulas, (i) the line number, A a formula and R a
justification, an element of the set of the derivation rules.
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DEFINITION 2.6 (Derivation rules). The following are the derivation rules of QuarcB:

1. (Premise)
i (i) A Premise

2. (Propositional Calculus) We allow the usual derivation rules of the Propositional
Calculus, with the constraint that for each rule, the principal formulas be formulas
of Quarc. E.g., one cannot obtain (α)P from (tα)S ∧ (α)P by ∧E.

3. (Sentence to Predication Negation, SP)

L (i) ¬(t1, . . . , tn)P
L (j) (t1, . . . , tn)¬P SP, i

4. (Predication to Sentence Negation, PS)

L (i) (t1, . . . , tn)¬P
L (j) ¬(t1, . . . , tn)P PS, i

5. (Reorder, R) Where π and ρ are any permutation of 1, . . . , n including the identity
permutation,

L (i) (tπ1, . . . , tπn)Pπ

L (j) (tρ1, . . . , tρn)Pρ R, i

6. (Anaphora Introduction, AI)Where t1, . . . , tn are n, n > 1, occurrences of the same
singular argument t, none of t1, . . . , tn is a source of an anaphor, and α does not
occur in A,

L (i) A [t1, . . . , tn]
L (j) A

[
tα/t1, α/t2 . . . , α/tn

]
AI, i

7. (Anaphora Elimination, AE) Where same provisions as in AI apply,

L (i) A
[
tα/t1, α/t2 . . . , α/tn

]

L (j) A [t1, . . . , tn] AE, i

8. (Universal Introduction, UI) Where A [∀P] is governed by the quantified argument
∀P, and the singular argument t does not occur in any of the premises listed in L
apart from (i), nor in A [∀P],

i (i) (t)P Premise
L∗ (j) A

[
t/∀P

]

L − {i} (k) A [∀P] UI, i, j

9. (Universal Elimination, UE) Where A [∀P] is governed by the quantified argument
∀P as above,

L1 (i) A [∀P]
L2 (j) (t)P

L1 ∪ L2 (k) A
[
t/∀P

]
UE, i, j

10. (Particular Introduction, PI)Where A [∃P] is governed by the quantified argument
∃P,

L1 (i) A
[
t/∃P

]

L2 (j) (t)P
L1 ∪ L2 (k) A [∃P] PI, i, j
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11. (Particular Elimination, PE)Where A [∃P] is governed by the quantified argument
∃P, and the singular argument t does not occur anywhere in L1 ∪ L2 −{j, k}, A [∃P]
or B,

L1 (i) A [∃P]
j (j) (t)P Premise
k (k) A

[
t/∃P

]
Premise

L2 (l) B
L1 ∪ L2 − {j, k} (m) B PE, i, j, k, l

Note that PE is a rule of QuarcB, but not full Quarc, which uses the rule of Instan-
tiation. This rule resembles PE but is defined for either quantifier. Let q be either ∃
or ∀:

12. (Instantiation, Ins) Where same provisions apply, mutatis mutandis, as in PE,

L1 (i) A
[
qP

]

j (j) (t)P Premise
k (k) A

[
t/qP

]
Premise

L2 (l) B
L1 ∪ L2 − {j, k} (m) B Ins, i, j, k, l

Consequently, the following is a theorem of full Quarc, but not (as we will see) QuarcB:

THEOREM 2.7 (Particular Import in Quarc). (∀M)P � (∃M)P

Proof.
1 (1) (∀M)P Premise
2 (2) (a)M Premise
3 (3) (a)P Premise

2,3 (4) (∃M)P PI, 2, 3
1 (5) (∃M)P Ins, 1, 2, 3, 4 �

2.4.1. Examples. In this section we provide several examples of the uses of (full)
Quarc, namely, to prove the syllogism Barbara and several instances of the DeMorgan
laws.

EXAMPLE 2.8. Syllogism Barbara

(∀M)P, (∀S)M � (∀S)P

Proof.
1 (1) (∀M)P Premise
2 (2) (∀S)M Premise
3 (3) (a)S Premise

2,3 (4) (a)M UE, 2, 3
1,2,3 (5) (a)P UE, 1, 4

1,2 (6) (∀S)P UI, 3, 5 �

EXAMPLE 2.9. DeMorgan Laws

(∃M)P � ¬(∀M)¬P

Proof.
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1 (1) (∃M)P Premise
2 (2) (∀M)¬P Premise
3 (3) (a)M Premise
4 (4) (a)P Premise

2,3 (5) (a)¬P UE, 2, 3
2,3 (6) ¬(a)P PS, 5
3,4 (7) ¬(∀M)¬P ¬I, 2, 4, 6

1 (8) ¬(∀M)¬P PE, 1, 3, 4, 7 �
¬(∀M)¬P � (∃M)P

Proof.
1 (1) ¬(∀M)¬P Premise
2 (2) ¬(∃M)P Premise
3 (3) (a)M Premise
4 (4) (a)P Premise

3,4 (5) (∃M)P PI, 3, 4
2,3 (6) ¬(a)P ¬I, 4, 2, 5
2,3 (7) (a)¬P SP, 6

2 (8) (∀M)¬P UI, 3, 7
1 (9) ¬¬(∃M)P ¬I, 2, 1, 8
1 (10) (∃M)P ¬E, 9 �

§3. LK-QuarcB. We now move to the presentation of the sequent-calculus version
of QuarcB, called LK-QuarcB. LK-QuarcB is an adaptation of the system LK from [7].
The system presented here consists of sequents of the form 	 ⇒ 
, where 	 and 
 are
sequences of formulas, connected into derivations via derivation rules. These rules take one
or more (usually two), sequents, called the upper sequent(s) and produce a single sequent,
called the lower sequent. A single application of a derivation rule will be referred to as an
inference.

Derivation rules are divided into five types: (i) axioms, (ii) structural, (iii) propositional,
(iv) quantification and (v) special. Axioms are the initial sequents of a derivation. Structural
rules concern the addition, removal or transposition of formulas in a sequent. Propositional
rules concern the addition or removal of propositional (truth-functional) connectives from
the lower sequent of an inference, quantification rules do he same for quantifiers, and
special for reordered predicates, anaphora and negative predication. Finally, the Cut rule,
although a structural rule, is listed separately, as it will be a rule we will eliminate in
subsequent sections.

Every rule of LK-QuarcB, with the exception of Cut operates either on the left (marked
by L before the relevant symbol), or the right (R) side of the arrow in the lower sequent.
As we will see later, LK-Quarc2 and LK-Quarc3 will offer further exceptions to this
convention.

The sequent which is not an upper sequent of an inference is called an endsequent of
a derivation it belongs to. A derivation can have only one endsequent, as will be obvious
from the structure of the derivation rules. We now proceed to define them.

DEFINITION 3.1 (LK-QuarcB). The following are the rules of LK-QuarcB. In all but the
Cut rule, the formula occurring in the lower sequent of a rule other than 	 and
 is called
the principal formula of that rule.
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3.1. Axioms. An axiom is a sequent of the form (t1, . . . , tn)P �⇒ (t1, . . . , tn)P, where
t1, . . . , tn are singular arguments and P is a n-ary predicate. Axioms are also called initial
sequents, given that they are not a lower sequent of any inference.

3.2. Structural. We next define the structural rules. As stated previously, these
rules govern the addition (weakening, W), removal (contraction, C), and transposition
(exchange, P) of formulas in the lower sequent.

1. 	 �⇒ 
 (LW)
A, 	 �⇒ 


	 �⇒ 
 (RW)
	 �⇒ 
,A

2. A,A, 	 �⇒ 

(LC)

A, 	 �⇒ 


	 �⇒ 
,A,A
(RC)

	 �⇒ 
,A

3. 	′,A,B, 	 �⇒ 

(LP)

	′,B,A, 	 �⇒ 


	 �⇒ 
,A,B,
′
(RP)

	 �⇒ 
,B,A,
′

3.3. Propositional. The rules in this section do not introduce anything unfamiliar to
those acquainted with standard LK. Therefore, in a number of subsequent section segments
concerning these rules will be omitted or presented only schematically.

1. 	 �⇒ 
,A
(L¬)¬A, 	 �⇒ 


A, 	 �⇒ 

(R¬)

	 �⇒ 
,¬A

2. A, 	 �⇒ 

(L∧)*

A ∧ B, 	 �⇒ 


	 �⇒ 
,A 	 �⇒ 
,B
(R∧)

	 �⇒ 
,A ∧ B

3. A, 	 �⇒ 
 B, 	 �⇒ 

(L∨)

A ∨ B, 	 �⇒ 


	 �⇒ 
,A
(R∨)*

	 �⇒ 
,A ∨ B

4. B, 	 �⇒ 
 	 �⇒ 
,A
(L→)

A → B, 	 �⇒ 


A, 	 �⇒ 
,B
(R→)

	 �⇒ 
,A → B

* - the rules L∧ and R∨ can also, respectively, produce the formula B∧A and B∨A.

3.4. Quantification. The primary novelty of Quarc is in its treatment of Quantified
Arguments. Therefore, the rules in this section will constitute (along with the Cut rule) the
primary focus of this article.

1. A
[
a/∀M

]
, 	 �⇒ 
 	 �⇒ 
, aM

(L∀)
A [∀M] , 	 �⇒ 


aM, 	 �⇒ 
,A
[
a/∀M

]

(R∀)*
	 �⇒ 
,A [∀M]

2. aM,A
[
a/∃M

]
, 	 �⇒ 


(L∃)*
A [∃M] , 	 �⇒ 


	 �⇒ 
, aM 	 �⇒ 
,A
[
a/∃M

]

(R∃)
	 �⇒ 
,A [∃M]

* - the Singular Argument a does not occur anywhere in 	, 
, A [∀M] or A [∃M].

Note here that the rules of universal quantification bear a structural similarity to free
logic [8]. In free logic (regardless of which version of it we consider in this context) one
of its characteristic axioms is E!a ∧ A[a] → ∃xA[x] in some Hilbert-style axiomatization.
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E.g., [2] formulates the rules for the introduction of the existential quantifiers for some
Gentzen (sequent) system as follows (we use here a slightly simpler syntax):

	,E!a,A[a] ⇒ 

(L∃), a does not occur below the inference line

	, ∃xA[x] ⇒ 


	 ⇒ 
,E!a 	 ⇒ 
,A[a]
(R∃)

	 ⇒ 
, ∃xA[x]

Assuming that the premise of (L∃) is derivable, then so is: (1) 	,E!a∧A[a] ⇒ 
; likewise
if both premises of (R∃) are derivable, then so is: (2) 	 ⇒ 
,E!a∧A[a]. On the other hand,
these rules express syntactically that the existential quantifier has (in this case) existential
import. This is made clearer by the fact that the following sequent is derivable in (positive
and negative) free logic: E!a ∧ A[a] ⇒ ∃xA[x]. From a proof-theoretic semantics position
this might be seen as a disadvantage, since there is implicitly conjunction introduction
involved.

However, one of the main aims of this article is to establish the cut elimination theorem
for (several variants of) Quarc, and the authors are not aware of any article in the tradition
of free logic that formulates the rules for (L∃) and (R∃) in a way more truthful to proof
theoretic semantics; i.e., such that the formulations of both rules do not tacitly rely on
conjunction introduction (on both sides) but in such a way that the crucial sequent E!a ∧
A[a] ⇒ ∃xA[x] is still derivable. This could in fact stimulate another article that addresses
this is issue.

3.5. Special. This section introduces further rules (in addition to those for quantifica-
tion) specific to Quarc, those for anaphora, reorder and negative predication. Here R is an
n-ary predicate, Rπ is a reordered n-ary predicate and P is either an n-ary predicate, or a
reordered n-ary predicate.

1.
A [. . . a1 . . . an . . .] , 	 �⇒ 


(LA)
A

[
. . . aα/a1 . . . α/an . . .

]
, 	 �⇒ 


	 �⇒ 
,A [. . . a1 . . . an . . .] (RA)
	 �⇒ 
,A

[
. . . aα/a1 . . . α/an . . .

]

2. (t1, . . . , tn)R, 	 �⇒ 

(LRd)

(tπ1, . . . , tπn)Rπ , 	 �⇒ 


	 �⇒ 
, (t1, . . . , tn)R (RRd)
	 �⇒ 
, (tπ1, . . . , tπn)Rπ

3. ¬(t1, . . . , tn)P, 	 �⇒ 

(LNP)

(t1, . . . , tn)¬P, 	 �⇒ 


	 �⇒ 
,¬(t1, . . . , tn)P (RNP)
	 �⇒ 
, (t1, . . . , tn)¬P

3.6. Cut. Finally, we have the Cut rule. The formula A in the schema below is called
the cut formula of the application of the rule.

1.
	 ⇒ �,A A,� ⇒ 


	,� ⇒ �,


3.7. Axiom generalization. Before proceeding, let us demonstrate a simple and useful
lemma that the axiom rule, which has been defined only for the basic sentences, can be
generalized for any formula A.

LEMMA 3.2. All sequents of the form A ⇒ A is derivable in LK-QuarcB.

Proof. By induction on the terminal symbol of A.

Basic step. Every initial sequent is derivable.
Inductive step. Here we will only examine, as an illustration, the example of the universal

quantifier.
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1. Universal Quantifier
(ind. hyp.)

A
[
a/∀M

] ⇒ A
[
a/∀M

]

(LW)
aM,A

[
a/∀M

] ⇒ A
[
a/∀M

]

(LP)
A

[
a/∀M

]
, aM ⇒ A

[
a/∀M

]

aM ⇒ aM (RW)
aM ⇒ aM,A

[
a/∀M

]

(RP)
aM ⇒ A

[
a/∀M

]
, aM

(L∀)
aM,A [∀M] ⇒ A

[
a/∀M

]

(R∀)
A [∀M] ⇒ A [∀M]

Where a is some singular argument such that A [∀M] does not contain it. �

§4. Deductive equivalence. In this section we will demonstrate the deductive equiv-
alence of LK-QuarcB and QuarcB. Note that we will make full use of the Cut rule (even
though the Cut Elimination Theorem will later guarantee that for each derivation presented
here, there is a cut-free derivation).

Before proceeding, a note on the structure of this section may perhaps be helpful. The-
orem 4.1 is demonstrated by proving two auxiliary lemmas, Lemmas 4.3 and 4.4, each
corresponding to one direction of the biconditional in Theorem 4.1. The proof of basic
step of Lemma 4.4 is Lemma 3.2 and the inductive step of Lemma 4.4 for the Universal
Elimination requires the (trivial) Lemma 4.5.

THEOREM 4.1. LK-QuarcB and QuarcB are deductively equivalent. Namely, every endse-
quent of any derivation of LK-QuarcB is derivable in QuarcB, and for any line (i) of any
proof in QuarcB there exists a corresponding sequent in LK-QuarcB which can be derived
from trivial lemmas and sequents corresponding to the lines of a proof (i) is derived from
in QuarcB.

Obviously, what needs to be explained first is what the correspondence between the lines
of a proof and sequents is. To do that, we define the standard translation:

DEFINITION 4.2 (Standard translation). Standard translation of a sequent 	 ⇒ 
 of
LK-Quarc, where 	 = {γ1, . . . , γn} and 
 = {δ1, . . . , δm} is the derivation in Quarc
γ1 ∧· · ·∧γn � δ1 ∨· · ·∨ δm. Conversely, standard translation of a line of a proof in Quarc
〈	, (i), δ,R〉 is the sequent 	 ⇒ δ.

The proof of the theorem proceeds through proof of two lemmas, one going from the
LK-QuarcB to QuarcB, and the other in the opposite direction.

4.1. From LK-Quarc to Quarc. The proof in this direction goes by the following
lemma:

LEMMA 4.3. Every endsequent 	 ⇒ 
 of some derivation in LK-QuarcB is, given
standard translation, derivable in QuarcB.

Proof. By induction on applications of rules of LK-QuarcB.

Basic step. Every initial sequent is derivable in QuarcB. Follows trivially from the
Premise rule of Quarc.

Inductive step. Henceforth, we outline the important steps.

1. (L∀) Assume that in QuarcB (i) A
[
a/∀M

] ∧ 	 � 
 and (ii) 	 � 
 ∨ aM. Now
assume (1) A [∀M] ∧ 	. We need derive 
.
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1 (1) A [∀M] ∧ 	 Premise
1 (2) A [∀M] ∧E, 1
1 (3) 	 ∧E, 1
1 (4) 
 ∨ aM by (ii)
5 (5) 
 Premise
6 (6) aM Premise

1,6 (7) A
[
a/∀M

]
UE, 2, 6

1,6 (8) A
[
a/∀M

] ∧ 	 ∧I, 7, 3
1,6 (9) 
 by (i)

1 (10) 
 ∨E, 4, 5, 5, 6, 9

2. (R∀) Assume that in QuarcB (i) aM ∧	 � 
∨ A
[
a/∀M

]
and (ii) a does not appear

anywhere in 	, 
 or A [∀M]. Now assume (1) 	. We need to derive 
 ∨ A [∀M].

1 (1) 	 Premise
2 (2) aM Premise

1,2 (3) aM ∧ 	 ∧I, 1, 2
1,2 (4) 
 ∨ A

[
a/∀M

]
by (i)

(5) 
 ∨ ¬
 Prop.
6 (6) 
 Premise
6 (7) 
 ∨ A [∀M] ∨I, 6
8 (8) ¬
 Premise

1,2,8 (9) A
[
a/∀M

]
Prop. 4, 8

1,8 (10) A [∀M] UI, 2, 9, given (ii)
1,8 (11) 
 ∨ A [∀M] ∨I, 10

1 (12) 
 ∨ A [∀M] ∨E, 5, 6, 7, 8, 11

3. (LA) Assume (i) A [. . . a1 . . . an . . .]∧	 � 
 and assume (1) A
[
aα/a1 . . . α/an

]∧	.
We need to derive 
.

1 (1) A
[
aα/a1 . . . α/an . . .

] ∧ 	 Premise
1 (2) A

[
aα/a1 . . . α/an . . .

] ∧E, 1
1 (3) A [. . . a1 . . . an . . .] AE, 2
1 (4) 	 ∧E, 1
1 (5) A [a1 . . . an . . .] ∧ 	 ∧I, 3, 4
1 (6) 
 by (i)

Obviously, this is straightforward.

4. Similarly for other Special rules.
This concludes the proof of Lemma 4.3. We now turn to the proof of the other
Lemma. �

4.2. From Quarc to LK-Quarc. In this direction the proof relies on the following
lemma:

LEMMA 4.4. For any line (i) of any proof in QuarcB there exists a corresponding se-
quent in LK-QuarcB which can be derived from trivial lemmas and sequents corresponding
to the lines of a proof (i) is derived from in QuarcB.

Before proceeding with the proof, perhaps a slight clarification of this lemma is in order.
Keep in mind that every step of a proof in Quarc is derived from previous step or steps
(or none for Premise and Identity Introduction) via the application of a certain rule. What
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this lemma does is construct a segment of a derivation in LK-QuarcB (not a full derivation
because it does not necessarily have an initial sequent in all of its topmost places) that
begins with the (standard translation of) steps the application of the rule of QuarcB relies
on, and ends with the (standard translation of) step that the rule produces.

Since any proof in Quarc consists of a finite number of steps each produced by a rule, by
“stacking” the segments of the derivation one after the other (one segment for each step,
according to the rule used in that step), we produce a derivation for which the endsequent
is the standard translation of the conclusion of the proof in QuarcB. We now proceed with
the proof of the lemma.

Proof. By induction on the applications of the rules of derivation of QuarcB.

Basic step. Since we are dealing with QuarcB, which does not include the identity rules,
a proof can only begin with an application of a Premise rule. For any application of the
Premise rule, the corresponding sequent is A ⇒ A. That such a sequent exists is shown by
Lemma 3.2.

Inductive step.

1. (¬I) The rule for the Negation Introduction has the following form:

k (k) A Premise
L1 (m) B
L2 (n) ¬B

L1*, L2* (i) ¬A ¬I, k, m, n

Here Ln* stands for the sequence of formulas Ln with all the occurences of k
omitted.
The corresponding segment of a derivation in LK-QuarcB is as follows (part sepa-
rated out for legibility):

(Lemma 3.2)
B ⇒ B (L¬)

B,¬B ⇒
(L∧)

B ∧ ¬B,¬B ⇒
(LP)¬B,B ∧ ¬B ⇒

(L∧)
B ∧ ¬B,B ∧ ¬B ⇒

(LC)
B ∧ ¬B ⇒

We now use this part in the top right and provide the rest of the segment:

(k) A ⇒ A

(m) L1 ⇒ B (n) L2 ⇒ ¬B
(R∧)

L1, L2 ⇒ B ∧ ¬B B ∧ ¬B ⇒
(Cut)

L1, L2 ⇒
(maybe LW)

L1, L2,A ⇒
(maybe some LC)

L1∗, L2∗,A ⇒
(Cut)

L1∗, L2∗,A ⇒
(R¬)

(i) L1∗, L2∗ ⇒ ¬A

Obviously, here we could do without the sequent corresponding to the step (k) and
the application of Cut it is a part of, but we use all the steps that are listed in the
justification of the application of the rule in Quarc, regardless of whether they are
premises or not.
These derivations are schematic. For instance, the inference between the sequents
L1, L2 ⇒ and L1, L2,A ⇒ may require a use of the left weakening rule (LW) in
case neither L1 nor L2 contain A. If they do, this step can be omitted. Similarly, if

https://doi.org/10.1017/S1755020318000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000114


PROOF-THEORETIC ANALYSIS OF THE QUANTIFIED ARGUMENT CALCULUS 619

either L1 or L2 contain A, one or more applications of the left contraction (LC) rule
may be required to obtain the sequent L1∗, L2∗,A ⇒. Again, in case neither L1 nor
L2 contain A these steps can be omitted.

2. Similarly for other propositional rules.

3. (UE) The rule for the Universal Elimination has the following form:

L1 (k) A [∀M]
L2 (m) aM

L1, L2 (i) A
[
a/∀M

]
UE, k, m

Before proceeding with the corresponding segment of a derivation, we need to prove
the following (easy) lemma:

LEMMA 4.5. The sequent A [∀M] , aM ⇒ A
[
a/∀M

]
is derivable in LK-QuarcB.

Proof.

(Lemma 3.2)
A

[
a/∀M

] ⇒ A
[
a/∀M

]

(LW)
aM,A

[
a/∀M

] ⇒ A
[
a/∀M

]

(LP)
A

[
a/∀M

]
, aM ⇒ A

[
a/∀M

]

aM ⇒ aM (RW)
aM ⇒ aM,A

[
a/∀M

]

(RP)
aM ⇒ A

[
a/∀M

]
, aM

(L∀)
A [∀M] , aM ⇒ A

[
a/∀M

]

The corresponding segment of a derivation in LK-QuarcB for the rule UE is as
follows:

(k)L1 ⇒ A [∀M]

(m)L2 ⇒ aM
(Lemma 4.5)

A [∀M] , aM ⇒ A
[
a/∀M

]

(Cut)
L2,A [∀M] ⇒ A

[
a/∀M

]

(Cut)
L1, L2 ⇒ A

[
a/∀M

]

4. (UI) The rule for the Universal Introduction has the following form:

k (k) aM Premise
L1 (m) A

[
a/∀M

]

L1* (i) A [∀M] UI, k, m

Here L1* stands for the sequence of formulas L1 with all the occurrences of k
omitted. By rule, L1 contains no occurrences of the SA a apart from that in k, and
therefore L1* contains no occurrences of a.
The corresponding segment of a derivation in LK-QuarcB for the rule UI is as
follows:

(k)aM ⇒ aM

(m)L1 ⇒ A
[
a/∀M

]

(LW)
aM, L1 ⇒ A

[
a/∀M

]

(maybe LC)
aM, L1∗ ⇒ A

[
a/∀M

]

(Cut)
aM, L1∗ ⇒ A

[
a/∀M

]

(R∀)
L1∗ ⇒ A [∀M]

Since L1* contains no occurrences of a, this is an appropriate use of the rule R∀.

5. (PI) The rule for the Particular Introduction has the following form:
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L1 (k) A
[
a/∃M

]

L2 (m) (a)M
L1, L2 (i) A [∃M] PI, i, j

The corresponding segment of a derivation in LK-QuarcB for the rule PI is as
follows:

(m)L2 ⇒ aM
(some LW)

L1, L2 ⇒ aM

(k)L1 ⇒ A
[
a/∃M

]

(some LW, LP)
L1, L2 ⇒ A

[
a/∃M

]

(R∃)
(i)L1, L2 ⇒ A [∃M]

6. (PE) The rule for the Particular Elimination has the following form:

L1 (k) A [∃M]
j (l) (a)M Premise
k (m) A

[
a/∃M

]
Premise

L2 (n) B
L1, L2 − {j, k} (i) B PE, k, l, m, n

The singular argument a occurs nowhere in L1, A [∃M] or B, and nowhere in L2
except j or k.
The corresponding segment of a derivation in LK-QuarcB for the rule PE is as
follows (broken into two parts for legibility):

(l)aM ⇒ aM

(m)A
[
a/∃M

] ⇒ A
[
a/∃M

]
(n)L2 ⇒ B

(some LW , LC)
A

[
a/∃M

]
, aM, L2∗ ⇒ B

(Cut)
A

[
a/∃M

]
, aM, L2∗ ⇒ B

(LP)
aM,A

[
a/∃M

]
, L2∗ ⇒ B

(Cut)
aM,A

[
a/∃M

]
, L2∗ ⇒ B

(L∃)
A [∃M] , L2∗ ⇒ B

where L2∗ stands for the sequence of formulas L2 with all instances of aM and
A

[
a/∃M

]
removed. Since L2∗ and B contain no instances of SA a, this is an appro-

priate use of the rule L∃. Now, having obtained the sequent A [∃M] , L2∗ ⇒ B, we
combine it with the step (k) and obtain the desired sequent:

(k)L1 ⇒ A [∃M] A [∃M] , L2∗ ⇒ B
(Cut)

(i)L1, L2∗ ⇒ B

7. The derivations of sequents corresponding to the special symbols of Quarc are trivial
and will be omitted here

This concludes the proof of Lemma 4.4 and thus of Theorem 4.1. �

§5. Cut elimination theorem. We finally arrive at the central section of this article,
the demonstration of the Cut elimination theorem for LK-QuarcB. This, in turn, will allow
us to arrive at the subformula property for our system and motivate some further consider-
ations in the following sections.

5.1. Preliminaries. The proof presented in this section is an adaptation of Gentzen’s
original cut elimination proof from [7]. It is a double induction on the grade and rank of
the cut formula.
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5.1.1. Cut and mix. Since LK-QuarcB contains the contraction rules, there might be
multiple instances of the cut formula occurring. In order to be able to cut on all of those,
let us also define the mix rule:

DEFINITION 5.1 (Mix rule).

	 ⇒ � � ⇒ 

	,�∗ ⇒ �∗,


Where some formula M, called the mix formula occurs at least once in � and �, and
�∗ and �∗ are obtained by removing all instances of M from � and �, respectively.

DEFINITION 5.2 (LK – Quarc†). LK − Quarc† is a sequent calculus obtained from LK-
Quarc by replacing the cut rule by the mix rule.

LEMMA 5.3. For any sequent S, S is provable in LK − Quarc† just in case it is provable
in LK-Quarc.

Proof. By showing Cut is derivable in LK − Quarc†

	 ⇒ �,A A,� ⇒ 

(Mix)

	,�∗ ⇒ �∗,

(some LW, RW)

	,� ⇒ �,


and conversely that Mix is derivable in LK-Quarc.

	 ⇒ � (some RP, RC)
	 ⇒ �∗,A

� ⇒ 
 (some LP, LC)
A,�∗ ⇒ 


(Cut)
	,�∗ ⇒ �∗,


Since LK-QuarcB contains all the rules used, this lemma will hold for it. We will call
LK-Quarc†

B the sequent calculus obtained by substituting the mix rule for the cut rule in
LK-QuarcB.

5.1.2. Grade and rank.

DEFINITION 5.4 (Grade, γ ). Let A, B and C be formulas, R an n-ary predicate, P an n-ary
predicate or a reordered n-ary predicate, t1, . . . , tn SA’s and π1, . . . , πn some permutation
of 1, . . . , n except identity permutation. Then, the grade γ (A) of the formula A is:

1. γ (A) = 0 if A is basic.

2. γ (A) = 1 if A is (tπ1, . . . , tπn)Rπ .

3. γ (A) = γ ((t1, . . . , tn)P)+ 1 if A is (t1, . . . , tn)¬P.

4. γ (A) = γ (B)+ 1 if A is ¬B.

5. γ (A) = γ (B)+ γ (C)+ 1 if A is B ∧ C, B ∨ C or B → C.

6. γ (A) = γ (B
[
t/∀P

]
)+ 1 if A is B [∀P].

7. γ (A) = γ (B
[
t/∃P

]
)+ 1 if A is B [∃P].

8. γ (A) = γ (B [. . . , t1, . . . , tn, . . .])+ 1 if A is B
[
. . . , tα/t1, . . . , α/tn

]
.

The order of application of the rule for anaphora can sometimes be transposed with the
application of the rules for sentential operators, quantifiers, or another anaphora. It can
be shown by induction that all of those transpositions assign the same grade to a formula.
For a similar proof, see [5].

DEFINITION 5.5 (Rank, ρ). Rank of a derivation is the sum of the left and right rank of a
mix formula. Left rank (right rank) is the maximal number of sequents in a branch, starting
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from the upper left (right) sequent of the mix rule, such that each sequent of the branch
contains the mix formula in the succedent (antecedent).

5.1.3. Re-designating the proper singular arguments. Before proceeding to the cut
elimination theorem, we shall prove an auxiliary lemma. Again, this is due to [7].

DEFINITION 5.6. Call the Singular Argument a occurring in the Definition 6 of the rules
R∀ and L∃ the proper singular argument of the respective rules. To redesignate the proper
singular arguments, we alter a derivation according to the following procedure. First, for
every occurrence of a rule R∀ or L∃ above which no other occurrence of these rules is
present (to have a unique procedure we can start with the leftmost and move right), we
replace their proper singular argument in all the sequents above the lower sequent of the
occurrence of the rule with a singular argument that has so far not occurred anywhere in
the derivation. Second, we apply the same procedure to all the occurrences of the rules R∀
or L∃ which are such that the procedure has already been applied to any other occurrence
of said rules in all the sequents above their lower sequents.

We need to prove the following auxiliary lemma:

LEMMA 5.7. If In is an initial sequent or a correct inference which contains a singular
argument a, which is not the proper singular argument of In, and if the singular argument b
is likewise not the proper singular argument of In, then In’, obtained from In by uniformly
substituting b for a is an initial sequent or a correct inference.

Proof. By induction on the rules of LK-QuarcB. �
Next we prove the following lemma:

LEMMA 5.8. If we redesignate the proper singular arguments of a correct derivation, it
will yield a correct derivation, namely, of the same grade and rank, of the same endsequent.

That the two derivations end in the same endsequent is obvious from the definition of
the redesignation procedure. We now need to show this is a correct derivation of a said
sequent.

Proof. By induction on the steps of the redesignation procedure. For every occurrence of
a rule R∀ or L∃, every sequent above its lower sequent is derived correctly, by Lemma 5.7
and inductive hypothesis. Moreover, replacing the proper singular argument of a correct
application of R∀ or L∃ with a singular argument that occurs nowhere above its lower
sequent will likewise produce a correct instance of R∀ or L∃. �

5.2. Cut elimination. We want to show the following:

THEOREM 5.9 (Cut elimination). For any sequent S, if S is provable in LK-QuarcB, then it
is provable in LK-QuarcB without using the cut rule.

Given Lemma 5.3, it will suffice to show:

LEMMA 5.10. For any sequent S, if S is provable in LK-Quarc†
B, then it is provable in

LK-Quarc†
B without using the mix rule.

Proof. By induction on grade and rank.

5.2.1. ρ = 2. Obviously, the lowest rank of an application of a mix rule is 2. So,
suppose ρ(M) = 2. We will omit all the familiar cases and focus on the symbols of
Quarc.
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Special
We start with the special symbols of LK-QuarcB as those have the lowest grade.

1. Reorder:

	 �⇒ �, (t1, . . . , tn)R
	 �⇒ �, (tπ1, . . . , tπn)Rπ

(t1, . . . , tn)R,� �⇒ 


(tπ1, . . . , tπn)Rπ ,� �⇒ 

(Mix)

	,� ⇒ �,


This can be transformed into:

	 �⇒ �, (t1, . . . , tn)R (t1, . . . , tn)R,� �⇒ 

(Mix)

	,�∗ ⇒ �∗,

(some RW, RP, LW, LP)

	,� ⇒ �,


Since the mix formula is of a lower grade, by inductive hypothesis, it can be
eliminated.

2. Anaphora:

	 �⇒ �,A
[
. . . a1 . . . an . . .

]

	 �⇒ �,A
[
. . . aα/a1 . . . α/an . . .

]
A

[
. . . a1 . . . an . . .

]
,� �⇒ 


A
[
. . . aα/a1 . . . α/an . . .

]
,� �⇒ 


(Mix)
	,� ⇒ �,


This can be transformed into:
	 �⇒ �,A [. . . a1 . . . an . . .] A [. . . a1 . . . an . . .] ,� �⇒ 


(Mix)
	,�∗ ⇒ �∗,


(some RW, RP, LW, LP)
	,� ⇒ �,


Again, since the mix formula is of a lower grade, by inductive hypothesis, it can be
eliminated.

3. Negative Predication:

	 �⇒ �,¬(t1, . . . , tn)P
	 �⇒ �, (t1, . . . , tn)¬P

¬(t1, . . . , tn)P,� �⇒ 


(t1, . . . , tn)¬P,� �⇒ 

(Mix)

	,� ⇒ �,


This can be transformed into:

	 �⇒ �,¬(t1, . . . , tn)P ¬(t1, . . . , tn)P,� �⇒ 

(Mix)

	,�∗ ⇒ �∗,

(some RW, RP, LW, LP)

	,� ⇒ �,


This mix formula can be eliminated according to the procedure for negation below.

Propositional
Cut elimination theorem for the propositional symbols is a familiar result and will be

omitted here, apart from negation, which is required to finalize the cut elimination for
negative predication above:

A, 	 ⇒ �

	 ⇒ �,¬A
� ⇒ 
,A

¬A,� ⇒ 

(Mix)

	,� ⇒ �,


This can be transformed into:
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� ⇒ 
,A A, 	 ⇒ �
(Mix)

�,	∗ ⇒ 
∗,�
(some LW, LP, RW, RP)

�,	 ⇒ 
,�

Since the mix formula A is of lesser grade than ¬A, by inductive hypothesis, it can be
eliminated.

Quantification – Universal
Let the terminal symbol of the mix formula be a universal quantifier:

aM, 	 ⇒ �,A
[
a/∀M

]

	 ⇒ �,A [∀M]

A
[
b/∀M

]
,� ⇒ 
 � ⇒ 
, bM

A [∀M] ,� ⇒ 

(Mix)

	,� ⇒ �,


This can be transformed into:

� ⇒ 
, bM bM, 	 ⇒ �,A
[
b/∀M

]

(Mix)
�,	∗ ⇒ 
∗,�,A

[
b/∀M

]

(some RW, RP, LW, LP)
�,	 ⇒ 
,�,A

[
b/∀M

]
A

[
b/∀M

]
,� ⇒ 


(Mix)
�,	,�∗ ⇒ 
∗,�∗,


(some LC, LP, RW, RC, LP)
�,	 ⇒ �,


The change from the the sequent aM, 	 ⇒ �,A
[
a/∀M

]
to the sequent bM,

	 ⇒ �,A
[
b/∀M

]
in the transformation above is justified by Lemma 5.8.

5.2.2. ρ > 2. Again, the majority of cases here are familiar results, and we focus on
LK-QuarcB. The only part that is not a familiar result here is L∀ and R∃, which fall under
the case of two-sequent rules. In the former case, the derivation runs as follows:

1. (L∀)

	 ⇒ �

A
[
a/∀M

]
,� ⇒ 
 � ⇒ 
, aM

A [∀M] ,� ⇒ 

(Mix)

	,�∗,A [∀M] ⇒ �∗,

This is transformed into:

	 ⇒ � A
[
a/∀M

]
,� ⇒ 


(Mix)
	,�∗,A

[
a/∀M

] ⇒ �∗,

	 ⇒ � � ⇒ 
, aM

(Mix)
	,�∗ ⇒ �∗,
, aM

	,�∗,A [∀M] ⇒ �∗,

As each instance of a mix rule has rank lowered by 1, so by the inductive hypothesis
both can be eliminated. We now proceed to examine the case of R∃.

2. (R∃)

	 ⇒ �

� ⇒ 
, aM � ⇒ 
,A
[
a/∃M

]

� ⇒ 
,A
[
a/∃M

]

(Mix)
	,�∗ ⇒ �∗,
,A [∃M]

This is transformed into:

	 ⇒ � � ⇒ 
, aM
(Mix)

	,�∗ ⇒ �∗,
, aM

	 ⇒ � � ⇒ 
,A
[
a/∃M

]

(Mix)
	,�∗ ⇒ �∗,
,A

[
a/∃M

]

	,�∗ ⇒ �∗,
,A [∃M]

Again, the rank of each instance of a mix rule has been lowered by 1, and by the
inductive hypothesis both can be eliminated.
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Similarly if the left rank is greater than 1 or if both are greater. This concludes the
proof of the Cut elimination theorem. �

5.3. Subformula property. In this section we demonstrate that LK-QuarcB possesses
the subformula property. Important to note here is that no formula containing a reordered
predicate is basic (it is an operation on predicates of a basic formula – compare with the
definition of the grade of a formula).

DEFINITION 5.11 (Subformula).

1. Every formula is a subformula of itself.

2. The formula (t1, . . . , tn)R is a subformula of (tπ1, . . . , tπn)Rπ .

3. The formula ¬(t1, . . . , tn)P is a subformula of (t1, . . . , tn)¬P.2

4. Every formula A and B mentioned in the antecedent of the rules for generation of
a formula in Definition 2.2 is a subformula of that formula. Moreover, any formula
tM is likewise the subformula of the formula A

[
qM

]
.

5. If a formula A is a subformula of any subformula of B, then it is a subformula of B.

THEOREM 5.12 (Subformula property). Any formula appearing in any cut-free proof of
LK-QuarcB , is a subformula of some formula in its endsequent.

Proof. We only need to show that the subformula property holds for all rules of LK-
QuarcB, except cut, which can be eliminated. Since this is a familiar result for the proposi-
tional and structural rules, what remains to be shown is that it holds for the quantification
and special rules of LK-QuarcB .

Observing the rules for the universal quantifier:

A
[
t/∀M

]
, 	 �⇒ 
 	 �⇒ 
, tM

(L∀)
A [∀M] , 	 �⇒ 


tM, 	 �⇒ 
,A
[
t/∀M

]

(R∀)*
	 �⇒ 
,A [∀M]

We can see that any formula of 	 and 
 will be a subformula of some formula of 	 and

 in the lower sequent, namely, itself. Moreover, tM and A

[
t/∀M

]
are both subformulas

of A [∀M]. Therefore, the subformula property holds for this derivation. The proof for the
particular quantifier proceeds in the same manner, and is straightforward for the special
symbols of Quarc. �

5.3.1. Consistency. Given the definition of consistency,

DEFINITION 5.13 (Consistency). A sequent calculus is consistent just in case the sequent
· · · ⇒ · · · is not derivable.

An important corollary from Theorem 5.12 immediately follows:

2 It might not be readily obvious why the formula on the left is the subformula of the one on the right
in parts 2 and 3. To clarify this, let us first note that Quarc uses predicates in ways one does not
encounter in the Predicate Calculus—primarily by using predicates in Quantified arguments, but
also by employing Reorder and Negative Predication. First-order logic does not contain different
types of predicates nor modes of predication, so naturally these will stand apart.
In this case, the formulas on the right result from applications of operations to a predicate—it is
either predicated negatively, or substituted for a reordered one. The underlying intuition here is
of a syntactic operation being applied to its parts to produce the resulting formula.
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COROLLARY 5.14. LK-QuarcB is consistent.

To see this, one need only observe that no formula is a subformula of an empty sequent.

§6. Identity. In this section we expand LK-QuarcB into LK-Quarc2 by adding the two
identity rules. Identity, =, is a binary predicate, albeit with an infix notation, and obeys all
the stipulations from Definitions 2.1 and 2.2. Most notably, any formula containing only it
and singular arguments is basic.
Moreover, Definition 2.4 is extended by the stipulations that

8. Every formula of the form a = a is true.

9. If a = b is true and the formula A [b1, . . . , bn] is a basic formula containing the
instances b1, . . . , bn of an SA b, then A

[
a/b1, . . . , a/bn

]
is true if A [b1, . . . , bn] is

true.

6.1. Identity rules. We now give the rules for identity. They are defined only for
basic formulas (containing only singular arguments), but it can be shown inductively they
generalize to any formula, following the format in which they are introduced in [5], which
itself meshes seamlessly with the treatment of identity in [13].

Identity Introduction, =I

(k) a = a =I

Identity Elimination, =E
Let A [b] be a basic formula containing occurrences b1, . . . , bn of a singular argument b

(A might also contain further occurrences of b).

L1 (k) A [b]
L2 (m) a = b

L1, L2 (n) A
[
a/b1, . . . , a/bn

]

To expand LK-QuarcB into LK-Quarc2 we add the following rules:

a = a, 	 ⇒ 

(=1)

	 ⇒ 


A [b] , a = b,A
[
a/b

]
, 	 ⇒ 


(=2)
a = b,A

[
a/b

]
, 	 ⇒ 


where A is a basic formula and A
[
a/b

]
is a formula produced by substituting any number

of occurrences of the singular argument b by a. These rules are adjusted from those pre-
sented in [13], and chosen for technical reasons (allowing straightforward cut-elimination
procedure).

Before proceeding, let us prove a simple and useful lemma.

LEMMA 6.1.
a = b, 	 ⇒ 


b = a, 	 ⇒ 


Proof.
a = b, 	 ⇒ 


(some LW, LP)
a = b, b = a, b = b, 	 ⇒ 


(=2)
b = a, b = b, 	 ⇒ 


(LP)
b = b, b = a, 	 ⇒ 


(=1)
b = a, 	 ⇒ 


�

6.1.1. Generalization of identity rules. As mentioned, the rules in LK-Quarc2, just
like in Quarc, are defined only for the basic formulas. We will now show that these rules
generalize to any formula.
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THEOREM 6.2 (Identity generalization). For any formula S of Quarc,

S [b] , a = b, S
[
a/b

]
, 	 ⇒ 


a = b, S
[
a/b

]
, 	 ⇒ 


Proof. By induction on the terminal symbol of S. Basic step is trivial, so we proceed to
the inductive step, and only examine the interesting step of the universal quantifier. In the
following section A need not stand for a basic formula.

Let S be A [∀M]. Assume (i) that the sequent A [∀M] [b] , a = b,A [∀M]
[
a/b

]
, 	 ⇒ 


is derivable. From (i) it follows that the sequents (ii) A
[
c/∀M

]
[b] , a = b,A [∀M]

[
a/b

]
,

	′ ⇒ 
′ and (iii) a = b,A [∀M]
[
a/b

]
, 	′ ⇒ 
′, cM are derivable. We need to show the

sequent a = b,A [∀M]
[
a/b

]
, 	′ ⇒ 
′ is derivable. The derivation proceeds as follows,

broken into parts for legibility:

A
[
c/∀M

]
[b] ⇒ A

[
c/∀M

]
[b]

(some LW, LP)
A

[
c/∀M

]
[b] , a = b,A

[
c/∀M

] [
a/b

] ⇒ A
[
c/∀M

]
[b]

(Ind. Hyp.)
a = b,A

[
c/∀M

] [
a/b

] ⇒ A
[
c/∀M

]
[b]

We now proceed by using this sequent as the upper left sequent of the following cut, also
utilizing (ii):

a = b,A
[
c/∀M

] [
a/b

] ⇒ A
[
c/∀M

]
[b] (ii) A

[
c/∀M

]
[b] , a = b,A [∀M]

[
a/b

]
, 	′ ⇒ 
′

(Cut)
a = b,A

[
c/∀M

] [
a/b

]
, a = b,A [∀M]

[
a/b

]
, 	′ ⇒ 
′

(LP, LC)
A

[
c/∀M

] [
a/b

]
, a = b,A [∀M]

[
a/b

]
, 	′ ⇒ 
′

Next, we use this sequent as the upper left sequent of L∀, also utilizing (iii):

A
[
c/∀M

] [
a/b

]
, a = b,A [∀M]

[
a/b

]
, 	′ ⇒ 
′ (iii) a = b,A [∀M]

[
a/b

]
, 	′ ⇒ 
′, cM

(L∀)
A [∀M]

[
a/b

]
, a = b,A [∀M]

[
a/b

]
, 	′ ⇒ 
′

(LP, LC)
a = b,A [∀M]

[
a/b

]
, 	 ⇒ 


This concludes the proof of the Theorem 6.2. �

6.2. Deductive equivalence. The proof of deductive equivalence proceeds with the
expansion of the proof of Theorem 4.1 with the appropriate steps for the identity rules.

6.2.1. LK-Quarc to Quarc.

1. (=1) Assume that in Quarc2 (i) a = a ∧ 	 � 
. Now assume (1) 	. We need to
derive 
.

1 (1) 	 Premise
(2) a = a =I

1 (3) a = a ∧ 	 ∧I, 1, 2
1 (4) 
 by (i)

2. (=2) Assume that in Quarc2 (i) A [b] ∧ a = b ∧ A
[
a/b

] ∧ 	 � 
. Now assume (1)
a = b ∧ A

[
a/b

] ∧ 	. We need to derive 
.

1 (1) a = b ∧ A
[
a/b

] ∧ 	 Premise
1 (2) a = b ∧E, 1
1 (3) A

[
a/b

] ∧E, 1
1 (4) A [b] =E, 2, 3
1 (5) A [b] ∧ a = b ∧ A

[
a/b

] ∧ 	 ∧I, 1, 4
1 (6) 
 by (i)
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6.2.2. Quarc to LK-Quarc.

1. Since in Quarc a = a is introduced without relying on any previous steps, and
given Definition 4.2, we need to show that the sequent ⇒ a = a (with the left-hand
side empty) is derivable in LK-Quarc2. This is simple—since a = a ⇒ a = a
is an initial sequent, the segment of a derivation corresponding to the rule =I is as
follows:
a = a ⇒ a = a (=1)⇒ a = a

2. The segment of a derivation corresponding to the rule =E is as follows:

(k) L1 ⇒ A [b]

(m) L2 ⇒ a = b

A
[
a/b

] ⇒ A
[
a/b

]

(LW, LP)
A

[
a/b

]
, b = a,A [b] ⇒ A

[
a/b

]

(=2)
b = a,A [b] ⇒ A

[
a/b

]

(Lemma 6.1)
a = b,A [b] ⇒ A

[
a/b

]

(Cut)
L2,A [b] ⇒ A

[
a/b

]

(LP)
A [b] ,L2 ⇒ A

[
a/b

]

(Cut)
L1,L2 ⇒ A

[
a/b

]

This concludes the proof of deductive equivalence of LK-Quarc2 and Quarc2.

6.3. Cut elimination. We prove the Cut elimination theorem for LK-Quarc2:

THEOREM 6.3. For any sequent S, if S is provable in LK-Quarc2, then it is provable in
LK-Quarc2 without using the cut rule.

Proof. By expanding the proof for LK-QuarcB. Clearly, in both rules for identity all the
formulas appearing in the lower sequent also appear in the upper sequent. Therefore, we
only need to expand the proof for ρ > 2.

6.3.1. The rule (=1). The rule =1 fits into the general proof for one-sequent deriva-
tions in the case ρ > 2 (if ρ = 2 then =1 cannot be the last rule before the mix). Let only
the right rank be greater than 1. So, the application of the mix rule will be:

	 ⇒ �

a = a,� ⇒ 

(=1)

� ⇒ 
 (Mix)
	,�∗ ⇒ �∗,


If the mix formula is in 	, then this transforms into a derivation with Mix eliminated
altogether:

a = a,� ⇒ 

(=1)

� ⇒ 
 (some LW, RW)
	,� ⇒ 
,�∗

(some LP, LC)
	,�∗ ⇒ 
,�∗

(some RP)
	,�∗ ⇒ �∗,


If the mix formula is not in 	, then this transforms into:

	 ⇒ � a = a,� ⇒ 

(Mix)

	, a = a,�∗ ⇒ �∗,

(some LP)

a = a,�∗, 	 ⇒ �∗,

(=1)

�∗, 	 ⇒ �∗,

(some LP)

	,�∗ ⇒ �∗,
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Since the right rank was reduced by 1, while the left remains the same, the rank of the
resulting mix rule is one less and, by inductive hypothesis, it can be eliminated. Similarly
when the left rank, and both left and right rank, are greater than 1.

We need to examine the rule =2 more closely, since it has two principal formulas, which
also occur as the side formulas, and either of which could be the mix formula.

6.3.2. The rule (=2). The case that needs to be examined here is when either a = b or
A

[
a/b

]
is the mix formula. Assume it is a = b. The application of the mix rule then looks

as follows:

	 ⇒ �

A [b] , a = b,A
[
a/b

]
,� ⇒ 


(=2)
a = b,A

[
a/b

]
,� ⇒ 


(Mix)
	,A

[
a/b

]
,�∗ ⇒ �∗,


If the mix formula a = b is in 	, the derivation is transformed as follows:

A [b] , a = b,A
[
a/b

]
,� ⇒ 


(=2)
a = b,A

[
a/b

]
,� ⇒ 


(some LP)
a = b,�,A

[
a/b

] ⇒ 

(some LC)

a = b,�∗,A
[
a/b

] ⇒ 

(some LW)

	, a = b,�∗,A
[
a/b

] ⇒ 

(some LC)

	,�∗,A
[
a/b

] ⇒ 

(some LP, RW, RP)

	,A
[
a/b

]
,�∗ ⇒ �∗,


Now suppose a = b is not in 	. Since a = b is a basic formula, and by assumption the left
rank is 1, the sequent 	 ⇒ � is obtained by RW from 	 ⇒ �∗. The derivation is then
transformed as follows:

	 ⇒ �∗
(some LW, LP, RW)

	,A
[
a/b

]
,�∗ ⇒ �∗,


Since A
[
a/b

]
is likewise a basic formula, the same considerations will apply there. The

remainder of the proof runs in parallel. This concludes the proof of the Theorem 6.3. �

6.4. Subformula property. Here we can adopt a slightly weaker definition of subfor-
mula property, due to [13]:

THEOREM 6.4. Any formula appearing in any cut-free proof of LK-Quarc2 is a subformula
of some formula in its endsequent or a basic formula.

Proof. We only need to expand the proof of Theorem 5.12 with the cases for =1 and
=2. However, these only remove basic formulas. Therefore, Theorem 6.4 holds. �

Now, using this we can show consistency:

COROLLARY 6.5. LK-Quarc2 is consistent.

Proof. From Theorem 6.4, by noting that basic formulas can only disappear from the
left side of a sequent. Therefore, the empty sequent is not derivable. �
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6.5. Conservativity.

THEOREM 6.6. LK-Quarc2 is conservative expansion of LK-QuarcB. Namely, if 	 ⇒ 

is derivable in LK-Quarc2, and 	 and 
 contain no identity, then 	 ⇒ 
 is derivable in
LK-QuarcB.

Proof. Assume 	 ⇒ 
 is derivable in LK-Quarc2, and consider a cut-free derivation of
	 ⇒ 
. Moreover, assume 	 and 
 contain no identity. By weak subformula property, it
follows that

COROLLARY 6.7. Any formula in the derivation of 	 ⇒ 
 that contains identity is a
basic formula.

Moreover, it follows that

COROLLARY 6.8. No formula containing identity occurs on the right side of any sequent
in the derivation.

Furthermore, given that the rule =2 can never reduce the number of formulas containing
identity below 1, and that the rule =1 can only reduce the number of such formulas below
1 if they are of the form a = a, it follows that

COROLLARY 6.9. Any identity formula in the derivation of 	 ⇒ 
 is of the form
a = a.

Take a (cut-free) derivation of 	 ⇒ 
. It is then transformed in two step.

First step. Any occurence of the rule =2, given Corollary 6.9, is of the form:

A [a] , a = a,A
[
a/a

]
, 	′ ⇒ 
′

(=2)
a = a,A

[
a/a

]
, 	′ ⇒ 
′

Since A [a] and A
[
a/a

]
are the same formula, this is transformed into

A [a] , a = a,A
[
a/a

]
, 	′ ⇒ 
′

(LC)
a = a,A

[
a/a

]
, 	′ ⇒ 
′

Second step. Any occurrence of the rule LC, where a = a is the principal formula,

a = a, a = a, 	 ⇒ 

(LC)

a = a, 	 ⇒ 


Is transformed into an occurrence of the rule =1:

a = a, a = a, 	 ⇒ 

(=1)

a = a, 	 ⇒ 


OBSERVATION 6.10. Obviously, both these transformations yield correct derivations.
After completing both, the rule =2 does not occur, and the formula a = a is the principal
formula of either the rule =1 or LW (since by Corollary 6.8 it cannot occur in an initial
sequent).

We now proceed to prove the above theorem by proving the following lemma:

LEMMA 6.11. Any occurence of the formula a = a in the derivation of 	 ⇒ 
 can be
eliminated.
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Proof. Given Observation 6.10, every formula of the form a = a will form a chain of
sequents, such that the first sequent of the chain is the lower sequent of a LW rule with
a = a as a principal formula, and the last sequent of the chain the upper sequent of a =1
rule with a = a as a principal formula. Let the length of such a chain be the number of
sequents in the chain.

We only need to show that such a chain ending with the topmost leftmost occurrence
of =1 can be eliminated. The proof is by induction on the length of the chain.

Basic step. The shortest chain has length 1, and is of the following form:

	′ ⇒ 
′
(LW)

a = a, 	′ ⇒ 
′
(=1)

	′ ⇒ 
′

This is transformed into the derivation of the upper sequent 	′ ⇒ 
′, which by Corol-
lary 6.8 does not contain the formula a = a.

Inductive step. Let the end of a chain be (where Inf is any derivation rule)

a = a, 	′′ ⇒ 
′′
(Inf)

a = a, 	′ ⇒ 
′
(=1)

	′ ⇒ 
′
Since a = a is not principal in Inf, this can be transformed into

a = a, 	′′ ⇒ 
′′
(=1)

	′′ ⇒ 
′′
(Inf)

	′ ⇒ 
′
Where the length of the chain is reduced by one. Similarly for the two-sequent rules.

This concludes the proof of Lemma 6.11. �
By Corollary 6.9 and Lemma 6.11 if follows that the derivation transformed in this

manner contains no identity. Moreover, it contains no rule =2 (Observation 6.10) nor =1
(Lemma 6.11). Therefore, it is a derivation of LK-QuarcB. This concludes the proof of
Theorem 6.6. �

§7. Particular import in LK-QuarcB. Having proven the Cut elimination theorem,
we now proceed to use it in further considerations. The first application will be to demon-
strate that particular import is not derivable in LK-QuarcB and therefore, given deductive
equivalence result of Theorem 4.1, it is likewise not derivable in QuarcB.

As we have seen in a simplified version in Example 2 in §2, DeMorgan laws hold in
QuarcB (and consequently in Quarc as well).

But, we will demonstrate that

THEOREM 7.1. The sequent ∀MP ⇒ ¬∀M¬P, and therefore particular import, is not
derivable in LK-QuarcB.

Proof. Suppose there is a cut-free proof of ∀MP ⇒ ¬∀M¬P in LK-QuarcB. Then,
there is also a cut-free proof of ∀M¬P, ∀MP ⇒. This sequent may undergo any number
of applications of LW, LC and LP, resulting in a sequent (∀M ∼ P)1, . . . , (∀M ∼ P)n ⇒,
where ∼ in each of the formulas 1, . . . , n stands either for negation or an empty string
of symbols. Assume that the rules in the proof are applied in the following order: the left
structural rules are applied below any application of L∀, and all applications of L∀ are
below any application of RW.
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By observing the rule L∀ we can see that the top right sequent just above the topmost
application of L∀ will be ⇒ (aM)1, . . . , (aM)n. Above this sequent RW can be applied
n − 1 times, resulting in a top right sequent of the proof being ⇒ aM.

It is clear that any other order of application of rules will result in the same top right
sequent - every lower application of L∀ on a formula ∀M ∼ P will result in an additional
aM in the right sequent, and no application of RW on it will reduce the number of formulas
aM in it below one. But, ⇒ aM is not an initial sequent (and neither is any other sequent of
the same branch). Therefore, there is no cut-free proof of ∀M¬P, ∀MP ⇒ in LK-QuarcB,
and so no cut-free proof of ∀MP ⇒ ¬∀M¬P. Given the cut elimination theorem, this
means there is no proof of ∀MP ⇒ ¬∀M¬P in LK-QuarcB.

This concludes the proof of Theorem 7.1. This is the last obstacle to expanding LK-
QuarcB into a sequent calculus deductively equivalent with full Quarc. In the following
subsection, we will see how to expand LK-QuarcB with a rule that will give the resulting
system equivalence with Quarc which includes Instantiation (Quarc3). �

7.1. Instantiation rule. To expand LK-QuarcB into LK-Quarc3, we add the rule for
Instantiation:

tM, 	 ⇒ 

(Ins)*

	 ⇒ 

* - where neither 	 nor 
 contain the singular argument t.
This rule allows for the derivation of a particular sentence from a corresponding sentence

governed by the universal quantified argument:

THEOREM 7.2. A [∀S] ⇒ A
[∃S/∀S

]

Proof.
aS ⇒ aS (LW)

A [∀S] , aS ⇒ aS
(LP)

aS,A [∀S] ⇒ aS

(Lemma 4.5)
A [∀S] , aS ⇒ A

[
a/∀S

]

(RP)
aS,A [∀S] ⇒ A

[
a/∀S

]

(R∃)
aS,A [∀S] ⇒ A

[∃S/∀S
]

(Ins)
A [∀S] ⇒ A

[∃S/∀S
]

�

Moreover, it allows for the derivation of a theorem

THEOREM 7.3. ⇒ (∃S)S

Proof.
aS ⇒ aS aS ⇒ aS

aS ⇒ (∃S)S
(Ins)⇒ (∃S)S �

However, this rule will not allow the derivation of the problematic sequent ‘⇒ aM’ from
the proof of Theorem 7.1, since the following is not a permissible application of this rule:

aM ⇒ aM *(Ins)⇒ aM

So, this sequent calculus is, at least prima facie, powerful enough, without being too
powerful. We now formalize this result.

7.2. Deductive equivalence.

THEOREM 7.4. Quarc3 and LK-Quarc3 are deductively equivalent.
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Proof. In addition to the proof of Lemma 4.3, we need to show that

5. (Ins) Assume (i) tS ∧ 	 � 
 and (ii) 	 and 
 do not contain t. Now assume (1) 	.
We need to derive 
.

1 (1) 	 Premise
2 (2) (t)S Premise

(3) (∀S)S UI, 2, 2
4 (4) (t)S Premise
5 (5) (t)S Premise

1,4 (6) (t)S ∧ 	 ∧I, 1, 4
1,4 (7) 
 by (i)

1 (8) 
 Ins, 3, 4, 5, 7 given (ii)

In addition to the proof of Lemma 4.4 we need to construct a corresponding segment of
a derivation for the Instantiation rule of Quarc3.

8. (Ins) The Instantiation rule has the following form:

L1 (i) A
[
qP

]

j (j) (t)P Premise
k (k) A

[
t/qP

]
Premise

L2 (l) B
L1 ∪ L2 − {j, k} (m) B Ins, i, j, k, l

where L1, B and A
[
qP

]
do not contain the singular argument t, and in L2 the only

occurrences of t are in (j) and (k).
Since we have already demonstrated Lemma 4.4 for the particular quantifier, we
need to concern ourselves only with the cases where q stands for the universal
quantifier ∀. The corresponding segment of that derivation is as follows (let L2∗
be the list L2 with (j) and (k) omitted—it thus contains no singular argument t):

(i) L1 ⇒ A [∀P]

(Lemma 4.5)
A [∀P] , tP ⇒ A

[
t/∀P

]
(l) A

[
t/∀P

]
, tP,L2∗ ⇒ B

(Cut)
A [∀P] , tP, tP,L2∗ ⇒ B

(LC)
A [∀P] , tP,L2∗ ⇒ B

(Cut)
L1, tP,L2∗ ⇒ B

(LP)
tP,L1, L2∗ ⇒ B

(Ins)
L1, L2∗ ⇒ B

Since neither L1, L2∗ nor B contain the singular argument t, this is an appropriate
use of the Ins rule of LK-Quarc3. Of course, for this segment to have the appropriate
form of using all the steps listed in the justification in Quarc, the segment above the
application of Lemma 4.5 should have the following form:

(j) tP ⇒ tP

(Lemma 4.5)
A [∀P] , tP ⇒ A

[
t/∀P

]

(LP)
tP,A [∀P] ⇒ A

[
t/∀P

]

(Cut)
tP,A [∀P] ⇒ A

[
t/∀P

]
(k) A

[
t/∀P

] ⇒ A
[
t/∀P

]

(Cut)
tP,A [∀P] ⇒ A

[
t/∀P

]

(LP)
A [∀P] , tP ⇒ A

[
t/∀P

]

However, since steps (j) and (k) are always premises, the above segment will suffice
on its own. �
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7.3. Cut elimination. Here we need to check only the cases where ρ > 2. Let the right
rank be greater than 1. So, the application of the mix rule will be:

	 ⇒ �

tM,� ⇒ 

(Ins)

� ⇒ 
 (Mix)
	,�∗ ⇒ �∗,


(suppose the mix formula A is not in 	). Then this transforms into:

	 ⇒ � tM,� ⇒ 

(Mix)

	, tM,�∗ ⇒ �∗,

(some LP)

tM,�∗, 	 ⇒ �∗,

(Ins)

�∗, 	 ⇒ �∗,

(some LP)

	,�∗ ⇒ �∗,

Since the right rank was reduced by 1, while the left remains the same, the rank of the

resulting mix rule is one less and, by inductive hypothesis, it can be eliminated. Similarly
when the left rank is greater than 1.

7.4. Subformula property. The reasoning here runs in parallel to Theorem 6.4:

THEOREM 7.5. Any formula appearing in any cut-free proof of LK-Quarc3 is a subformula
of some formula in its endsequent or a basic formula.

Proof. We only need to expand the proof of Theorem 5.12 with the case for Ins.
However, it only removes basic formulas. Therefore, Theorem 7.5 holds. �

And consistency follows:

COROLLARY 7.6. LK-Quarc3 is consistent.

Proof. Same as Corollary 6.5. �

7.5. Conservativity of LK-Quarc over LK-Quarc3. Given the cut elimination property
and the subformula property of LK-Quarc3, it follows that

THEOREM 7.7. LK-Quarc is a conservative expansion of LK-Quarc3. Namely, if 	 ⇒ 

is derivable in LK-Quarc, and 	 and 
 contain no identity, then 	 ⇒ 
 is derivable in
LK-Quarc3.

Proof. Same as Theorem 6.6. �
From this it follows as a corollary that (note that Quarc3 is in fact Ben-Yami’s original
system from [3]):

COROLLARY 7.8. Quarc3 is complete. Namely, if 	 � 
 in Quarc3 then 	 � 
 in
Quarc3.

Proof. Assume 	 � 
 in Quarc3. Therefore 	 and
 do not contain identity. Given that,
and since Quarc3 and Quarc assign the same values to all formulas not containing identity,
it follows that also 	 � 
 in Quarc. Since Quarc is complete, it follows that 	 � 

in Quarc. Given Deductive equivalence (Theorem 4), 	 ⇒ 
 in LK-Quarc. Now, given
Theorem 7.7 (and since 	 and 
 do not contain identity), 	 ⇒ 
 in LK-Quarc3. Finally,
given Deductive equivalence (Theorem 4), 	 � 
 in Quarc3.
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Therefore, using the analysis of this article, we are also able to demonstrate complete-
ness of Ben-Yami’s original system from the completeness of the system with identity
from [5]. �

§8. Concluding remarks. In this article we have provided a concise proof-theoretic
study of Quarc within LK-systems. An obvious next step would naturally be completeness
which follows from the deductive equivalences [5]. Moreover, there is also a more direct
way of establishing this important theorem, by adopting a proof of completeness that is
typical for sequent calculus [6, 14].

Possible topics for further research include an interpolation theorem for the various
LK-Quarc systems; thereby we could also examine Beth’s definability theorem. On a more
philosophical side Quarc enriched by modalities—as suggested by [3]—and correspond-
ingly with its expansion of expressive power, provides ample opportunity for exploration.
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