Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-02-11T15:38:05.505Z Has data issue: false hasContentIssue false

On the quenching set for a fast diffusion equation: regional quenching

Published online by Cambridge University Press:  12 July 2007

R. Ferreira
Affiliation:
Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain (raul.ferreira@uc3m.es)
A. de Pablo
Affiliation:
Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain (arturop@math.uc3m.es)
F. Quirós
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain (fernando.quiros@uam.es)
J. D. Rossi
Affiliation:
Departamento de Matemática, F.C.E y N., Universidad de Buenos Aires, 1428 Buenos Aires, Argentina (jrossi@dm.uba.ar)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study positive solutions of a very fast diffusion equation, ut = (um−1ux)x, m < 0, in a bounded interval, 0 < x < L, with a quenching-type boundary condition at one end, u (0, t) = (Tt)1/(1 − m) and a zero-flux boundary condition at the other, (um −1ux)(L, t) = 0. We prove that for m ≥ −1 regional quenching is not possible: the quenching set is either a single point or the whole interval. Conversely, if m < −1 single-point quenching is impossible, and quenching is either regional or global. For some lengths the above facts depend on the initial data. The results are obtained by studying the corresponding blow-up problem for the variable v = um −1.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2005