Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-02-11T07:14:04.686Z Has data issue: false hasContentIssue false

A sharp oscillation property involving the critical Sobolev exponent for a class of superlinear elliptic problems

Published online by Cambridge University Press:  03 December 2013

Julián López-Gómez*
Affiliation:
Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain (Lopez_Gomez@mat.ucm.es)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper studies the asymptotic behaviour as α := u(0) ↑∞ of the first zero R(α) of the radially symmetric solution of the semilinear equation

in ℝn, n ≥ 1, where h > 0 and β > 1. We establish that R(α) = O−(β−1)/2) if n = 1, 2 or n ≥ 3 and β < (n + 2)/(n − 2), and conjecture that lim inf α→∞R(α) > 0 if n ≥ 3 and β > (n + 2)/(n − 2).

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2013