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quiver and a weight, there is an associated quasi-projective toric variety together
with a canonical embedding into projective space. It is shown that for a quiver with
no oriented cycles the homogeneous ideal of this embedded projective variety is
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1. Introduction

Geometric invariant theory was applied by King [18] to introduce certain moduli
spaces of representations of quivers. In the special case when the dimension vector
takes the value 1 on each vertex of the quiver (thin representations), these moduli
spaces are quasi-projective toric varieties; following [2] we call them toric quiver
varieties (we do not assume that the weight is generic). Toric quiver varieties were
studied by Hille [13–15], Altmann and Hille [2] and Altmann and van Straten [3].
Further motivation is provided by Craw and Smith [9], who showed that every
projective toric variety is the fine moduli space for stable thin representations of an
appropriate quiver with relations. Another application was introduced very recently
by Carroll et al . [7]. From a different perspective, the projective toric quiver varieties
are merely the toric varieties associated to flow polytopes. Taking this as a point of
departure, Lenz [20] investigated toric ideals associated to flow polytopes. These are
the homogeneous ideals of the projective toric variety associated to a flow polytope,
canonically embedded into projective space.

Given a quiver (a finite directed graph) and a weight (an integer-valued function
on the set of vertices), there is an associated normal lattice polyhedron yielding
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a quasi-projective toric variety with a canonical embedding into projective space.
This variety is projective if and only if the quiver has no oriented cycles. We show
in theorem 9.3 that the homogeneous ideal of this embedded projective variety is
generated by elements of degree at most 3. This is deduced from a recent result of
Yamaguchi et al . [28], for which we give a simplified proof.

It follows from work of Altmann and van Straten [3] and Altmann et al . [4]
that for each positive integer d up to isomorphism there are only finitely many
toric quiver varieties (although up to integral-affine equivalence there are infinitely
many d-dimensional quiver polyhedra). We make this notable observation explicit
and provide a self-contained treatment yielding some refinements. Theorem 4.12
asserts that any toric quiver variety is the product of prime (see definition 4.11)
toric quiver varieties, and this decomposition can be read off from the combinatorial
structure of the quiver. Moreover, by theorem 4.22 any prime d-dimensional (d > 1)
projective toric quiver variety can be obtained from a bipartite quiver with 5(d−1)
vertices and 6(d − 1) arrows, whose skeleton (see definition 4.13) is 3-regular.

A toric variety associated to a lattice polyhedron is covered by affine open toric
subvarieties corresponding to the vertices of the polyhedron. In the case of quiver
polyhedra the affine toric varieties arising that way are exactly the affine toric
quiver varieties (see theorems 6.2 and 6.3). According to theorem 6.3 any toric
quiver variety can be obtained as the union, in a projective toric quiver variety, of
the affine open subsets, corresponding to a set of vertices of the quiver polytope.

The paper is organized as follows. In § 2 we review flow polytopes, quiver poly-
topes, quiver polyhedra and their interrelations. In § 3 we recall moduli spaces of
representations of quivers, including a very explicit realization of a toric quiver vari-
ety in proposition 3.3. In § 4 we collect reduction steps for quiver–weight pairs that
preserve the associated quiver polyhedron and that can be used to replace a quiver
by another one that is simpler or smaller in certain sense. These are used to derive
the results concerning the classification of toric quiver varieties. As an illustration,
the classification of two-dimensional projective toric quiver varieties is recovered in
§ 5. Section 6 clarifies the interrelation of affine versus projective toric quiver vari-
eties. Section 8 contains some generalities on presentations of semigroup algebras,
from which we obtain corollary 8.3, which provides the technical framework for the
proof (in § 9) of theorem 9.3 about the equations for the natural embedding of a
toric quiver variety into projective space. For completeness we show in § 10 how the
main result of [28] can be derived from the special case (proposition 9.1) used in the
proof of theorem 9.3. We also point out in theorem 9.6 that the ideal of relations
among the minimal generators of the coordinate ring of a d-dimensional affine toric
quiver variety is generated in degree at most d − 1, and this bound is sharp.

2. Flow polytopes and their toric varieties

By a polyhedron we mean the intersection of finitely many closed half-spaces in Rn,
and by a polytope we mean a bounded polyhedron or, equivalently, the convex hull
of a finite subset in Rn (this conforms to the use of these terms in [8]). A quiver
is a finite directed graph Q with vertex set Q0 and arrow set Q1. Multiple arrows,
oriented cycles and loops are all allowed. For an arrow a ∈ Q1 denote by a− its
starting vertex and by a+ its terminating vertex. Given an integral vector θ ∈ ZQ0
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and non-negative integral vectors l,u ∈ N
Q1
0 consider the polytope

∇ = ∇(Q, θ, l,u)

=
{

x ∈ RQ1

∣∣∣∣ l � x � u, ∀v ∈ Q0 : θ(v) =
∑

a+=v

x(a) −
∑

a−=v

x(a)
}

.

This is called a flow polytope. According to the generalized Birkhoff–von Neumann
theorem, ∇ is a lattice polytope in RQ1 , that is, its vertices belong to the lattice
ZQ1 ⊂ RQ1 (see, for example, [24, theorem 13.11]). Denote by X∇ the projective
toric variety associated to ∇ (cf. [8, definition 2.3.14]). The polytope ∇ is normal
(see [24, theorem 13.14]). It follows that the abstract variety X∇ can be identified
with the Zariski-closure of the image of the map

(C×)Q1 → Pd−1, t �→ (tm1 : · · · : tmd), (2.1)

where {m1, . . . , md} = ∇ ∩ ZQ1 , and for t in the torus (C×)Q1 and m ∈ ZQ1 we
write tm :=

∏
a∈Q1

t(a)m(a). From now on X∇ will stand for this particular embed-
ding of our variety in projective space, and we denote by I(X∇) the corresponding
vanishing ideal, so I(X∇) is a homogeneous ideal in C[x1, . . . , xd] generated by
binomials. Normality of ∇ implies that X∇ is projectively normal, that is, its affine
cone in Cd is normal. We shall also use the notation

∇(Q, θ) =
{

x ∈ RQ1

∣∣∣∣ 0 � x, ∀v ∈ Q0 : θ(v) =
∑

a+=v

x(a) −
∑

a−=v

x(a)
}

.

We shall call this a quiver polyhedron. When Q has no oriented cycles, for u large
enough we have ∇(Q, θ) = ∇(Q, θ,0,u), so ∇(Q, θ) is a polytope; these polytopes
will be called quiver polytopes.

Definition 2.1. The lattice polyhedra ∇i ⊂ Vi with lattice Mi ⊂ Vi (i = 1, 2) are
integral-affinely equivalent if there exists an affine linear isomorphism

ϕ : AffSpan(∇1) → AffSpan(∇2)

of affine subspaces with the following properties:

(i) ϕ maps AffSpan(∇1) ∩ M1 onto AffSpan(∇2) ∩ M2;

(ii) ϕ maps ∇1 onto ∇2.

The phrase ‘integral-affinely equivalent’ was chosen in accordance with [6] (al-
though in [6] full dimensional lattice polytopes are considered). Obviously, if ∇1 and
∇2 are integral-affinely equivalent lattice polytopes, then the associated projective
toric varieties X∇1 and X∇2 are isomorphic (and in fact they can be identified
via their embeddings into projective space given by the ∇i). As we shall point
out in proposition 2.2, up to integral-affine equivalence the class of flow polytopes
coincides with the class of quiver polytopes, so the class of quiver polyhedra is the
most general of the above classes.

Proposition 2.2. For any flow polytope ∇(Q, θ, l,u) there exists a quiver Q′ with
no oriented cycles and a weight θ′ ∈ ZQ′

0 such that the polytopes ∇(Q, θ, l,u) and
∇(Q′, θ′) are integral-affinely equivalent.

https://doi.org/10.1017/S0308210515000529 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000529


268 M. Domokos and D. Joó

Proof. Note that x ∈ RQ1 belongs to ∇(Q, θ, l,u) if and only if x − l belongs to
∇(Q, θ′,0,u − l), where θ′ is the weight given by θ′(v) = θ(v) −

∑
a+=v l(a) +∑

a−=v l(a). Consequently, X∇(Q,θ,l,u) = X∇(Q,θ′,0,u−l). Therefore, it is sufficient
to deal with the flow polytopes ∇(Q, θ,0,u). Define a new quiver Q′ as follows:
add to the vertex set of Q two new vertices va, wa for each a ∈ Q1, and replace
the arrow a ∈ Q1 by three arrows a1, a2, a3, where a1 goes from a− to va, a2
goes from wa to va and a3 goes from wa to a+. Let θ′ ∈ ZQ′

0 be the weight with
θ′(va) = u(a) = −θ′(wa) for all a ∈ Q1 and θ′(v) = θ(v) for all v ∈ Q0. Consider
the linear map ϕ : RQ1 → RQ′

1 , x �→ y, where y(a1) := x(a), y(a3) := x(a) and
y(a2) = u(a)−x(a) for all a ∈ Q1. It is straightforward to check that ϕ is an affine
linear transformation that restricts to an isomorphism AffSpan(∇(Q, θ,0,u)) →
AffSpan(∇(Q′, θ′)) with the properties (i) and (ii) in definition 2.1.

3. Moduli spaces of quiver representations

A representation R of Q assigns a finite-dimensional C-vector space R(v) to each
vertex v ∈ Q0 and a linear map R(a) : R(a−) → R(a+) to each arrow a ∈ Q1.
A morphism between representations R and R′ consists of a collection of linear
maps L(v) : R(v) �→ R′(v) satisfying R′(a) ◦ L(a−) = L(a+) ◦ R(a) for all a ∈ Q1.
The dimension vector of R is (dimC(R(v)) | v ∈ Q0) ∈ N

Q0
0 . For a fixed dimension

vector α ∈ N
Q0
0 ,

Rep(Q, α) :=
⊕

a∈Q1

homC(Cα(a−), Cα(a+))

is the space of α-dimensional representations of Q. The product of general linear
groups GL(α) :=

∏
v∈Q0

GLα(v)(C) acts linearly on Rep(Q, α) via

g · R := (g(a+)R(a)g(a−)−1 | a ∈ Q1) (g ∈ GL(α), R ∈ Rep(Q, α)).

The GL(α)-orbits in Rep(Q, α) are in a natural bijection with the isomorphism
classes of α-dimensional representations of Q. Given a weight θ ∈ ZQ0 , a repre-
sentation R of Q is called θ-semi-stable if

∑
v∈Q0

θ(v) dimC(R(v)) = 0 and for all
subrepresentations R′ of R we have

∑
v∈Q0

θ(v) dimC(R′(v)) � 0. The points in
Rep(Q, α) corresponding to θ-semi-stable representations constitute a Zariski open
subset Rep(Q, α)θ−ss in the representation space, and in [18] geometric invariant
theory (cf. [22]) is applied to define a variety M(Q, α, θ) and a morphism

π : Rep(Q, α)θ−ss → M(Q, α, θ), (3.1)

which is a coarse moduli space for families of θ-semi-stable α-dimensional repre-
sentations of Q up to S-equivalence. A polynomial function f on Rep(Q, α) is a
relative invariant of weight θ if f(g · R) = (

∏
v∈Q0

det(g(v))θ(v))f(R) holds for all
g ∈ GL(α) and R ∈ Rep(Q, α). The relative invariants of weight θ constitute a
subspace O(Rep(Q, α))θ in the coordinate ring O(Rep(Q, α)) of the affine space
Rep(Q, α). In fact O(Rep(Q, α))θ is a finitely generated module over the algebra
O(Rep(Q, α))GL(α) of polynomial GL(α)-invariants on Rep(Q, α) (generators of this
latter algebra are described in [19]). Now a quasi-projective variety M(Q, α, θ) is
defined as the projective spectrum

M(Q, α, θ) = Proj
( ∞⊕

n=0

O(Rep(Q, α))nθ

)
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of the graded algebra
⊕∞

n=0 O(Rep(Q, α))nθ. A notable special case is that of the
zero weight. Then the moduli space M(Q, α, 0) is the affine variety whose coordinate
ring is the subalgebra of GL(α)-invariants in O(Rep(Q, α)). This was studied in [19]
before the introduction of the case of general weights in [18]. Its points are in a
natural bijection with the isomorphism classes of semisimple representations of Q
with dimension vector α. For a quiver with no oriented cycles, M(Q, α, 0) is just a
point, and it is more interesting for quivers containing oriented cycles.

Let us turn to the special case when α(v) = 1 for all v ∈ Q0; we simply write
Rep(Q) and M(Q, θ) instead of Rep(Q, α) and M(Q, α, θ). When Rep(Q)θ−ss is
non-empty, M(Q, θ) is a quasi-projective toric variety with torus π({x ∈ Rep(Q) |
x(a) 	= 0, ∀a ∈ Q1}) = π((C×)Q1). On the other hand, it is well known (see propo-
sition 3.2) that ∇(Q, θ) is a lattice polyhedron in the sense of [8, definition 7.1.3].
Denote by X∇(Q,θ) the toric variety belonging to the normal fan of ∇(Q, θ) (see,
for example, [8, theorem 7.1.6]).

Proposition 3.1. We have the isomorphism M(Q, θ) ∼= X∇(Q,θ) of toric varieties.

Proof. For quivers with no oriented cycles this is explained in [2] using a description
of the fan of M(Q, θ) in [13]. An alternative explanation is the following: the lattice
points in ∇(Q, nθ) correspond bijectively to a C-basis in O(Rep(Q))nθ by assigning
to m ∈ ∇(Q, nθ) ∩ ZQ1 the function R �→ Rm :=

∏
a∈Q1

R(a)m(a). Now X∇(Q,θ)
is the projective spectrum of

⊕∞
n=0 O(Rep(Q))nθ (see [8, proposition 7.1.13]), just

like M(Q, θ).

A more explicit description of M(Q, θ) is possible thanks to the normality of
quiver polyhedra.

Proposition 3.2.

(i) Denote by Q1, . . . , Qt the maximal subquivers of Q that contain no oriented
cycles. Then ∇(Q, θ) ∩ ZQ1 has a Minkowski sum decomposition

∇(Q, θ) ∩ ZQ1 = ∇(Q, 0) ∩ ZQ1 +
t⋃

i=1

∇(Qi, θ) ∩ ZQ1 . (3.2)

(ii) The quiver polyhedron ∇(Q, θ) is a normal lattice polyhedron.

Proof. (i) By the support of x ∈ RQ1 we mean the set {a ∈ Q1 | x(a) 	= 0} ⊆ Q1. It
is obvious that ∇(Q, θ)∩ZQ1 contains the set on the right-hand side of (3.2). To show
the reverse inclusion take an x ∈ ∇(Q, θ) ∩ ZQ1 . If its support contains no oriented
cycles, then x ∈ ∇(Qi, θ) for some i. Otherwise take a minimal oriented cycle
C ⊆ Q1 in the support of x. Denote by εC ∈ RQ1 the characteristic function of C,
and denote by λ the minimal coordinate of x along the cycle C. Then λεC ∈ ∇(Q, 0)
and y := x − λεC ∈ ∇(Q, θ). Moreover, y has strictly smaller support than x. By
induction on the size of the support we are done.

(ii) The same argument as in (i) yields ∇(Q, θ) = ∇(Q, 0) +
⋃t

i=1 ∇(Qi, θ). So
∇(Q, 0) is the recession cone of ∇(Q, θ), and the set of vertices of ∇(Q, θ) is con-
tained in the union of the vertex sets of ∇(Qi, θ). As we pointed out before, the
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vertices of ∇(Qi, θ) belong to ZQ1 by [24, theorem 13.11], whereas the cone ∇(Q, 0)
is obviously rational and strongly convex. This shows that ∇(Q, θ) is a lattice poly-
hedron in the sense of [8, definition 7.1.3]. For normality we need to show that for
all positive integers k we have ∇(Q, kθ) ∩ ZQ1 = k(∇(Q, θ) ∩ ZQ1) (the Minkowski
sum of k copies of ∇(Q, θ) ∩ ZQ1); see [8, definition 7.1.8]. Flow polytopes are nor-
mal by [24, theorem 13.14]; hence, the ∇(Qi, θ) are normal for i = 1, . . . , t. So,
by (i), we have

∇(Q, kθ) ∩ ZQ1 = ∇(Q, 0) ∩ ZQ1 +
t⋃

i=1

(∇(Qi, kθ) ∩ ZQ1)

= ∇(Q, 0) ∩ ZQ1 +
t⋃

i=1

k(∇(Qi, θ) ∩ ZQ1)

⊆ k

(
∇(Q, 0) ∩ ZQ1 +

t⋃
i=1

∇(Qi, θ) ∩ ZQ1

)
.

Let C1, . . . , Cr be the minimal oriented cycles (called also primitive cycles) in
Q. Then their characteristic functions εC1 , . . . , εCr

constitute a Hilbert basis in the
monoid ∇(Q, 0)∩ZQ1 . Enumerate the elements in {m, εCj

+m | m ∈
⋃t

i=1 ∇(Qi, θ)∩
ZQ1 , j = 1, . . . , r} as m0, m1, . . . , md. For a lattice point m ∈ ∇(Q, θ)∩ZQ1 denote
by xm : Rep(Q) → C the function x �→

∏
a∈Q1

R(a)m(a). Consider the map

ρ : Rep(Q)θ−ss → Pd, x �→ (xm0 : · · · : xmd). (3.3)

Proposition 3.3. M(Q, θ) can be identified with the locally closed subset Im(ρ)
in Pd.

Proof. The morphism ρ is (C×)Q0-invariant; hence, it factors through the quotient
morphism (3.1), so there exists a morphism µ : M(Q, θ) → Im(ρ) with µ ◦ π = ρ.
One can deduce from proposition 3.2 by the Proj construction of M(Q, θ) that µ
is an isomorphism.

This shows also that there is a projective morphism M(Q, θ) → M(Q, 0). In
particular, M(Q, θ) is a projective variety if and only if Q has no oriented cycles,
i.e. if ∇(Q, θ) is a polytope.

4. Contractible arrows

Throughout this section Q stands for a quiver, and θ ∈ ZQ0 for a weight such that
∇(Q, θ) is non-empty. For an undirected graph Γ we set χ(Γ ) := |Γ1|−|Γ0|+χ0(Γ ),
where Γ0 is the set of vertices, Γ1 is the set of edges in Γ , and χ0(Γ ) is the number
of connected components of Γ . Define χ(Q) := χ(Γ ) and χ0(Q) := χ0(Γ ) where
Γ is the underlying graph of Q, and we say that Q is connected if Γ is connected,
i.e. if χ0(Q) = 1. Denote by F : RQ1 → RQ0 the map given by

F(x)(v) =
∑

a+=v

x(a) −
∑

a−=v

x(a) (v ∈ Q0). (4.1)
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By definition we have ∇(Q, θ) = F−1(θ) ∩ R
Q1
�0. It is well known that the codimen-

sion in RQ0 of the image of F equals χ0(Q); hence, dimR(F−1(θ)) = χ(Q) for any
θ ∈ F(RQ1), implying that dim(∇(Q, θ)) � χ(Q), where by the dimension of a
polyhedron we mean the dimension of its affine span.

We say that we contract an arrow a ∈ Q1 which is not a loop when we pass to the
pair (Q̂, θ̂), where Q̂ is obtained from Q by removing a and gluing its endpoints a−,
a+ to a single vertex v ∈ Q̂0 and setting θ̂(v) := θ(a−)+θ(a+), whereas θ̂(w) = θ(w)
for all vertices w ∈ Q̂0 \ {v} = Q0 \ {a−, a+}.

Definition 4.1. Let Q be a quiver, θ ∈ ZQ0 a weight such that ∇(Q, θ) is non-
empty.

(i) An arrow a ∈ Q1 is said to be removable if ∇(Q, θ) is integral-affinely equiv-
alent to ∇(Q′, θ), where Q′ is obtained from Q by removing the arrow a:
Q′

0 = Q0 and Q′
1 = Q1 \ {a}.

(ii) An arrow a ∈ Q1 is said to be contractible if ∇(Q, θ) is integral-affinely
equivalent to ∇(Q̂, θ̂), where (Q̂, θ̂) is obtained from (Q, θ) by contracting the
arrow a.

(iii) The pair (Q, θ) is called tight if there is no removable or contractible arrow
in Q1.

An immediate corollary of definition 4.1 is the following statement.

Proposition 4.2. Any quiver polyhedron ∇(Q, θ) is integral-affinely equivalent to
some ∇(Q′, θ′), where (Q′, θ′) is tight. Moreover, (Q′, θ′) is obtained from (Q, θ) by
successively removing or contracting arrows.

Remark 4.3. A pair (Q, θ) is tight if and only if all its connected components are
θ-tight in the sense of [3, definition 12]. This follows from lemma 7, corollary 8 and
lemma 13 in [3]; these results imply also corollary 4.5, for which we give a direct
derivation from definition 4.1.

Lemma 4.4.

(i) The arrow a is removable if and only if x(a) = 0 for all x ∈ ∇(Q, θ).

(ii) The arrow a is contractible if and only if in the affine space F−1(θ) the half-
space {x ∈ F−1(θ) | x(a) � 0} contains the polyhedron {x ∈ F−1(θ) | x(b) �
0, ∀b ∈ Q1 \ {a}}.

Proof. (i) is trivial. To prove (ii) denote by Q̂ and θ̂ the quiver and weight obtained
by contracting a. Since the set of arrows of Q̂ can be identified with Q̂1 = Q1 \
{a}, we have the projection map π : F−1(θ) → F ′−1(θ̂) obtained by forgetting the
coordinate x(a). The equation

x(a) = θ(a+) −
∑

b∈Q1\{a},b+=a+

x(b) +
∑

b∈Q1\{a},b−=a+

x(b)

shows that π is injective; hence, it gives an affine linear isomorphism F−1(θ) ∩ ZQ1

and F ′−1(θ̂) ∩ ZQ̂1 , and maps injectively the lattice polyhedron ∇(Q, θ) onto an
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integral-affinely equivalent lattice polyhedron contained in ∇(Q̂, θ̂). Thus, a is con-
tractible if and only if on the affine space F−1(θ) the inequality x(a) � 0 is a
consequence of the inequalities x(b) � 0 (b ∈ Q1 \ {a}).

For an arrow a ∈ Q1 set ∇(Q, θ)x(a)=0 := {x ∈ ∇(Q, θ) | x(a) = 0}.

Corollary 4.5.

(i) The pair (Q, θ) is tight if and only if the assignment a �→ ∇(Q, θ)x(a)=0 gives
a bijection between Q1 and the facets (codimension 1 faces) of ∇(Q, θ).

(ii) If (Q, θ) is tight, then dim(∇(Q, θ)) = χ(Q).

Proof. lemma 4.4 shows that (Q, θ) is tight if and only if AffSpan(∇(Q, θ)) =
F−1(θ) and {x(a) = 0} ∩ F−1(θ) (a ∈ Q1) are distinct supporting hyperplanes of
∇(Q, θ) in its affine span.

The following simple sufficient condition for contractibility of an arrow turns out
to be sufficient for our purposes. For a subset S ⊆ Q0, set θ(S) :=

∑
v∈S θ(v). By

(4.1), for x ∈ F−1(θ) we have

θ(S) =
∑

a∈Q1,a+∈S

x(a) −
∑

a∈Q1,a−∈S

x(a) =
∑

a+∈S,a− /∈S

x(a) −
∑

a−∈S,a+ /∈S

x(a). (4.2)

Proposition 4.6. Suppose that S ⊂ Q0 has the property that there is at most one
arrow a with a+ ∈ S and a− /∈ S and at most one arrow b with b+ /∈ S and b− ∈ S.
Then a (if it exists) is contractible when θ(S) � 0, and b (if exists) is contractible
when θ(S) � 0.

Proof. By (4.2) we have θ(S) = x(a) − x(b); hence, by lemma 4.4, a or b is con-
tractible, depending on the sign of θ(S).

By the valency of a vertex v ∈ Q0 we mean

|{a ∈ Q1 | a− = v}| + |{a ∈ Q1 | a+ = v}|.

Corollary 4.7.

(i) Suppose that the vertex v ∈ Q0 has valency 2, and a, b ∈ Q1 are arrows such
that a+ = b− = v. Then the arrow a is contractible when θ(v) � 0, and b is
contractible when θ(v) � 0.

(ii) Suppose that, for some c ∈ Q1, c− and c+ have valency 2, and a, b ∈ Q1 \ {c}
with a− = c− and b+ = c+. Then a is contractible when θ(c−) + θ(c+) � 0,
and b is contractible when θ(c−) + θ(c+) � 0.

Proof. Apply proposition 4.6 with S = {v} to get (i), and with S = {c−, c+} to
get (ii).

Proposition 4.8. Suppose that there are exactly two arrows a, b ∈ Q1 (none is a
loop) adjacent to some vertex v, and either a+ = b+ = v or a− = b− = v. Let
Q′ be the quiver obtained by reversing the arrows a, b (we shall denote by â and
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a b a b a b a bˆ ˆ ˆ ˆ

(u) (w) (u) +   (v) (u) (w)θ

(v)θ (v)−θ −θ(v)θ

θθ

(v)

θ θ (w) +   (v)θ θ (u) +   (v)θ θ (w) +   (v)θ θθ

or

Figure 1. Reflection transformation.

b̂ the reversed arrows), and consider the weight θ′ ∈ ZQ′
0 given by θ′(v) = −θ(v),

θ′(u) = θ(u) + θ(v) when u 	= v is an endpoint of a or b (see figure 1), and
θ′(z) = θ(z) for all other z ∈ Q′

0 = Q0. Then the polyhedra ∇(Q, θ) and ∇(Q′, θ′)
are integral-affinely equivalent.

Proof. It is straightforward to check that the map ϕ : RQ1 → RQ′
1 given by

ϕ(x)(â) = x(b), ϕ(x)(b̂) = x(a)

and
ϕ(x)(c) = x(c) for all c ∈ Q′

1 \ {â, b̂} = Q1 \ {a, b}

restricts to an isomorphism between AffSpan(∇(Q, θ)) and AffSpan(∇(Q′, θ′)), sat-
isfying (i) and (ii) in definition 2.1.

Remark 4.9. Proposition 4.8 can be interpreted in terms of reflection transforma-
tions: it was shown in [17, §§ 2 and 3] (see also [25, theorem 23]) that reflection
transformations on representations of quivers induce isomorphisms of algebras of
semi-invariants. Now, under our assumptions, a reflection transformation at vertex
v fixes the dimension vector (1, . . . , 1).

Proposition 4.10. Suppose that Q is the union of its subquivers Q′, Q′′, which
are either disjoint or have a single common vertex v. Identify RQ′

1 ⊕ RQ′′
1 = RQ1 in

the obvious way, and let θ′ ∈ ZQ′
0 ⊂ ZQ0 and θ′′ ∈ ZQ′′

0 ⊂ ZQ0 be the unique weights
with θ = θ′ + θ′′ and

θ′(v) = −
∑

w∈Q′
0\{v}

θ(w), θ′′(v) = −
∑

w∈Q′′
0 \{v}

θ(w)

when Q′
0 ∩ Q′′

0 = {v}. Then

(i) the quiver polyhedron ∇(Q, θ) is the product of the polyhedra ∇(Q′, θ′) and
∇(Q′′, θ′′),

(ii) we have M(Q, θ) ∼= M(Q′, θ′) × M(Q′′, θ′′).

Proof.
(i) A point x ∈ RQ1 uniquely decomposes as x = x′ + x′′, where x′(a) = 0 for
all a /∈ Q′

1 and x′′(a) = 0 for all a /∈ Q′′
1 . It is obvious by the definition of quiver

polyhedra that x ∈ ∇(Q, θ) if and only if x′ ∈ ∇(Q′, θ′) and x′′ ∈ ∇(Q′′, θ′′).

(ii) This was observed in [15] and follows from (i) by proposition 3.1.
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–2

1

1

2

–2

Figure 2. Prime quiver with non-prime variety.

Definition 4.11.

(i) We call a connected undirected graph Γ (with at least one edge) prime if it
is not the union of proper subgraphs Γ ′, Γ ′′ having only one common vertex
(i.e. it is 2-vertex-connected). A quiver Q will be called prime if its underlying
graph is prime.

(ii) We call a toric variety prime if it is not the product of lower dimensional toric
varieties.

Obviously, any toric variety is the product of prime toric varieties, and this
product decomposition is unique up to the order of the factors and up to zero-
dimensional factors (see, for example, [12, theorem 2.2]). It is not immediate from
the definition, but we shall show in theorem 4.12(iii) that the prime factors of a
toric quiver variety are quiver varieties as well.

Note that a toric quiver variety associated to a non-prime quiver may well be
prime and, conversely, a toric quiver variety associated to a prime quiver can be
non-prime. The quiver in figure 2 is prime but the moduli space corresponding to
the indicated weight is P1 × P1. However, as shown by theorem 4.12, when the
tightness of some (Q, θ) is assumed, decomposing Q into its unique maximal prime
components gives us the decomposition of M(Q, θ) as a product of prime toric
varieties.

Theorem 4.12.

(i) Let Qi (i = 1, . . . , k) be the maximal prime subquivers of Q, and denote by
θi ∈ ZQi

0 the unique weights satisfying
∑k

i=1 θi(v) = θ(v) for all v ∈ Q0 and∑
v∈Qi

0
θi(v) = 0 for all i. Then

M(Q, θ) ∼=
k∏

i=1

M(Qi, θi).

Moreover, if (Q, θ) is tight, then the (Qi, θi) are all tight.

(ii) If (Q, θ) is tight, then M(Q, θ) is prime if and only if Q is prime.

(iii) Any toric quiver variety is the product of prime toric quiver varieties.

Proof. The isomorphism M(Q, θ) ∼=
∏k

i=1 M(Qi, θi) follows from proposition 4.10.
The second statement in (i) follows from this isomorphism and corollary 4.5.

Next we turn to the proof of (ii), so suppose that (Q, θ) is tight. If Q is not prime,
then χ(Qi) > 0 for all i; hence, M(Q, θ) is not prime by (i). To show the reverse
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implication assume on the contrary that Q is prime and M(Q, θ) ∼= X ′ ×X ′′, where
X ′, X ′′ are positive-dimensional toric varieties. Note that then Q1 does not contain
loops. Let {εa | a ∈ Q1} be a Z-basis of ZQ1 , and for each vertex v ∈ Q0 let us
define

Cv :=
∑

a+=v

εa −
∑

a−=v

εa.

Following the description of the toric fan Σ of M(Q, θ) in [13], we can identify the
lattice of one-parameter subgroups N of M(Q, θ) with ZQ1/〈Cv | v ∈ Q0〉, and the
ray generators of the fan with the cosets of the εa. Denoting by Σ′ and Σ′′ the fans
of X ′ and X ′′, respectively, we have Σ = Σ′ × Σ′′ = {σ′ × σ′′ | σ′ ∈ Σ′, σ′′ ∈ Σ′′}
(see [8, proposition 3.1.14]). Denote by π′ : N → N ′, π′′ : N → N ′′ the natural
projections to the sets of one-parameter subgroups of the tori in X ′ and X ′′. For
each ray generator εa we have either π′(εa) = 0 or π′′(εa) = 0. Since (Q, θ) is tight
we obtain a partition of Q1 into two disjoint non-empty sets of arrows:

Q′
1 = {a ∈ Q1 | π′′(a) = 0} and Q′′

1 = {a ∈ Q1 | π′(a) = 0}.

Since Q is prime, it is connected. Hence, there exists a vertex w incident to arrows
from both Q′

1 and Q′′
1 . Let Π ′ and Π ′′ denote the projections from ZQ1 to ZQ′

1 and
ZQ′′

1 . By the choice of w we have Π ′(Cw) 	= 0 and Π ′′(Cw) 	= 0. Writing ϕ for the
natural map from ZQ1 to N ∼= ZQ1/〈Cv | v ∈ Q0〉, we have ϕ ◦ Π ′ = π′ ◦ ϕ and
ϕ ◦ Π ′′ = π′′ ◦ ϕ, so ker(ϕ) = 〈Cv | v ∈ Q0〉 is closed under Π ′ and Π ′′. Taking into
account that

∑
v∈Q0

Cv = 0 we deduce that

Π ′(Cw) =
∑

v∈Q0\{w}
λvCv

for some λv ∈ Z. Set S′ := {v ∈ Q0 | λv 	= 0}. Since each arrow appears in
exactly two of the Cv, it follows that S′ contains all vertices connected to w by an
arrow in Q′

1; hence, S′ is non-empty. Moreover, the set of arrows having exactly
one endpoint in S′ is exactly those arrows in Q′

1 that are adjacent to w. Thus,
S′′ := Q0 \ (S′ ∪ {w}) contains all vertices that are connected to w by an arrow
from Q′′

1 ; hence, S′′ is non-empty. Furthermore, there are no arrows in Q1 that
connect a vertex from S′ to a vertex in S′′. It follows that Q is the union of its
full subquivers spanned by the vertex sets S′ ∪ {w} and S′′ ∪ {w}, having only one
common vertex w and no common arrow. This contradicts the assumption that Q
was prime.

Statement (iii) follows from (i), (ii) and proposition 4.2.

Note that if χ(Γ ) � 2 and Γ is prime, then Γ contains no loops (i.e. an edge
with identical endpoints), every vertex of Γ has valency at least 2 and Γ has at
least two vertices with valency at least 3.

Definition 4.13. For d = 2, 3, . . . , denote by Ld the set of prime graphs Γ , with
χ(Γ ) = d, in which all vertices have valency at least 3. Let Rd stand for the set of
quivers Q obtained from a graph Γ ∈ Ld by orienting some of the edges somehow
and putting a sink on the remaining edges (that is, we replace an edge by a path of
length 2 in which both edges are pointing towards the new vertex in the middle).
We shall call Γ the skeleton S(Q) of Q; note that χ(Q) = χ(S(Q)).
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Starting from Q, its skeleton Γ = S(Q) can be recovered as follows: Γ0 is the
subset of Q0 consisting of the valency 3 vertices. For each path in the underlying
graph of Q that connects two vertices in Γ0 and whose inner vertices have valency
2 we put an edge. Clearly, a quiver Q with χ(Q) = d � 2 belongs to Rd if and only
if the following conditions hold:

(i) Q is prime;

(ii) there is no arrow of Q connecting valency 2 vertices;

(iii) every valency 2 vertex of Q is a sink.

Furthermore, set R :=
⊔∞

d=1 Rd where R1 is the 1-element set consisting of the
Kronecker quiver .

Proposition 4.14. For any d � 2, Γ ∈ Ld and Q ∈ Rd we have the inequalities

|Γ0| � 2d − 2, |Γ1| � 3d − 3, |Q0| � 5(d − 1), |Q1| � 6(d − 1).

In particular, Ld and Rd are finite for each positive integer d.

Proof. Take Γ ∈ Ld, where d � 2. Then Γ contains no loops, and, denoting by e
the number of edges and by v the number of vertices of Γ , we have the inequality
2e � 3v, since each vertex is adjacent to at least three edges. On the other hand,
e = v − 1+d. We conclude that v � 2d− 2, and hence e � 3d− 3. For Q ∈ Rd with
S(Q) = Γ we have that |Q0| � v + e and |Q1| � 2e.

Theorem 4.15.

(i) Any d-dimensional prime toric quiver variety M(Q, θ) can be realized by a
tight pair (Q, θ), where Q ∈ Rd (consequently |Q0| � 5(d − 1) and |Q1| �
6(d − 1) when d � 2).

(ii) For each positive integer d up to isomorphism there are only finitely many
d-dimensional toric quiver varieties.

Proof. It follows from propositions 4.2 and 4.8, and corollary 4.7 that any d-
dimensional prime toric quiver variety can be realized by a tight pair (Q, θ), where
Q ∈ Rd; the bounds on vertex and arrow sets of the quiver follow by proposi-
tion 4.14. Statement (ii) follows from (i) and the well-known finiteness of possible
geometric invariant theory quotients (cf. [27]). More concretely, for a given quiver
Q we say that the weights θ and θ′ are equivalent if Rep(Q)θ−ss = Rep(Q)θ′−ss;
this implies that M(Q, θ) = M(Q, θ′). For a given representation R of Q, the set of
weights θ for which R is θ-semi-stable is determined by the set of dimension vectors
of subrepresentations of R (see [18]). Since there are finitely many possibilities for
the dimension vectors of a subrepresentation of a representation with dimension
vector (1, . . . , 1), up to equivalence there are only finitely many different weights;
hence, there are finitely many possible moduli spaces for a fixed Q.

Remark 4.16. Part (i) of theorem 4.15 can be directly obtained from the results
in [3,4]. From the proof of [4, theorem 7] it follows that the bounds on the number of
vertices and edges hold whenever the canonical weight is tight for a quiver. While
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in [4] it is assumed that Q has no oriented cycles, the argument therein for the
bound applies to the general case as well. Moreover, [3, lemma 13] shows that every
toric quiver variety can be realized by a pair (Q, θ), where Q is tight with the
canonical weight. These two results imply part (i) of theorem 4.15.

Remark 4.17. We mention that for a fixed quiver Q it is possible to give an algo-
rithm to produce a representative for each of the finitely many equivalence classes of
weights. The change in the moduli spaces of a given quiver when we vary the weight
is studied in [13, 15], where the inequalities determining the chamber system are
given. To find an explicit weight in each chamber one can use the Fourier–Motzkin
algorithm.

Remark 4.18. A purely combinatorial characterization of tightness is given in [3,
§ 4]. Namely, (Q, θ) is tight if and only if any connected component of Q is θ-stable,
and any connected component of Q \ {a} for any a ∈ Q1 is θ-stable (see § 6 for the
notion of θ-stability). In [3, lemma 13] it is also shown that if (Q, θ) is tight for
some weight θ, then (Q, δQ) is tight as well, where δQ :=

∑
a∈Q1

(εa+ − εa−) is the
so-called canonical weight (here εv stands for the characteristic function of v ∈ Q0).
It is easy to deduce that for a connected quiver Q the pair (Q, δQ) is tight if and
only if there is no partition Q0 = S

∐
S′ such that there is at most one arrow from

S to S′ and there is at most one arrow from S′ to S.

Theorem 4.15 is sharp, and the reductions on the quiver are optimal, in the sense
that in general one cannot hope for reductions that would yield smaller quivers.

Proposition 4.19. For each natural number d � 2 there exists a d-dimensional
prime toric quiver variety M(Q, θ) with |Q1| = 6(d − 1), |Q0| = 5(d − 1), such that
for any other quiver and weight Q′, θ′ with M(Q, θ) ∼= M(Q′, θ′) (isomorphism of
toric varieties) we have that |Q′

1| � |Q1| and |Q′
0| � |Q0|.

Proof. In example 4.20 for each d we show a connected tight pair (Q, θ) with Q
prime, |Q1| = 6(d − 1), |Q0| = 5(d − 1); hence, d = χ(Q) = dim(M(Q, θ)). Take
another quiver and weight Q′, θ′ with M(Q, θ) ∼= M(Q′, θ′). Since contracting or
removing an arrow does not increase the number of arrows or vertices, there exists
a tight pair (Q′′, θ′′) with M(Q′, θ′) ∼= M(Q′′, θ′′), and |Q′

1| � |Q′′
1 |, |Q′

0| � |Q′′
0 |.

By corollary 4.5(i) |Q1| equals the number of facets of the polytope ∇(Q, θ), which
equals the number of rays in the toric fan of M(Q, θ). This is an invariant of the
toric variety, implying by M(Q′′, θ′) ∼= M(Q, θ) that |Q′′

1 | = |Q1|. Moreover, by
corollary 4.5(ii) we have χ(Q′′) = χ(Q); thus, |Q′′

0 | = |Q′′
1 | − χ(Q′′) + χ0(Q′′) =

|Q1| − χ(Q) + χ0(Q′′) � |Q1| − χ(Q) + 1 = |Q0|.

Example 4.20. For d � 3 consider the graph with 2(d − 1) vertices shown in
figure 3. Removing any two edges from this graph, we obtain a connected graph.
Now let Q be the quiver obtained by putting a sink on each of the edges (so the
graph in figure 3 is the skeleton of Q). Then (Q, δQ) is tight by remark 4.18 (δQ

takes the value 2 on each sink and the value −3 on each source).

Relaxing the condition on tightness, it is possible to come up with a shorter list
of quivers whose moduli spaces exhaust all possible projective toric quiver varieties.
A key role is played by the following statement.
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Figure 3. A 3-regular skeleton.

Proposition 4.21. Suppose that Q has no oriented cycles and a ∈ Q1 is an arrow
that, on contraction, yields a quiver (i.e. the quiver Q̂ described in definition 4.1)
that has no oriented cycles. Then, for a sufficiently large integer, d, we have that
a is contractible for the pair (Q, θ + d(εa+ − εa−)), where εv ∈ ZQ0 stands for the
characteristic function of v ∈ Q0.

Proof. Set ψd = θ + d(εa+ − εa−), and note that ψ̂d = θ̂ for all d. Considering the
embeddings π : F−1(ψd) → F ′−1(θ̂) described in the proof of lemma 4.4, we have
that, for any d, any y ∈ F−1(ψd) and b ∈ Q1 \ {a},

min{x(b) | x ∈ ∇(Q̂, θ̂)} � y(b) � max{x(b) | x ∈ ∇(Q̂, θ̂)}.

Since we assumed that Q̂ has no oriented cycles, the minimum and the maximum
in the inequality above are finite. Now, considering the arrows incident to a−, we
obtain that, for any x ∈ F−1(ψd), we have

x(a) = d − θ(a−) +
∑

b+=a−

x(b) −
∑

b−=a−,b �=a

x(b).

Thus, for

d � θ(a−) − min
{ ∑

b+=a−

x(b) −
∑

b−=a−,b �=a

x(b)
∣∣∣∣ x ∈ F ′−1(θ̂)

}
,

the arrow a is contractible for (Q, ψd) by lemma 4.4.

For d � 2, introduce a partial ordering � on Ld: set Γ � Γ ′ if Γ ′ is obtained from
Γ by contracting an edge, and take the transitive closure of this relation. Now, for
each positive integer d � 2, denote by L′

d ⊆ Ld the set of undirected graphs Γ ∈ Ld

that are maximal with respect to the relation �, and set L′
1 := L1. It is easy to

see that, for d � 2, L′
d consists of 3-regular graphs (i.e. graphs in which all vertices

have valency 3). Now denote by R′
d the quivers that are obtained by putting a sink

on each edge from a graph from L′
d.

Theorem 4.22. For d � 2, any prime d-dimensional projective toric quiver variety
is isomorphic to M(Q, θ), where Q ∈ R′

d.

Proof. This is an immediate consequence of theorem 4.15 and proposition 4.21.

Example 4.23. L′
3 consists of the two graphs in figure 4. Now put a sink on each

edge of the these graphs. The first of the two resulting quivers is not tight for the
canonical weight. After tightening, we obtain the two quivers in figure 4 among
whose moduli spaces all three-dimensional prime projective toric quiver varieties
occur.
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Figure 4. The graphs in L′
3.
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Figure 5. Two-dimensional quiver-weight pairs.
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Figure 6. A spanning tree.

5. The two-dimensional case

As an illustration of the general classification scheme explained in § 4, we sketch
the classification of two-dimensional toric quiver varieties (this result is known;
see [15, theorem 5.2] and [11, example 6.14]).

Proposition 5.1.

(i) A two-dimensional projective toric quiver variety is isomorphic to one of the
following: the projective plane P2, the blow-up of P2 at one, two or three points
in a general position, or P1 × P1.

(ii) The above varieties are realized (in the order of their listing) by the quiver–
weight pairs shown in figure 5.

Proof. R1 consists only of the Kronecker quiver. The only weights yielding a non-
empty moduli space are (−1, 1) and its positive integer multiples, hence the cor-
responding moduli space is P1. Thus, P1 × P1, the product of two projective lines
occurs as a two-dimensional toric quiver variety, say for the disjoint union of two
copies of –1 1.

L2 consists of the graph with two vertices and three edges connecting them (say,
by proposition 4.14). Thus, R′

2 consists of the quiver A occurring four times in
figure 5. Choosing a spanning tree T in Q, the x(a) with a ∈ Q1 \T1 can be used as
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x

y

x + y = –  1 –   4θθ x + y = –  1θ

y =   3θ

x =   2θ

Figure 7. Defining inequalities of ∇(A, θ): 0 � x � θ2, 0 � y � θ3,
−θ4 − θ1 � x + y � −θ1.
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Figure 8. The fans.
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Figure 9. Two tight weights.

free coordinates in F−1(θ). For example, take, in the quiver A, the spanning tree
with thick arrows in figure 6. Clearly, ∇(A, θ) is integral-affinely equivalent to the
polytope in R2 = {(x, y) | x, y ∈ R} shown in figure 7. Depending on the order of
−θ1, θ3,−θ1 − θ4, θ2, its normal fan is one of the fans shown in figure 8.

It is well known that the corresponding toric varieties are the projective plane P2,
P1 ×P1 and the projective plane blown up at one, two or three points in the general
position, so (i) is proved. Taking into account the explicit inequalities in figure 7,
we see that, for the pairs (A, θ) given in (ii), the variety X∇(A,θ) = M(A, θ) has
the desired isomorphism type.

Remark 5.2.

(i) Since the toric fan of the blow-up of P2 at three generic points has six rays,
to realize it as a toric quiver variety we need a quiver with at least six arrows
and hence with at least five vertices (see proposition 4.19).
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Figure 10. Different tightenings.

(ii) Comparing proposition 5.1 with [4, § 3.3], we conclude that for each isomor-
phism class of a two-dimensional toric quiver variety there is a quiver Q such
that M(Q, δQ) belongs to the given isomorphism class (recall that δQ is the
so-called canonical weight), in particular, in dimension 2 every projective toric
quiver variety is Gorenstein Fano. This is explained by the following two facts:

(a) in dimension 2, a complete fan is determined by the set of rays;

(b) if (Q, θ) is tight, then (Q, δQ) is tight.

Now (a) and (b) imply that if (Q, θ) is tight and χ(Q) = 2, then M(Q, θ) ∼=
M(Q, δQ).

(iii) The above does not hold in dimension 3 or higher. Consider, for example, the
quiver–weight pairs in figure 9. The weight on the left is the canonical weight
δQ for this quiver, and it is easy to check that (Q, δQ) is tight and M(Q, δQ)
is a Gorenstein–Fano variety with a singular point. The weight on the right is
also tight for this quiver. However, it gives a smooth moduli space that cannot
be isomorphic to M(Q, δQ). Consequently, it also cannot be Gorenstein–Fano,
since the rays in its fan are the same as those in the fan of M(Q, δQ).

(iv) It is also notable in dimension 2 that each toric quiver variety can be realized
as M(Q, δQ) by precisely one quiver Q from Rd. This does not hold in higher
dimensions. For example, the first two quivers in figure 10 are both tight with
respect to their canonical weights. They give isomorphic moduli, since they
are both obtained after tightening the third quiver in figure 10.

6. Affine quotients

We need a result concerning representation spaces that we discuss for general
dimension vectors. Consider the following situation. Let T be a (not necessarily
full) subquiver of Q which is the disjoint union of trees T =

∐r
i=1 T i (where by

a tree we mean a quiver whose underlying graph is a tree). Let α be a dimen-
sion vector taking the same value, di, on the vertices of each T i (i = 1, . . . , r).
Let θ ∈ ZQ0 be a weight such that there exist positive integers na (a ∈ T1) with
θ(v) =

∑
a∈T1:a+=v na −

∑
a∈T1:a−=v na. The representation space Rep(Q, α) con-

tains the Zariski dense open subset

UT := {R ∈ Rep(Q, α) | ∀a ∈ T1 : det(R(a)) 	= 0}.

Note that UT is a principal affine open subset in Rep(Q, α) given by the non-
vanishing of the relative invariant f : R �→

∏
a∈T1

detna(R(a)) of weight θ. Hence,
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UT is contained in Rep(Q, α)θ−ss. Moreover, UT is π-saturated with respect to the
quotient morphism π : Rep(Q, α)θ−ss → M(Q, α, θ). Hence, π maps UT onto an
open subset π(UT ) ∼= UT // GL(α) of M(Q, α, θ). Here for an affine GL(α)-variety
X we denote by X// GL(α) the affine quotient, that is, the variety with the ring
of invariants O(X)GL(α) as its coordinate ring (see [22]). Denote by Q̂ the quiver
obtained from Q by contracting each connected component T i of T to a single
vertex ti (i = 1, . . . , r). So Q̂0 = (Q0 \ T0)

∐
{t1, . . . , tr} and its arrow set can be

identified with Q1 \ T1, but if an end vertex of an arrow belongs to T i in Q, then,
viewed as an arrow in Q̂, the corresponding end vertex is ti (in particular, an arrow
in Q1 \ T1 connecting two vertices of T i becomes a loop at vertex ti). Denote by
α̂ the dimension vector obtained by contracting α accordingly, so α̂(ti) = di for
i = 1, . . . , r and α̂(v) = α(v) for v ∈ Q̂0 \ {t1, . . . , tr}. Sometimes we shall identify
GL(α̂) with the subgroup of GL(α) consisting of the elements g ∈ GL(α) with the
property that g(v) = g(w) whenever v, w belong to the same component T i of T .
We have a GL(α̂)-equivariant embedding

ι : Rep(Q̂, α̂) → Rep(Q, α) (6.1)

defined by ι(x)(a) = x(a) for a ∈ Q̂1 and ι(x)(a) the identity matrix for a ∈ Q1\Q̂1.
Clearly, Im(ι) ⊆ Rep(Q, α)θ−ss.

Proposition 6.1.

(i) UT
∼= GL(α) ×GL(α̂) Rep(Q̂, α̂) as affine GL(α)-varieties.

(ii) The map ι induces an isomorphism ῑ : M(Q̂, α̂, 0)
∼=−→ π(UT ) ⊆ M(Q, α, θ).

Proof.
(i) Set p := ι(0) ∈ Rep(Q, α). Clearly, GL(α̂) is the stabilizer of p in GL(α) act-
ing on Rep(Q, α). Hence, the GL(α)-orbit O of p is isomorphic to GL(α)/ GL(α̂)
via the map sending the coset g GL(α̂) to g · p. On the other hand, O is the
subset consisting of all those points R ∈ Rep(Q, α) for which det(R(a)) 	= 0
for a ∈ T1 and R(a) = 0 for all a /∈ T1. This can be shown by induction on
the number of arrows of T , using the assumption that T is the disjoint union of
trees. Recall also that the arrow set of Q̂ is identified with a subset Q1 \ T1. This
yields an obvious identification UT = Rep(Q̂, α̂) × O. Projection ϕ : UT → O onto
the second component is GL(α)-equivariant by construction. Moreover, the fibre
ϕ−1(p) = ι(Rep(Q̂, α̂)) ∼= Rep(Q̂, α̂) as StabGL(α)(p) = GL(α̂)-varieties. It is well
known that this implies the isomorphism UT

∼= GL(α) ×GL(α̂) Rep(Q̂, α̂) (see, for
example, [5, lemma 5.17]).

(ii) It follows from (i) that UT // GL(α) ∼= Rep(Q̂, α̂)// GL(α̂) = M(Q̂, α̂, 0) by
standard properties of associated fibre products. Furthermore, taking into account
the proof of (i) we see UT // GL(α) = π(ϕ−1(p)) = π(ι(Rep(Q̂, α̂))), where π is the
quotient morphism (3.1).

Let us apply proposition 6.1 in the toric case. It is well known that for a lattice
point m in a lattice polyhedron ∇ there is an affine open toric subvariety Um of
X∇, and X∇ is covered by these affine open subsets as m ranges over the set of
vertices of ∇ (see [8, § 2.3]). For a toric quiver variety realized as Im(ρ) as in (3.3)
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and proposition 3.3, this can be seen explicitly as follows: Umi is the complement
in Im(ρ) of the affine hyperplane {(x0 : · · · : xd) | xi = 0} ⊆ Pd, and, for a general
lattice point m in the quiver polyhedron, Um is the intersection of finitely many Umi .

A subset S of Q0 is successor closed if for any a ∈ Q1 with a− ∈ S we have a+ ∈ S.
A subquiver Q′ of Q is θ-stable if θ(Q′

0) = 0 and, for any non-empty S � Q′
0 which is

successor closed in Q′, we have that θ(S) > 0. The support of x ∈ ZQ1 is the quiver
with vertex set supp(x)0 := Q0 and arrow set supp(x)1 := {a ∈ Q1 | x(a) 	= 0}.
Now m ∈ ∇(Q, θ) is a vertex if and only if the connected components of supp(m)
are θ-stable subtrees of Q. On the other hand, for each subquiver T of Q that is
the disjoint union of θ-stable subtrees and satisfies T0 = Q0 there is precisely one
vertex m ∈ ∇(Q, θ) such that supp(m) = T (see, for example, [3, corollary 8]).
Given a vertex m of the polyhedron ∇(Q, θ) denote by (Qm, θm) the quiver and
weight obtained by successively contracting the arrows in supp(m). Clearly, θm is
the zero weight. The following statement can be viewed as a stronger version for the
toric case of the results [1] on the local quiver settings of a moduli space of quiver
representations: the étale morphisms used for general dimension vectors in [1] can
be replaced by isomorphisms in the toric case.

Theorem 6.2. For any vertex m of the quiver polyhedron ∇(Q, θ) the affine open
toric subvariety Um in M(Q, θ) is isomorphic to M(Qm, 0). Moreover,

ι : Rep(Qm) → Rep(Q)

defined as in (6.1) induces an isomorphism ῑ : M(Qm, 0)
∼=−→ Um ⊆ M(Q, θ).

Proof. This is a special case of proposition 6.1(ii).

Conversely, any affine toric quiver variety M(Q′, 0) can be obtained as Um ⊆
M(Q, θ) for some projective toric quiver variety M(Q, θ) and a vertex m of the
quiver polytope ∇(Q, θ). In fact, we have a more general result, which is a refinement
for the toric case of [10, theorem 2.2].

Theorem 6.3. For any quiver polyhedron ∇(Q, θ) with k vertices, there exist a
bipartite quiver Q̃, a weight θ′ ∈ ZQ̃1 and a set m1, . . . , mk of vertices of the quiver
polytope ∇(Q̃, θ′) such that the quasi-projective toric variety M(Q, θ) is isomorphic
to the open subvariety

⋃k
i=1 Umi

of the projective toric quiver variety M(Q̃, θ′).

Proof. Double the quiver Q to get a bipartite quiver Q̃ as on p. 56 in [23]: to each
v ∈ Q0 there correspond a source v− and a sink v+ in Q̃; for each a ∈ Q1 there is
an arrow in Q̃ denoted by the same symbol a such that if a ∈ Q1 goes from v to w,
then a ∈ Q̃1 goes from v− to w+ and for each v ∈ Q0 there is a new arrow ev ∈ Q̃1
from v− to v+. Denote by θ̃ ∈ ZQ̃0 the weight θ̃(v−) = 0 and θ̃(v+) = θ(v), and set
κ ∈ ZQ̃0 with κ(v−) = −1 and κ(v+) = 1 for all v ∈ Q0.

Suppose that T is a θ-stable subtree in Q. Denote by T̃ the subquiver of Q̃
consisting of the arrows with the same label as the arrows of T , in addition to the
arrows ev for each v ∈ T0. It is clear that T̃ is a subtree of Q̃. We claim that T̃
is (θ̃ + dκ)-stable for sufficiently large d. Obviously, (θ̃ + dκ)(T̃0) = 0. Let S̃ be a
proper successor closed subset of T̃0 in Q̃. Denote by S ⊂ T0 the set consisting of
v ∈ T0 with v+ ∈ S̃ (note that v− ∈ S implies v+ ∈ S, since ev ∈ T̃ ). We have the
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equality

(θ̃ + dκ)(S̃) = θ(S) +
∑

v+∈S̃,v− /∈S̃

(θ(v) + d).

If the second summand is the empty sum (i.e. v+ ∈ S̃ implies v− ∈ S̃), then S is
successor closed; hence, θ(S) > 0 by assumption. Otherwise the sum is positive for
sufficiently large d. This proves the claim. It follows that if d is sufficiently large,
then for any vertex m of ∇(Q, θ), setting T := supp(m), there exists a vertex m̃ of
∇(Q̃, θ̃ + dκ) with supp(m̃) = T̃ .

Denote by µ : Rep(Q) → Rep(Q̃) the map defined by µ(x)(ev) = 1 for each
v ∈ Q0 and µ(x)(a) = x(a) for all a ∈ Q̃1. This is equivariant, where we identify
(C×)Q0 with the stabilizer of µ(0) in (C×)Q̃0 . The above considerations show that
µ(Rep(Q)θ−ss) ⊆ Rep(Q)(θ̃+dκ)−ss, whence µ induces a morphism µ̄ : M(Q, θ) →
M(Q̃, θ̃ + dκ). Restrict µ̄ to the affine open subset Um ⊆ M(Q, θ), and compose
µ̄|Um

with the isomorphism ῑ : M(Qm, 0) → Um ⊆ M(Q, θ) from theorem 6.2. By
construction, we see that µ̄|Um ◦ ῑ is the isomorphism M(Qm, 0) → Um̃ of theo-
rem 6.2. It follows that µ̄|Um

: Um → Um̃ is an isomorphism. As m ranges over the
vertices of ∇(Q, θ), these isomorphisms glue together to the isomorphism

µ̄ : M(Q, θ) →
⋃
m̃

Um̃ ⊆ M(Q̃, θ̃).

We note that, similarly to [10, theorem 2.2], it is possible to embed M(Q, θ) as an
open subvariety into a projective variety M(Q̃, θ′), such that for any vertex m′ of
∇(Q̃, θ′) the affine open subvariety Um′ ⊆ M(Q̃, θ′) is isomorphic to Um ⊆ M(Q, θ)
for some vertex m of ∇(Q, θ) (but of course typically ∇(Q̃, θ′) has more vertices
than ∇(Q, θ)). In particular, a smooth variety M(Q, θ) can be embedded into a
smooth projective toric quiver variety ∇(Q̃, θ′), where Q̃ is bipartite.

7. Classifying affine toric quiver varieties

In this section we deal with the zero weight. It is well known and easy to see (say,
by remark 4.18) that Q is 0-stable if and only if Q is strongly connected, that is, for
any ordered pair v, w ∈ Q0 there is an oriented path in Q from v to w.

Proposition 7.1. Let Q be a prime quiver with χ(Q) � 2, such that (Q, 0) is tight.
Then |Q0| � χ(Q) − 1 and consequently |Q1| = |Q0| + χ(Q) − 1 � 2(χ(Q) − 1).

Proof. Since Q is prime and is not just a single loop, it contains no loops at all.
Suppose v ∈ Q0, and a ∈ Q1 is the only arrow with a− = v. Equations (4.1) imply
that for any x ∈ ∇(Q, 0) we have x(a) =

∑
b+=v x(b), so by lemma 4.4 the arrow

a is contractible. The case when a is the only arrow with a+ = v is similar. Thus,
for any v ∈ Q0 we have |{a ∈ Q1 | a− = v}| � 2 and |{a ∈ Q1 | a+ = v}| � 2 (this
is also shown in [3, lemma 13(iii)]). In particular, the valency of any vertex is at
least 4. Hence, similar considerations as in the proof of proposition 4.14 yield the
desired bound on |Q0|.
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Figure 11. The quivers in R′′
4 .

Denote by R′′
d the set of prime quivers Q with χ(Q) = d and (Q, 0) tight. Then

R′′
1 consists of the one-vertex quiver with a single loop, R′′

2 is empty, R′′
3 consists

of the quiver with two vertices and two arrows from each vertex to the other (so
four arrows in total) and R′′

4 consists of the three quivers in figure 11.

Example 7.2. Consider the quiver Q with d vertices and 2d arrows a1, . . . , ad,
b1, . . . , bd, where a1 · · · ad is a primitive cycle and bi is obtained by reversing ai for
i = 1, . . . , d. Then χ(Q) = d+1, and after the removal of any of the arrows of Q we
are left with a strongly connected quiver. So (Q, 0) is tight, showing that the bound
in proposition 7.1 is sharp. The coordinate ring O(M(Q, 0)) is the subalgebra of
O(Rep(Q)) generated by {x(ai)x(bi), x(a1) · · ·x(ad), x(b1) · · ·x(bd) | i = 1, . . . , d},
so it is the factor ring of the (d+2)-variable polynomial ring C[t1, . . . , td+2] modulo
the ideal generated by t1 · · · td − td+1td+2.

8. Presentations of semigroup algebras

Let Q be a quiver with no oriented cycles and let θ ∈ ZQ0 be a weight. For a ∈
Q1 denote by x(a) : R �→ R(a) the corresponding coordinate function on Rep(Q),
and for a lattice point m ∈ ∇(Q, θ) set xm :=

∏
a∈Q1

x(a)m(a). The homogeneous
coordinate ring A(Q, θ) of M(Q, θ) is the subalgebra of O(Rep(Q)) generated by
xm, where m ranges over ∇(Q, θ) ∩ ZQ1 . In § 9 we shall study the ideal of relations
among the generators xm. This leads us to the context of presentations of polytopal
semigroup algebras (cf. [6, § 2.2]), since A(Q, θ) is naturally identified with the
semigroup algebra C[S(Q, θ)], where

S(Q, θ) :=
∞∐

k=0

∇(Q, kθ) ∩ ZQ1 .

This is a submonoid of ZQ1 . By normality of the polytope ∇(Q, θ), it is the same
as the submonoid of N

Q1
0 generated by ∇(Q, θ) ∩ ZQ1 .

First, we formulate a statement (lemma 8.2; a version of it was introduced
in [16]) in a slightly more general situation than that needed here. Let S be any
finitely generated commutative monoid (written additively) with non-zero genera-
tors s1, . . . , sd, and denote by Z[S] the corresponding semigroup algebra over Z: its
elements are formal integral linear combinations of the symbols {xs | s ∈ S}, with
multiplication given by xs · xs′

= xs+s′
. Write R := Z[t1, . . . , td] for the d-variable

polynomial ring over the integers, and φ : R → Z[S] the ring surjection ti �→ xsi .
Set I := ker(φ). It is well known and easy to see that

I = ker(φ) = SpanZ

{
ta − tb

∣∣∣∣
d∑

i=1

aisi =
d∑

j=1

bjsj ∈ S

}
, (8.1)

where for a = (a1, . . . , ad) ∈ Nd
0 we write ta = ta1

1 · · · tad

d .
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Introduce a binary relation on the set of monomials in R: we write ta ∼ tb if
ta − tb ∈ R+I, where R+ is the ideal in R consisting of the polynomials with zero
constant term. Obviously, ∼ is an equivalence relation. Let Λ be a complete set of
representatives of the equivalence classes. We have Λ =

∐
s∈S Λs, where for s ∈ S

set Λs := {ta ∈ Λ |
∑

aisi = s}. For the s ∈ S with |Λs| > 1, set Gs := {ta1 − tai |
i = 2, . . . , p}, where ta1 , . . . , tap is an arbitrarily chosen ordering of the elements
of Λs.

Lemma 8.1. Suppose that S =
∐∞

k=0 Sk is graded (i.e. Sk + Sl ⊆ Sk+l) and S0 =
{0} (i.e. the generators s1, . . . , sd have positive degree). Then

∐
s∈S : |Λs|>1 Gs is

a minimal homogeneous generating system of the ideal I, where the grading on
Z[t1, . . . , td] is defined by setting the degree of ti to be equal to the degree of si. In
particular, I is minimally generated by

∑
s∈S(|Λs| − 1) elements.

Proof. It is easy to see that a Z-module direct complement of R+I in R is∑
ta∈Λ

Zta.

Thus, the statement follows by the graded Nakayama lemma.

Next for a cancellative commutative monoid S we give a more explicit description
of the relation ∼ (a special case occurs in [16]). For some elements s, v ∈ S we say
that s divides v and write s|v if there exists an element w ∈ S with v = s + w. For
any s ∈ S introduce a binary relation ∼s on the subset of {s1, . . . , sd} consisting of
the generators si with si|s as follows:

si ∼s sj if i = j or there exist u1, . . . , uk ∈ {s1, . . . , sd}
with u1 = si, uk = sj , ul + ul+1|s for l = 1, . . . , k − 1. (8.2)

Obviously, ∼s is an equivalence relation, and

s = si1 + · · · + sir =⇒ si1 ∼s si2 ∼s · · · ∼s sir . (8.3)

Moreover, si ∼s sj implies si ∼t sj for any s|t ∈ S.

Lemma 8.2. Let S be a cancellative commutative monoid generated by s1, . . . , sd.
Take ta − tb ∈ I, so s :=

∑d
i=1 aisi =

∑d
j=1 bjsj ∈ S. Then the following are

equivalent:

(i) ta − tb ∈ R+I;

(ii) for some ti|ta and tj |tb we have si ∼s sj;

(iii) for all ti|ta and tj |tb we have si ∼s sj.

Proof. Statements (ii) and (iii) are equivalent by (8.3).

To show that (ii) implies (i), assume that for some ti|ta and tj |tb we have si ∼s sj .
If si = sj , then ta and tb have a common variable, say t1, so ta = t1t

a′
and tb = t1t

b′

for some a′, b′ ∈ Nd
0. We have

xs1φ(ta
′ − tb

′
) = φ(t1(ta

′ − tb
′
)) = φ(ta − tb) = 0;
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hence, xs1φ(ta
′
) = xs1φ(tb

′
). Since S is cancellative, we conclude φ(ta

′
) = φ(tb

′
).

Thus, ta
′ − tb

′ ∈ I, implying in turn that ta − tb = t1(ta
′ − tb

′
) ∈ R+I. If si 	= sj ,

then there exist z1, . . . , zk ∈ {t1, . . . , td} such that ul ∈ S with φ(zl) = xul sat-
isfy (8.2). Then there exist monomials (possibly empty) w0, . . . , wk in the variables
t1, . . . , td such that

z1w0 = ta, φ(zlzl+1wl) = xs (l = 1, . . . , k − 1), zkwk = tb.

It follows that

ta − tb = z1(w0 − z2w1) +
k−1∑
l=2

zl(zl−1wl−1 − zl+1wl) + zk(zk−1wk−1 − wk). (8.4)

Note that φ(z1w0) = xs = φ(z1z2w1). Hence, φ(z1)φ(w0) = φ(z1)φ(z2w1). Since S
is cancellative, we conclude that φ(w0) = φ(z2w1), so w0 − z2w1 ∈ I, implying in
turn that z1(w0−z2w1) ∈ R+I. Similarly, all the other summands on the right-hand
side of (8.4) belong to R+I; hence, ta − tb ∈ R+I.

Finally, we show that (i) implies (ii). Suppose that ta − tb ∈ R+I. By (8.1) we
have

ta − tb =
k∑

l=1

til
(tal − tbl), where tal − tbl ∈ I and il ∈ {1, . . . , d}. (8.5)

After a possible renumbering and cancellations we may assume that

ti1t
a1 = ta, til

tbl = til+1t
al+1 for l = 1, . . . , k − 1, and tik

tbk = tb. (8.6)

Observe that if til
= til+1 for some l ∈ {1, . . . , k − 1}, then necessarily tbl = tal+1 .

Hence,
til

(tal − tbl) + til+1(t
al+1 − tbl+1) = til

(tal − tbl+1).

Thus, in (8.5) we may replace the sum of the lth and (l + 1)th terms by a single
summand: til

(tal − tbl+1). In other words, we may assume that in (8.5) we have
til

	= til+1 for each l = 1, . . . , k−1, in addition to (8.6). If k = 1, then ta and tb have
a common variable and (ii) obviously holds. From now on assume that k � 2. From
til

tbl = til+1t
al+1 and the fact that til

and til+1 are different variables in Z[t1, . . . , td]
we deduce that tbl = til+1t

cl for some cl ∈ Nd
0, implying that

xs = φ(til
tbl) = φ(til

til+1t
cl) = φ(til

)φ(til+1)φ(tcl).

Thus, ul := sil
satisfy (8.2), and hence si1 ∼s sik

.

Corollary 8.3. Suppose that

S =
∞∐

k=0

Sk

is a finitely generated graded cancellative commutative monoid generated by S1 =
{s1, . . . , sd}. The kernel of φ : Z[t1, . . . , td] → Z[S], ti �→ xsi , is generated by homo-
geneous elements of degree at most r (with respect to the standard grading on
Z[t1, . . . , td]) if and only if, for all k > r and s ∈ Sk, the elements in S1 that
divide s in the monoid S form a single equivalence class with respect to ∼s.
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Proof. This is an immediate consequence of lemmas 8.1 and 8.2.

Remark 8.4. For polytopal semigroup algebras a different proof of corollary 8.3
can be derived from theorem 12.12 and corollary 12.13 in [26].

9. Equations of toric quiver varieties

Corollary 8.3 applies for the monoid S(Q, θ), where the grading is given by

S(Q, θ)k = ∇(Q, kθ) ∩ ZQ1 .

Recall that we may identify the complex semigroup algebra C[S(Q, θ)] and the
homogeneous coordinate ring A(Q, θ) by identifying the basis element xm in the
semigroup algebra to the element of A(Q, θ) denoted by the same symbol, xm.
Introduce a variable tm for each m ∈ ∇(Q, θ) ∩ ZQ1 , take the polynomial ring

F := C[tm | m ∈ ∇(Q, θ) ∩ ZQ1 ]

and consider the surjection

ϕ : F → A(Q, θ), tm �→ xm. (9.1)

The kernel ker(ϕ) is a homogeneous ideal in the polynomial ring F (endowed with
the standard grading) called the ideal of relations among the xm, for which corol-
lary 8.3 applies. Note also that in the monoid S(Q, θ) we have that m|n for some
m, n if and only if m � n, where the partial ordering � on ZQ1 is defined by setting
m � n if m(a) � n(a) for all a ∈ Q1. The following statement is a special case of
the main result (theorem 2.1) of [28].

Proposition 9.1. Let Q = K(n, n) be the complete bipartite quiver with n sources
and n sinks, with a single arrow from each source to each sink. Let θ be the weight
with θ(v) = −1 for each source and θ(v) = 1 for each sink, and ϕ : F → A(Q, θ)
given in (9.1). Then the ideal ker(ϕ) is generated by elements of degree at most 3.

For completeness we present a proof. The argument below is based on the key
idea of [28], but we use a different language and obtain a very short derivation of
the result. For this quiver and weight, generators of A(Q, θ) correspond to perfect
matchings of the underlying graph of K(n, n). Recall that a perfect matching of
K(n, n) is a set of arrows {a1, . . . , an} such that for each source v there is a unique
i such that a−

i = v and for each sink w there is a unique j such that a+
j = w.

Now, ∇(Q, θ) ∩ ZQ1 in this case consists of the characteristic functions of perfect
matchings of K(n, n). By a near perfect matching we mean an incomplete matching
that covers all but two vertices (one sink and one source). By abusing terminology,
we shall freely identify a (near) perfect matching and its characteristic function (an
element of N

Q1
0 ). First, we show the following lemma.

Lemma 9.2. Let θ be the weight for Q = K(n, n) as above, and let m1 + · · ·+mk =
q1 + · · · + qk for some k � 4 and mi, qj ∈ ∇(Q, θ) ∩ ZQ1 . Furthermore, let us
assume that for some 0 � l � n − 2 there is a near perfect matching p such
that p � m1 + m2 and p contains l arrows from q1. Then there are a j � 3 and
m′

1, m
′
2, m

′
j ∈ ∇(Q, θ)∩ZQ1 and a near perfect matching p′ such that m1+m2+mj =

m′
1 + m′

2 + m′
j, p′ � m′

1 + m′
2 and p′ contains l + 1 arrows from q1.
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Proof. Let v1, . . . , vn be the sources and w1, . . . , wn be the sinks of Q, and let us
assume that p covers all vertices but v1 and w1. Let a be the arrow incident to v1 in
q1. If a is contained in m1+m2, then pick an arbitrary j � 3; otherwise, take j to be
such that mj contains a. We can obtain a near perfect matching p′ < m1 +m2 +mj

that intersects q1 in l + 1 arrows in the following way: if a connects v1 and w1
we add a to p and remove one arrow from it that was not contained in q1 (this is
possible due to l � n − 2); if a connects v1 and wi for some i 	= 1 then we add
a to p and remove the arrow from p which was incident to wi (this arrow is not
contained in q1). Set r := m1 + m2 + mj − p′ ∈ N

Q1
0 , and denote by S the subquiver

of K(n, n) with S0 = Q0 and S1 = {c ∈ Q1 | r(c) 	= 0}. We have S0 = S−
0

∐
S+

0 ,
where S−

0 denotes the set of sources and S+
0 denotes the set of sinks. For a vertex

v ∈ S0 set degr(v) :=
∑

v∈{c−,c+} r(c). We have that degr(v) = 3 for exactly one
source and for exactly one sink, and degr(v) = 2 for all the remaining vertices of
S. Now let A be an arbitrary subset of S−

0 , and denote by B the subset of S+
0

consisting of the sinks that are connected by an arrow in S to a vertex in A. We
have the inequality

∑
v∈A degr(v) �

∑
w∈B degr(w). Since on both sides of this

inequality the summands are 2 or 3, and 3 can occur at most once on each side, we
conclude that |B| � |A|. Applying the König–Hall theorem (see [24, theorem 16.7])
to S we conclude that it contains a perfect matching. Denote the characteristic
vector of this perfect matching by m′

j . Take perfect matchings m′
1 and m′

2 of S
with m1 + m2 + mj − m′

j = m′
1 + m′

2 (note that m′
1, m

′
2 exist by normality of the

polytope ∇(Q, θ), which in this case can be seen as an immediate consequence of
the König–Hall theorem). By construction we have m1 +m2 +mj = m′

1 +m′
2 +m′

j ,
p′ � m′

1 + m′
2, and p′ has l + 1 common arrows with q1.

Proof of proposition 9.1. By corollary 8.3 it is sufficient to show that if s = m1 +
· · ·+mk = q1 + · · ·+qk, where mi, qj ∈ ∇(Q, θ)∩ZQ1 and k � 4, then the mi, qj all
belong to the same equivalence class with respect to ∼s. Note that, since k � 4, by
(8.3) the elements m′

1, m
′
2, m

′
j from the statement of lemma 9.2 belong to the same

equivalence class with respect to ∼s as m1, . . . , mk. Hence, by repeatedly applying
lemma 9.2, we may assume that there is a near perfect matching p � m1 +m2 such
that p and q1 have n − 1 common arrows. The only arrow of q1 not belonging to
p belongs to some mj . Hence, after a possible renumbering of m3, . . . , mk we may
assume that q1 � m1 +m2 +m3. It follows that q1 ∼s m4, implying in turn by (8.3)
that the mi, qj all belong to the same equivalence class with respect to ∼s.

Now we are in position to state and prove the main result of this section (this
was stated in [20] as well, but was withdrawn later; see [21]).

Theorem 9.3. Let Q be a quiver with no oriented cycles, let θ ∈ ZQ1 be a weight
and let ϕ be the C-algebra surjection given in (9.1). Then the ideal ker(ϕ) is gen-
erated by elements of degree at most 3.

Proof. By proposition 4.21 and the double quiver construction (see the proof of
theorem 6.3) it is sufficient to deal with the case when Q is bipartite and ∇(Q, θ)
is non-empty. This implies that θ(v) � 0 for each source vertex v and θ(w) � 0 for
each sink vertex w. Note that if θ(v) = 0 for some vertex v ∈ Q0, then by omitting
v and the arrows adjacent to v we get a quiver Q′ such that the lattice polytope
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∇(Q, θ) is integral-affinely equivalent to ∇(Q′, θ|Q′
0
). Hence, we may assume that

θ(v) 	= 0 for each v ∈ Q0. We shall apply induction on
∑

v∈Q0
(|θ(v)| − 1).

The induction starts with the case when
∑

v∈Q0
(|θ(v)| − 1) = 0. In other words,

θ(v) = −1 for each source v, and θ(w) = 1 for each sink w. This forces the number
of sources to be equal to the number of sinks in Q. The case when Q is the complete
bipartite quiver K(n, n) having n sinks and n sources and each source is connected
to each sink by a single arrow is covered by proposition 9.1. Suppose next that Q
is a subquiver of K(n, n) having a relative invariant of weight θ (i.e. K(n, n) has a
perfect matching, all of whose arrows belong to Q). The lattice polytope ∇(Q, θ)
can be identified with a subset of ∇(K(n, n), θ): think of m ∈ ZQ1 as m̃ ∈ ZK(n,n)1 ,
where m̃(a) = 0 for a ∈ K(n, n)1 \ Q1 and m̃(a) = m(a) for a ∈ Q1 ⊆ K(n, n)1.
The surjection ϕ̃ : C[tm | m ∈ ∇(K(n, n), θ)] → A(K(n, n), θ) restricts to ϕ : C[tm |
m ∈ ∇(Q, θ)] → A(Q, θ). Denote by π the surjection of polynomial rings that sends
to zero the variables tm with m /∈ ∇(Q, θ). Then π maps the ideal ker(ϕ̃) onto
ker(ϕ). Consequently, generators of ker(ϕ̃) are mapped onto generators of ker(ϕ).
Since we know already that the first ideal is generated by elements of degree at
most 3, the same holds for ker(ϕ). The case when Q is an arbitrary bipartite quiver
with n sources and n sinks having possibly multiple arrows, and θ(v) = −1 for each
source v and θ(w) = 1 for each sink w, follows from the above case by the repeated
application of proposition 9.4.

Assume next that
∑

v∈Q0
(|θ(v)| − 1) � 1, so there exists a vertex w ∈ Q0 with

|θ(w)| > 1. By symmetry we may assume that w is a sink, so θ(w) > 1. Construct a
new quiver Q′ as follows: add a new vertex w′ to Q0; for each arrow b with b+ = w
add an extra arrow b′ with (b′)+ = w′ and (b′)− = b− and consider the weight θ′

with θ′(w′) = 1, θ′(w) = θ(w) − 1 and θ′(v) = θ(v) for all other vertices v. By
corollary 8.3 and (8.3) it is sufficient to show that if

m1 + · · · + mk = n1 + · · · + nk = s ∈ S := S(Q, θ)

for some k � 4 and m1, . . . , mk, n1, . . . , nk ∈ ∇(Q, θ)∩ZQ1 , then mi ∼s nj for some
i, j. Set S′ := S(Q′, θ′), and consider the semigroup homomorphism π : S′ → S
given by

π(m′)(a) =

{
m′(a) + m′(a′) if a+ = w,

m′(a) if a+ 	= w.

Take an arrow α with α+ = w and s(α) > 0. After a possible renumbering we may
assume that m1(α) > 0 and n1(α) > 0. Define m′

1 ∈ N
Q′

1
0 as m′

1(α) = m1(α) − 1,
m′

1(α
′) = 1 and m′

1(a) = m1(a) for all other arrows a ∈ Q′
1. Similarly, define

n′
1 ∈ N

Q′
1

0 as n′
1(α) = n1(α) − 1, n′

1(α
′) = 1 and n′

1(a) = n1(a) for all other arrows
a ∈ Q′

1. Clearly, π(m′
1) = m1, π(n′

1) = n1. Now we construct s′ ∈ S′ with π(s′) = s,
s′ − m′

1 ∈ N
Q′

1
0 and s′ − n′

1 ∈ N
Q′

1
0 (thus, m′

1 and n′
1 divide s′ in S′). Note that∑

a+=w

s(a) = kθ(w)

and ∑
a+=w

max{m1(a), n1(a)} <
∑

a+=w

(m1(a) + n1(a)) = 2θ(w)
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(since m1(α) > 0 and n1(α) > 0). The inequalities θ(w) � 2 and k � 4 imply that∑
a+=w(s(a) − max{m1(a), n1(a)}) � k. Consequently, there exist non-negative

integers {t(a) | a+ = w} such that

∑
a+=w

t(a) =
( ∑

a+=w

s(a)
)

− k, s(a) � t(a) � max{m1(a), n1(a)},

for all a 	= α with a+ = w, and s(α)−1 � t(α) � max{m1(α), n1(α)}−1. Consider
s′ ∈ ZQ′

1 given by s′(a′) = s(a) − t(a) and s′(a) = t(a) for a ∈ Q1 with a+ = w and
s′(b) = s(b) for all other b ∈ Q′

1. By construction, s′ has the desired properties, and
so there exist m′

i, n
′
j ∈ ∇(Q′, θ′) with s′ = m′

1 + · · · + m′
k = n′

1 + · · · + n′
k. Since∑

v∈Q′
0
(|θ′(v)| − 1) is one less than

∑
v∈Q0

(|θ(v)| − 1), by the induction hypothesis
we have m′

1 ∼s′ n′
1. It is clear that a ∼t b implies π(a) ∼π(t) π(b), so we deduce

that m1 ∼s n1. As we pointed out before, this shows by corollary 8.3 that ker(ϕ)
is generated by elements of degree at most 3.

The above proof referred to a general recipe to derive a minimal generating system
of ker(ϕ) from a minimal generating system for the quiver obtained by collapsing
multiple arrows to a single arrow. Let us consider the following situation: let Q
be a quiver with no oriented cycles, and let α1, α2 ∈ Q1 with α−

1 = α−
2 and

α+
1 = α+

2 . Denote by Q′ the quiver obtained from Q by collapsing the αi to a single
arrow α. Take a weight θ ∈ ZQ0 = ZQ′

0 . The map π : ∇(Q, θ) → ∇(Q′, θ) mapping
m �→ m′ with m′(α) = m(α1) + m(α2) and m′(β) = m(β) for all β ∈ Q′

1 \ {α} =
Q1 \ {α1, α2} induces a surjection from the monoid S := S(Q, θ) onto the monoid
S′ := S(Q′, θ′). This extends to a surjection of semigroup algebras π : C[S] → C[S′],
which are identified with A(Q, θ) and A(Q′, θ), respectively. Keep the notation π
for the induced C-algebra surjection A(Q, θ) → A(Q′, θ). We have the following
commutative diagram of C-algebra surjections:

F = C[tm | m ∈ ∇(Q, θ) ∩ ZQ1 ]
ϕ ��

π

��

A(Q, θ)

π

��
F ′ = C[tm′ | m′ ∈ ∇(Q′, θ) ∩ ZQ′

1 ]
ϕ′

�� A(Q′, θ)

where the left vertical map (denoted also by π) sends the variable tm to tπ(m). For
any monomial u ∈ F ′ and any s ∈ S with π(xs) = ϕ′(u) ∈ S′ we choose a monomial
ψs(u) ∈ F such that π(ψs(u)) = u and ϕ(ψs(u)) = xs. This is clearly possible: let
u = tm1 · · · tmr ; then we take for ψs(u) an element tn1 · · · tnr where π(nj) = mj ,
such that (n1+· · ·+nr)(α1) = s(α1). Denote by εi ∈ N

Q1
0 the characteristic function

of αi ∈ Q1 (i = 1, 2).

Proposition 9.4. Let uλ − vλ (λ ∈ Λ) be a set of binomial relations generating
the ideal ker(ϕ′). Then ker(ϕ) is generated by G1 ∪ G2, where

G1 := {ψs(uλ) − ψs(vλ) | λ ∈ Λ, π(xs) = ϕ′(uλ)},

G2 := {tmtn − tm+ε2−ε1tn+ε1−ε2 | m, n ∈ ∇(Q, θ) ∩ ZQ1 , m(α1) > 0, n(α2) > 0}.

Proof. Clearly, G1 and G2 are contained in ker(ϕ). Denote by I the ideal generated
by them in F , so I ⊆ ker(ϕ). In order to show the reverse inclusion, take any
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binomial relation u − v ∈ ker(ϕ). Then ϕ(u) = ϕ(v) = xs for some s ∈ S. It
follows that π(u) − π(v) ∈ ker(ϕ′), whence there exist monomials wi such that
π(u) − π(v) =

∑k
i=1 wi(ui − vi), where ui − vi ∈ {uλ − vλ, vλ − uλ | λ ∈ Λ},

w1u1 = π(u), wivi = wi+1ui+1 for i = 1, . . . , k − 1 and wkvk = π(v). Moreover, for
each i choose a divisor ri|s such that π(xri) = ϕ′(ui) (this is clearly possible). Then
I contains the element

∑k
i=1 ψs−ri

(wi)(ψri
(ui) − ψri

(vi)), whose ith summand we
shall denote by yi − zi for notational simplicity. Then we have that π(y1) = π(u),
π(zk) = π(v), π(zi) = π(yi+1) for i = 1, . . . , k − 1, and xs = ϕ(yi) = ϕ(zi). It
follows by lemma 9.5 that u − y1, v − zk and yi+1 − zi for i = 1, . . . , k − 1 are all
contained in the ideal J generated by G2. Hence, u − v is contained in I.

Lemma 9.5. Suppose that for monomials u, v ∈ F we have ϕ(u) = ϕ(v) ∈ A(Q, θ)
and π(u) = π(v) ∈ F ′. Then u− v is contained in the ideal J generated by G2 (with
the notation of proposition 9.4).

Proof. If u and v have a common variable t, then u − v = t(u′ − v′), and u′ and v′

satisfy the conditions of the lemma. By induction on the degree, we may assume that
u′ − v′ belongs to the ideal J . Take m1 ∈ ∇(Q, θ) ∩ ZQ1 such that tm1 is a variable
occurring in u. There exists an m2 ∈ ∇(Q, θ) ∩ ZQ1 such that tm2 occurs in v, and
π(m1) = π(m2). By symmetry, we may assume that m1(α1) � m2(α1) and apply
induction on the non-negative difference m1(α1)−m2(α1). If m1(α1)−m2(α1) = 0,
then m1 = m2 and the proof is completed by the above considerations. Suppose
next that m1(α1) − m2(α1) > 0. By π(m1) = π(m2) we have m2(α2) > 0, and the
condition ϕ(u) = ϕ(v) implies that there exists an m3 ∈ ∇(Q, θ) ∩ ZQ1 such that
tm2tm3 divides v and m3(α1) > 0. Set m′

2 := m2 + ε1 − ε2 and m′
3 := m3 − ε1 +

ε2. Clearly, m′
2, m

′
3 ∈ ∇(Q, θ) ∩ ZQ1 and tm2tm3 − tm′

2
tm′

3
∈ J . So, modulo J , we

may replace v by tm′
2
tm′

3
v′, where v = tm2tm3v

′. Clearly, 0 � m1(α1) − m′
2(α1) <

m1(α1) − m2(α1), and by induction we are finished.

In the affine case M(Q, 0) (where Q has oriented cycles) it is not possible to
give a degree bound for the ideal of relations independently of the dimension. This
is illustrated by example 7.2, providing an instance where a degree-(d − 1) ele-
ment is needed to generate the ideal of relations of a d-dimensional affine toric
quiver variety. However, theorem 9.6 shows that this example is the worst pos-
sible in this respect. Let C1, . . . , Cr be the primitive cycles in Q. Recall that
O(M(Q, 0)) = O(Rep(Q))GL(1,...,1) is minimally generated by xm1 , . . . , xmr , where
mi is the characteristic function of Ci. By the ideal of relations of M(Q, 0) we mean
the kernel of the surjection φ : C[t1, . . . , tr] → O(M(Q, 0)) mapping the variable ti
to xmi (where on the polynomial ring C[t1, . . . , tr] we consider the standard grading
with deg(ti) = 1).

Theorem 9.6. Let Q be a quiver such that d := dim(M(Q, 0)) > 0. Then the ideal
of relations of M(Q, 0) is generated by elements of degree at most d − 1.

Proof. Up to dimension 2 the only affine toric quiver varieties are the affine spaces.
Suppose from now on that d � 3. Clearly, it is sufficient to deal with the case
when (Q, 0) is tight and Q is prime. Suppose that a degree-k element is needed to
generate the ideal of relations of M(Q, 0). In [16, § 6] it is shown that this holds if
and only if there is a pair of primitive cycles c1, c2 in Q such that the multiset sum
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of their arrows can also be obtained as the multiset sum of some other k primitive
cycles e1, . . . , ek. Note that each ei has an arrow contained in c1 but not in c2, and
has an arrow contained in c2 but not in c1. It follows that length(c1)+ length(c2) �
2k, implying that Q has at least k vertices. By proposition 7.1 we conclude that
d − 1 = χ(Q) − 1 � |Q0| � k.

10. The general case in [28]

In this section we give a short derivation of the main result of [28] from its special
case proposition 9.1. To reformulate the result in our context consider a bipartite
quiver Q with at least as many sinks as sources. By a one-sided matching of Q we
mean an arrow set that has exactly one arrow incident to each source and at most
one arrow incident to each sink. By abuse of terminology the characteristic vector
in ZQ1 of a one-sided matching will also be called a one-sided matching. The convex
hull of the one-sided matchings in ZQ1 is a lattice polytope in RQ1 , which we will
denote by OSM(Q). Clearly, the lattice points of OSM(Q) are precisely the one-
sided matchings. The normality of OSM(Q) is explained in [28, § 4.2], or it can be
shown directly by using the König–Hall theorem for regular graphs and an argument
similar to that in the proof of theorem 10.1. Denote by S(OSM(Q)) the submonoid
of N

Q1
0 generated by OSM(Q) ∩ ZQ1 . This is graded; the generators have degree 1.

Consider the ideal of relations between the generators {xm | m ∈ OSM(Q) ∩ ZQ1}
of the semigroup algebra C[S(OSM(Q))]. Theorem 2.1 from [28] can be stated as
follows.

Theorem 10.1. The ideal of relations of C[S(OSM(Q))] is generated by binomials
of degree at most 3.

Proof. Consider a quiver Q′ that we obtain by adding enough new sources to Q
so that it has the same number of sources and sinks and adding an arrow from
each new source to every sink. Let θ be the weight of Q′ having value −1 on each
source and 1 on each sink. Now the natural projection π : RQ′

1 → RQ1 induces a
surjective map from ∇(Q′, θ)∩ZQ′

1 onto OSM(Q)∩ZQ1 giving us a degree-preserving
surjection between the corresponding semigroup algebras. By corollary 8.3 it is
sufficient to prove that, for any k � 4, any degree-k element s ∈ S(OSM(Q)) and
any m, n ∈ OSM(Q) ∩ ZQ1 with m, n dividing s, we have m ∼s n. In order to show
this we shall construct an s′ ∈ ∇(Q′, kθ) ∩ ZQ′

1 and some m′, n′ ∈ ∇(Q′, θ) ∩ ZQ′
1

such that m′ � s′, n′ � s′, π(m′) = m, π(n′) = n and π(s′) = s. By proposition 9.1
we have m′ ∼s′ n′; hence, the surjection π yields m ∼s n. The desired s′, m′, n′

can be obtained as follows: think of s as the multiset of arrows from Q, where the
multiplicity of an arrow a is s(a). Pairing off the new sources Q′

0 \ Q0 with the
sinks in Q not covered by m and adding the corresponding arrows to m we get a
perfect matching m′ of Q′ with π(m′) = m. Next, do the same for n, with the extra
condition that if neither n or m covers a sink in Q, then in n′ the sink is connected
with the same new source as in m′. Let t ∈ N

Q′
1

0 be the multiset of arrows obtained
from s by adding once each of the arrows Q′

1 \ Q1 occurring in m′ or n′. For a
vertex v ∈ Q′

1 set degt(v) :=
∑

v∈{c−,c+} t(c). Observe that s − m and s − n belong
to S(OSM(Q))k−1. Hence, degs−m(w) � k−1 and degs−n(w) � k−1 for any vertex
w. If w is a sink not covered by m or n, then degs(w) agrees with degs−m(w) or
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degs−n(w). Thus, degs(w) � k−1, and hence degt(w) � k. For the remaining sinks
we have degt(w) = degs(w) � k as well. Moreover, degt(v) = k for the sources
v ∈ Q0 \ Q′

0, whereas degt(v) � 2 for the new sources v ∈ Q′
0 \ Q0. Consequently,

on successively adding further new arrows from Q′
1 \ Q1 to t, we obtain s′ � t with

degs′(v) = k for all v ∈ Q′
0. Moreover, m′ � t � s′, n′ � t � s′ and π(s′) = s, so

we are done.
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16 D. Joó. Complete intersection quiver settings with one dimensional vertices. Alg. Repre-

sentat. Theory 16 (2013), 1109–1133.
17 V. G. Kac. Infinite root systems, representations of graphs and invariant theory. Invent.

Math. 56 (1980), 57–92.
18 A. D. King. Moduli of representations of finite dimensional algebras. Q. J. Math. 45 (1994),

515–530.
19 L. Le Bruyn and C. Procesi. Semisimple representations of quivers. Trans. Am. Math. Soc.

317 (1990), 585–598.

https://doi.org/10.1017/S0308210515000529 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000529


On the equations and classification of toric quiver varieties 295

20 M. Lenz. Toric ideals of flow polytopes. In Proc. 22nd Int. Conf. on Formal Power Series
and Algebraic Combinatorics. DMTCS Proceedings, vol. 1, pp. 889–896 (DMTCS, 2010).

21 M. Lenz. Toric ideals of flow polytopes. Preprint, 2011. (Available at http://arxiv.org/
abs/0801.0495.)

22 P. E. Newstead. Introduction to moduli problems and orbit spaces. Tata Institute Lectures
on Mathematics and Physics, vol. 51 (Springer, 1978).

23 A. Schofield. General representations of quivers. Proc. Lond. Math. Soc. 65 (1992), 46–64.
24 A. Schrijver. Combinatorial optimization: polyhedra and efficiency. Algorithms and Com-

binatorics, vol. 24A (Springer, 2003).
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