Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-02-11T09:14:56.833Z Has data issue: false hasContentIssue false

On the equations and classification of toric quiver varieties

Published online by Cambridge University Press:  03 March 2016

Mátyás Domokos
Affiliation:
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda utca 13–15, 1053 Budapest, Hungary and Department of Mathematics, Central European University, Nádor utca 9, 1051 Budapest, Hungary (domokos.matyas@renyi.mta.hu; joo.daniel@renyi.mta.hu)
Dániel Joó
Affiliation:
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda utca 13–15, 1053 Budapest, Hungary and Department of Mathematics, Central European University, Nádor utca 9, 1051 Budapest, Hungary (domokos.matyas@renyi.mta.hu; joo.daniel@renyi.mta.hu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Toric quiver varieties (moduli spaces of quiver representations) are studied. Given a quiver and a weight, there is an associated quasi-projective toric variety together with a canonical embedding into projective space. It is shown that for a quiver with no oriented cycles the homogeneous ideal of this embedded projective variety is generated by elements of degree at most 3. In each fixed dimension d up to isomorphism there are only finitely many d-dimensional toric quiver varieties. A procedure for their classification is outlined.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2016