Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-02-07T10:06:07.320Z Has data issue: false hasContentIssue false

Neumann to Steklov eigenvalues: asymptotic and monotonicity results

Published online by Cambridge University Press:  16 January 2017

Pier Domenico Lamberti
Affiliation:
Dipartimento di Matematica ‘Tullio Levi-Civita’, Università degli Studi di Padova, Via Trieste 63, 35126 Padova, Italy (lamberti@math.unipd.it; proz@math.unipd.it)
Luigi Provenzano
Affiliation:
Dipartimento di Matematica ‘Tullio Levi-Civita’, Università degli Studi di Padova, Via Trieste 63, 35126 Padova, Italy (lamberti@math.unipd.it; proz@math.unipd.it)
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of mass concentration at the boundary of a ball. We discuss the asymptotic behaviour of the Neumann eigenvalues and find explicit formulae for their derivatives in the limiting problem. We deduce that the Neumann eigenvalues have a monotone behaviour in the limit and that Steklov eigenvalues locally minimize the Neumann eigenvalues.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2017