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We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann
eigenvalues in a problem of mass concentration at the boundary of a ball. We discuss
the asymptotic behaviour of the Neumann eigenvalues and find explicit formulae for
their derivatives in the limiting problem. We deduce that the Neumann eigenvalues
have a monotone behaviour in the limit and that Steklov eigenvalues locally minimize
the Neumann eigenvalues.
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1. Introduction

Let B be the unit ball in R
N , N � 2, centred at zero. We consider the Steklov

eigenvalue problem for the Laplace operator

∆u = 0 in B,

∂u

∂ν
= λρu on ∂B,

⎫⎬
⎭ (1.1)

in the unknowns λ (the eigenvalue) and u (the eigenfunction), where ρ = M/σN ,
M > 0 is a fixed constant and σN denotes the surface measure of ∂B.

As is well known, the eigenvalues of problem (1.1) are given explicitly by the
sequence

λl =
l

ρ
, l ∈ N, (1.2)

and the eigenfunctions corresponding to λl are homogeneous harmonic polynomials
of degree l. In particular, the multiplicity of λl is (2l + N − 2)(l + N − 3)!/(l!(N −
2)!), and only λ0 is simple, the corresponding eigenfunctions being the constant
functions. See [8] for an introduction to the theory of harmonic polynomials.

A classical reference for problem (1.1) is [18]. For a recent survey paper, we refer
the reader to [9]; see also [13,17] for related problems.
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Figure 1. Solution branches of (2.4) with N = 2, M = π for (ε, λ) ∈ ]0, 1[ × ]0, 150[. The
line style refers to the choice of l in (2.4): continuous line (l = 0), dotted line (l = 1), short
dashed line (l = 2), dot-dashed line (l = 3), long dashed line (l = 4).

It is well known that, for N = 2, problem (1.1) provides the vibration modes of
a free elastic membrane with total mass M , which is concentrated at the boundary
with density ρ (see, for example, [4]). As is pointed out in [17], such a boundary
concentration phenomenon can be explained in any dimension N � 2 as follows.

For any 0 < ε < 1, we define a ‘mass density’ ρε in the whole of B by setting

ρε(x) =

⎧⎪⎪⎨
⎪⎪⎩

ε if |x| � 1 − ε,

M − εωN (1 − ε)N

ωN (1 − (1 − ε)N )
if 1 − ε < |x| < 1,

(1.3)

where ωN = σN/N is the measure of the unit ball. Note that for any x ∈ B we
have ρε(x) → 0 as ε → 0, and∫

B

ρε dx = M for all ε > 0,

which means that the ‘total mass’ M is fixed and concentrates at the boundary of
B as ε → 0. Then we consider an eigenvalue problem for the Laplace operator with
Neumann boundary conditions:

−∆u = λρεu in B,

∂u

∂ν
= 0 on ∂B.

⎫⎬
⎭ (1.4)

We recall that for N = 2 (1.4) provides the vibration modes of a free elastic mem-
brane with mass density ρε and total mass M (see, for example, [6]). The eigenvalues
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Figure 2. Solution branches of (2.4) with N = 2, M = π for (ε, λ) ∈ ]0, 1[ × ]0, 50[. The
line style refers to the choice of l in (2.4): solid black line (l = 0), dotted line (l = 1), short
dashed line (l = 2), dot-dashed line (l = 3), long dashed line (l = 4), grey dot-dashed line
(l = 5), grey line (l = 6).

of (1.4) have finite multiplicity and form a sequence

λ0(ε) < λ1(ε) � λ2(ε) � · · · ,

depending on ε, with λ0(ε) = 0.
It is not difficult to prove that, for any l ∈ N,

λl(ε) → λl as ε → 0 (1.5)

(see [2, 3, 17]). (See also [5] for a detailed analysis of an analogous problem for the
biharmonic operator.) Thus, the Steklov problem can be considered as a limiting
Neumann problem where the mass is concentrated at the boundary of the domain.

In this paper we study the asymptotic behaviour of λl(ε) as ε → 0. Namely,
we prove that such eigenvalues are continuously differentiable with respect to ε for
ε � 0 small enough, and that the following formula holds:

λ′
l(0) =

2lλl

3
+

2λ2
l

N(2l + N)
. (1.6)

In particular, for l �= 0, λ′
l(0) > 0 hence λl(ε) is strictly increasing and the Steklov

eigenvalues λl minimize the Neumann eigenvalues λl(ε) for ε small enough.
It is interesting to compare our results with those in [19], where the Neumann

Laplacian is considered in the annulus 1−ε < |x| < 1 and it is proved that for N = 2
the first positive eigenvalue is an increasing function of ε. Note that our analysis
concerns all eigenvalues λl with arbitrary indices and multiplicity, and that we do
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not prove global monotonicity of λl(ε), which in fact does not hold for any l (see
figures 1 and 2).

The proof of our results relies on the use of Bessel functions, which allows us to
recast problem (1.4) in the form of an equation F (λ, ε) = 0 in the unknowns λ,
ε. Then, after some preparatory work, it is possible to apply the implicit function
theorem and conclude. We note that, although the idea of the proof is rather simple
and is used in other contexts (see, for example, [15]), the rigorous application of
this method requires lengthy computations, suitable Taylor’s expansions and esti-
mates for the corresponding remainders, as well as recursive formulae for the cross
products of Bessel functions and their derivatives.

Importantly, the multiplicity of the eigenvalues, which is often an obstruction in
the application of standard asymptotic analysis, does not affect our method.

We note that if the ball B is replaced by a general bounded smooth domain
Ω, the convergence of the Neumann eigenvalues to the Steklov eigenvalues when
the mass concentrates in a neighbourhood of ∂Ω still holds. However, the explicit
computation of the appropriate formula generalizing (1.6) is not easy and requires a
completely different technique, which will be discussed in the forthcoming paper [7].

We also note that an asymptotic analysis of a similar problem is contained in [10,
11], although explicit computations of the coefficients in the asymptotic expansions
of the eigenvalues are not provided therein.

It would be interesting to investigate the monotonicity properties of the Neumann
eigenvalues in the case of more general families of mass densities ρε. However, we
believe that it would be difficult to adapt our method (which is based on explicit
representation formulae) even in the case of radial mass densities (note that if ρε

is not radial, one could obtain a limiting Steklov-type problem with non-constant
mass density; see [3] for a general discussion).

This paper is organized as follows. The proof of formula (1.6) is discussed in § 2. In
particular, § 2.1 is devoted to certain technical estimates necessary for the rigorous
justification of our arguments. In § 2.2 we consider the case N = 1 and prove
(1.6) for λ1, which is the only non-zero eigenvalue of the one-dimensional Steklov
problem. In the appendix we establish the required recursive formulae for the cross
products of Bessel functions and their derivatives, which are deduced using the
standard formulae available in the literature.

2. Asymptotic behaviour of Neumann eigenvalues

It is convenient to use the standard spherical coordinates (r, θ) in R
N , where θ =

(θ1, . . . θN−1). The corresponding transformation of coordinates is

x1 = r cos(θ1),
x2 = r sin(θ1) cos(θ2),

...
xN−1 = r sin(θ1) sin(θ2) · · · sin(θN−2) cos(θN−1),

xN = r sin(θ1) sin(θ2) · · · sin(θN−2) sin(θN−1),

with θ1, . . . , θN−2 ∈ [0, π], θN−1 ∈ [0, 2π[ (here it is understood that θ1 ∈ [0, 2π[ if
N = 2). We denote by δ the Laplace–Beltrami operator on the unit sphere S

N−1
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of R
N , which can be written in spherical coordinates as

δ =
N−1∑
j=1

1
qj(sin θj)N−j−1

∂

∂θj

(
(sin θj)N−j−1 ∂

∂θj

)
,

where
q1 = 1, qj = (sin θ1 sin θ2 · · · sin θj−1)2, j = 2, . . . , N − 1

(see, for example, [12, p. 40]). To shorten notation, in what follows we shall set

a =
√

λε(1 − ε) and b =
√

λρ̃ε(1 − ε),

where

ρ̃ε =
M − εωN (1 − ε)N

ωN (1 − (1 − ε)N )
.

As is customary, we denote by Jν and Yν the Bessel functions of the first and second
species of order ν, respectively (recall that Jν and Yν are solutions of the Bessel
equation z2y′′(z) + zy′(z) + (z2 − ν2)y(z) = 0).

We begin with the following lemma.

Lemma 2.1. Given an eigenvalue λ of problem (1.4), a corresponding eigenfunction
u is of the form u(r, θ) = Sl(r)Hl(θ), where Hl(θ) is a spherical harmonic of some
order l ∈ N and

Sl(r) =

{
r1−N/2Jνl

(
√

λεr) if r < 1 − ε,

r1−N/2(αJνl
(
√

λρ̃εr) + βYνl
(
√

λρ̃εr)) if 1 − ε < r < 1,
(2.1)

where νl = 1
2 (N + 2l − 2) and α, β are given by

α =
πb

2

(
Jνl

(a)Y ′
νl

(b) − a

b
J ′

νl
(a)Yνl

(b)
)

,

β =
πb

2

(
a

b
Jνl

(b)J ′
νl

(a) − J ′
νl

(b)Jνl
(a)

)
.

Proof. Recall that the Laplace operator can be written in spherical coordinates as

∆ = ∂rr +
N − 1

r
∂r +

1
r2 δ.

In order to solve −∆u = λρεu, we separate the variables so that u(r, θ) = S(r)H(θ).
Then, using l(l + N − 2), l ∈ N, as the separation constant, we obtain

r2S′′ + r(N − 1)S′ + r2λρεS − l(l + N − 2)S = 0 (2.2)

and

−δH = l(l + N − 2)H. (2.3)

By setting S(r) = r1−N/2S̃(r) in (2.2), it follows that S̃(r) satisfies the Bessel equa-
tion:

S̃′′ +
S̃′

r
+

(
λρε − ν2

l

r2

)
S̃ = 0.

https://doi.org/10.1017/S0308210516000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210516000214


434 P. D. Lamberti and L. Provenzano

Since solutions u of (1.4) are bounded on Ω, and Yνl
(z) blows up at z = 0, it

follows that, for r < 1 − ε, S(r) is a multiple of the function r1−N/2Jνl
(
√

λεr).
For 1 − ε < r < 1, S(r) is a linear combination of the functions r1−N/2Jνl

(
√

λρ̃εr)
and r1−N/2Yνl

(
√

λρ̃εr). On the other hand, the solutions of (2.3) are the spherical
harmonics of order l. Then u can be written as in (2.1) for suitable values of
α, β ∈ R.

Now we compute the coefficients α and β in (2.1). Since the right-hand side of the
equation in (1.4) is a function in L2(Ω), by standard regularity theory a solution
u of (1.4) belongs to the standard Sobolev space H2(Ω). Hence, α and β must be
chosen in such a way that u and ∂ru are continuous at r = 1 − ε, i.e.

αJνl
(
√

λρ̃ε(1 − ε)) + βYνl
(
√

λρ̃ε(1 − ε)) = Jνl
(
√

λε(1 − ε)),

αJ ′
νl

(
√

λρ̃ε(1 − ε)) + βY ′
νl

(
√

λρ̃ε(1 − ε)) =
√

ε

ρ̃ε
J ′

νl
(
√

λε(1 − ε)).

Solving the system, we obtain

α =
Jνl

(a)Y ′
νl

(b) − (a/b)J ′
νl

(a)Yνl
(b)

Jνl
(b)Y ′

νl
(b) − J ′

νl
(b)Yνl

(b)
, β =

(a/b)Jνl
(b)J ′

νl
(a) − J ′

νl
(b)Jνl

(a)
Jνl

(b)Y ′
νl

(b) − J ′
νl

(b)Yνl
(b)

.

Note that Jνl
(b)Y ′

νl
(b) − J ′

νl
(b)Yνl

(b) is the Wronskian in b, which is known to be
2/πb (see [1, § 9]). This concludes the proof.

We are ready to establish an implicit characterization of the eigenvalues of (1.4).

Proposition 2.2. The non-zero eigenvalues λ of problem (1.4) are given implicitly
as zeros of the equation(

1 − N

2

)
P1(a, b) +

b

1 − ε
P2(a, b) = 0, (2.4)

where

P1(a, b) = Jνl
(a)

(
Y ′

νl
(b)Jνl

(
b

1 − ε

)
− J ′

νl
(b)Yνl

(
b

1 − ε

))

+
a

b
J ′

νl
(a)

(
Jνl

(b)Yνl

(
b

1 − ε

)
− Yνl

(b)Jνl

(
b

1 − ε

))
,

P2(a, b) = Jνl
(a)

(
Y ′

νl
(b)J ′

νl

(
b

1 − ε

)
− J ′

νl
(b)Y ′

νl

(
b

1 − ε

))

+
a

b
J ′

νl
(a)

(
Jνl

(b)Y ′
νl

(
b

1 − ε

)
− Yνl

(b)J ′
νl

(
b

1 − ε

))
.

Proof. By lemma 2.1, an eigenfunction u associated with an eigenvalue λ is of the
form u(r, θ) = Sl(r)Hl(θ), where, for r > 1 − ε,

Sl(r) =
πb

2
r1−N/2

[(
Jνl

(a)Y ′
νl

(b) − a

b
J ′

νl
(a)Yνl

(b)
)

Jνl

(
br

1 − ε

)

+
(

a

b
Jνl

(b)J ′
νl

(a) − J ′
νl

(b)Jνl
(a)

)
Yνl

(
br

1 − ε

)]
.
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We require that

∂u

∂ν
=

∂u

∂r

∣∣∣∣
r=1

= 0,

which is true if and only if

πb

2

(
1 − N

2

)[(
Jνl

(a)Y ′
νl

(b) − a

b
J ′

νl
(a)Yνl

(b)
)

Jνl

(
b

1 − ε

)

+
(

a

b
Jνl

(b)J ′
νl

(a) − J ′
νl

(b)Jνl
(a)

)
Yνl

(
b

1 − ε

)]

+
πb2

2(1 − ε)

[(
Jνl

(a)Y ′
νl

(b) − a

b
J ′

νl
(a)Yνl

(b)
)

J ′
νl

(
b

1 − ε

)

+
(

a

b
Jνl

(b)J ′
νl

(a) − J ′
νl

(b)Jνl
(a)

)
Y ′

νl

(
b

1 − ε

)]
= 0.

The above equation can be clearly rewritten in the form (2.4).

We now prove the following.

Lemma 2.3. Equation (2.4) can be written in the form

λ2ε

(
M

3NωN
− 1

νl(1 + νl)

)
+ λε

(
N

2
− νl +

(2 − N)NωN

2νl(1 + νl)M

)
− 2λ

+
2NωN l

M
− 2NωN l

M

(
N − 1

2
− ωN

M
− νl

)
ε + R(λ, ε) = 0, (2.5)

where R(λ, ε) = O(ε
√

ε) as ε → 0.

Proof. We shall divide the left-hand side of (2.4) by J ′
νl

(a) and analyse the resulting
terms using the known Taylor series for Bessel functions. Note that J ′

νl
(a) > 0 for

all ε small enough. We split our analysis into three steps.

Step 1. We consider the term P2(a, b)/J ′
νl

(a), that is

Jνl
(a)

J ′
νl

(a)

[
Y ′

νl
(b)J ′

νl

(
b

1 − ε

)
− Y ′

νl

(
b

1 − ε

)
J ′

νl
(b)

]

+
a

b

[
Y ′

νl

(
b

1 − ε

)
Jνl

(b) − Yνl
(b)J ′

νl

(
b

1 − ε

)]
. (2.6)

Using Taylor’s formula, we write the derivatives of the Bessel functions in (2.6)
(call them C′

νl
) as follows:

C′
νl

(
b

1 − ε

)
= C′

νl
(b)+C′′

νl
(b)

εb

1 − ε
+· · ·+ C(n)

νl (b)
(n − 1)!

(
εb

1 − ε

)n−1

+o

(
εb

1 − ε

)n−1

. (2.7)
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Then, using (2.7) with n = 4 for J ′
νl

and Y ′
νl

we get

Jνl
(a)

J ′
νl

(a)

[
εb

1 − ε
(Y ′

νl
(b)J ′′

νl
(b) − J ′

νl
(b)Y ′′

νl
(b))

+
ε2b2

2(1 − ε)2
(Y ′

νl
(b)J ′′′

νl
(b) − J ′

νl
(b)Y ′′′

νl
(b))

+
ε3b3

6(1 − ε)3
(Y ′

νl
(b)J (iv)

νl
(b) − J ′

νl
(b)Y (iv)

νl
(b)) + R1(b)

]

+
a

b

[
(Jνl

(b)Y ′
νl

(b) − Yνl
(b)J ′

νl
(b))

+
εb

1 − ε
(Jνl

(b)Y ′′
νl

(b) − Yνl
(b)J ′′

νl
(b))

+
ε2b2

2(1 − ε)2
(Jνl

(b)Y ′′′
νl

(b) − Yνl
(b)J ′′′

νl
(b)) + R2(b)

]
, (2.8)

where

R1(b) =
+∞∑
k=4

εkbk

k!(1 − ε)k
(Y ′

νl
(b)J (k+1)

νl
(b) − J ′

νl
(b)Y (k+1)

νl
(b)) (2.9)

and

R2(b) =
+∞∑
k=3

εkbk

k!(1 − ε)k
(Jνl

(b)Y (k+1)
νl

(b) − Yνl
(b)J (k+1)

νl
(b)). (2.10)

Let R3 be the remainder defined in lemma 2.6. We set

R(λ, ε) = R3(a)
[

εb

1 − ε
(Y ′

νl
(b)J ′′

νl
(b) − J ′

νl
(b)Y ′′

νl
(b))

+
ε2b2

2(1 − ε)2
(Y ′

νl
(b)J ′′′

νl
(b) − J ′

νl
(b)Y ′′′

νl
(b))

+
ε3b3

6(1 − ε)3
(Y ′

νl
(b)J (iv)

νl
(b) − J ′

νl
(b)Y (iv)

νl
(b))

]

+ R1(b)
[

a

νl
+

a3

2νl
2(1 + νl)

]
+ R2(b)

a

b
+ R3(a)R1(b). (2.11)

By lemma 2.7, it turns out that R(λ, ε) = O(ε3) as ε → 0.
We also set

f(ε) = b2
1(ε)a

3
1(ε)f1(ε),

g(ε) = b2
1(ε)a1(ε)g1(ε) + a3

1(ε)g2(ε),

h(ε) = a1(ε)h1(ε) + ε2 a3
1(ε)

b2
1(ε)

h2(ε),

k(ε) =
a1(ε)
b2
1(ε)

k1(ε),
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where

a1(ε) =
a√
λε

= (1 − ε),

b1(ε) = b

√
ε

λ
,

f1(ε) =
1

6νl
2(1 + νl)(1 − ε)3

,

g1(ε) =
1

3νl(1 − ε)3
,

g2(ε) = − 1
νl

2(1 + νl)(1 − ε)
+

ε

2νl
2(1 + νl)(1 − ε)2

− ε2(3 + 2νl
2)

6νl
2(1 + νl)(1 − ε)3

,

h1(ε) = − 2
νl(1 − ε)

+
ε

νl(1 − ε)2
− ε2(3 + 2νl

2)
3νl(1 − ε)3

− ε

(1 − ε)2
,

h2(ε) =
1

(1 + νl)(1 − ε)
− 3ε

2(1 + νl)(1 − ε)2
+

ε2(νl
4 + 11νl

2)
6νl

2(1 + νl)(1 − ε)3
,

k1(ε) = 2 +
2ενl

1 − ε
− 3ε2νl

(1 − ε)2
+

ε3(νl
4 + 11νl

2)
3νl(1 − ε)3

− 2ε

1 − ε
+

ε2(2 + νl
2)

(1 − ε)2
.

Note that functions f , g, h, k are continuous at ε = 0 and f(0), g(0), h(0), k(0) �= 0.
Using in (2.8) the explicit formulae for the cross products of Bessel functions

given by lemma A.2 and corollary A.3, (2.6) can be written as

1√
λπ

ε
√

εk(ε) +

√
λ

π
ε
√

εh(ε) +
λ
√

λ

π
ε2√εg(ε) +

λ2
√

λ

π
ε3√εf(ε) + R(λ, ε). (2.12)

Step 2. We consider the quantity P1(a, b)/J ′
νl

(a), i.e.

Jνl
(a)

J ′
νl

(a)

[
Y ′

νl
(b)Jνl

(
b

1 − ε

)
− J ′

νl
(b)Yνl

(
b

1 − ε

)]

+
a

b

[
Jνl

(b)Yνl

(
b

1 − ε

)
− Yνl

(b)Jνl

(
b

1 − ε

)]
. (2.13)

Proceeding as in step 1 and setting

f̃(ε) = − a3
1(ε)b1(ε)

2πνl
2(1 + νl)(1 − ε)2

,

g̃(ε) =
a3
1(ε)

b1(ε)

(
1

πνl
2(1 + νl)

+
ε2

2π(1 + νl)(1 − ε)2

)
− a1(ε)b1(ε)

νlπ(1 − ε)2
,

h̃(ε) =
a1(ε)
b1(ε)

(
2

νlπ
+

2ε

π(1 − ε)
+

(νl − 1)
π(1 − ε)2

ε2
)

,

(2.13) can be written as

εh̃(ε) + λε2g̃(ε) + λ2ε3f̃(ε) + R̂(λ, ε), (2.14)

where R̂(λ, ε) = O(ε2√ε) as ε → 0 (see lemma 2.7).
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Step 3. We combine (2.12) and (2.14) and rewrite (2.4) in the form

ε

(
1 − N

2

)
h̃(ε) + ε

b1(ε)k(ε)
π(1 − ε)

+ λε2
(

1 − N

2

)
g̃(ε) + λε

b1(ε)h(ε)
π(1 − ε)

+ λ2ε3
(

1 − N

2

)
f̃(ε) + λ2ε2 b1(ε)g(ε)

π(1 − ε)
+ λ3ε3 b1(ε)f(ε)

π(1 − ε)
+ R0(λ, ε) = 0, (2.15)

where

R0(λ, ε) =

√
λb1(ε)

(1 − ε)
√

ε
R(λ, ε) +

(
1 − N

2

)
R̂(λ, ε).

Note that R0(λ, ε) = O(ε2√ε) as ε → 0. Dividing by ε in (2.15) and setting
R1(λ, ε) = R0(λ, ε)/ε, we obtain(

1 − N

2

)
h̃(ε) +

b1(ε)k(ε)
π(1 − ε)

+ λε

(
1 − N

2

)
g̃(ε) + λ

b1(ε)h(ε)
π(1 − ε)

+ λ2ε2
(

1 − N

2

)
f̃(ε) + λ2ε

b1(ε)g(ε)
π(1 − ε)

+ λ3ε2 b1(ε)f(ε)
π(1 − ε)

+ R1(λ, ε) = 0. (2.16)

We now multiply (2.16) by πνl(1 − ε)/b1(ε), which is a positive quantity for all
0 < ε < 1. Taking into account the definitions of functions g, h, k, g̃ and h̃, we can
finally rewrite (2.16) in the form

λ2ε

(
ρ̂(ε)
3

− 1
νl(1 + νl)

)
+ λε

(
N

2
− νl +

2 − N

2νl(1 + νl)ρ̂(ε)

)
− 2λ

+
2l(1 + ενl)

ρ̂(ε)
+ R(λ, ε) = 0, (2.17)

where

ρ̂(ε) = ερ̃(ε) = (M −ωNε(1−ε)N )
(

ωN

(
N − N

2
(N −1)ε−

N∑
k=3

(
N

k

)
(−1)kεk−1

))−1

,

and R(λ, ε) = O(ε
√

ε) as ε → 0. The formulation in (2.5) can easily be deduced by
observing that

ρ̂ε =
M

NωN
+ 2

M

NωN

(
N − 1

4
− ωN

2M

)
ε + O(ε2) as ε → 0.

We are now ready to prove our main result.

Theorem 2.4. All eigenvalues of (1.4) have the following asymptotic behaviour:

λl(ε) = λl +
(

2lλl

3
+

2λ2
l

N(2l + N)

)
ε + o(ε) as ε → 0, (2.18)

where λl are the eigenvalues of (1.1).
Moreover, for each l ∈ N, the function defined by λl(ε) for ε > 0 and λl(0) = λl

is continuous in the whole of [0, 1[ and of class C1 in a neighbourhood of ε = 0.
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Proof. By using the min–max principle and related standard arguments, one can
easily prove that λl(ε) depends on ε > 0 with continuity (see [14,16]). Moreover, by
using (1.5), the maps ε �→ λl(ε) can be extended by continuity at the point ε = 0
by setting λl(0) = λl.

In order to prove the differentiability of λl(ε) around zero and the validity
of (2.18), we consider (2.5) and apply the implicit function theorem. Note that
(2.5) can be written in the form F (λ, ε) = 0, where F is a function of class C1 in
the variables (λ, ε) ∈ ]0,∞[ × [0, 1[, with

F (λ, 0) = −2λ +
2NωN l

M
, F ′

λ(λ, 0) = −2,

F ′
ε(λ, 0) = λ2

(
M

3NωN
− 1

νl(1 + νl)

)
+ λ

(
N

2
− νl +

(2 − N)NωN

2νl(1 + νl)M

)

− 2NωN l

M

(
N − 1

2
− ωN

M
− νl

)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.19)

By (1.2), λl = NωN l/M . Hence, F (λl, 0) = 0. Since F ′
λ(λl, 0) �= 0, the implicit

function theorem combined with the continuity of the functions λl(·) allows us to
conclude that functions λl(·) are of class C1 around zero.

We now compute the derivative of λl(·) at zero. Using the equality NωN/M =
λl/l and recalling that νl = l + N/2 − 1, we get

F ′
ε(λl, 0) = λ2

l

(
l

3λl
− 1

νl(1 + νl)

)
+ λl

(
1 − l +

λl(2 − N)
2lνl(1 + νl)

)
− 2λl

(
1
2

− l − λl

Nl

)

= λ2
l

(
1

νl(1 + νl)

(
2 − N

2l
− 1

)
+

2
Nl

)
+

4λll

3

=
4λ2

l

N2 + 2Nl
+

4λll

3
.

Finally, the formula

λ′
l(0) = − F ′

ε(λl, 0)
F ′

λ(λl, 0)

yields (1.6) and the validity of (2.18).

Corollary 2.5. For any l ∈ N \ {0} there exists δl such that the function λl(·) is
strictly increasing in the interval [0, δl[. In particular, λl < λl(ε) for all ε ∈ ]0, δl[.

2.1. Estimates for the remainders

This subsection is devoted to the proof of a few technical estimates used in the
proof of lemma 2.3.

Lemma 2.6. The function R3 defined by

Jν(z)
J ′

ν(z)
=

z

ν
+

z3

2ν2(1 + ν)
+ R3(z), (2.20)

is O(z5) as z → 0.
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Proof. Recall the well-known following representation of the Bessel functions of the
first species:

Jν(z) =
(

z

2

)ν +∞∑
j=0

(−1)j

j!Γ (j + ν + 1)

(
z

2

)2j

. (2.21)

For clarity, we simply write

Jν(z) = zν(a0 + a2z
2 + a4z

4 + O(z5)). (2.22)

Hence,
J ′

ν(z) = zν−1(νa0 + (ν + 2)a2z
2 + (ν + 4)a4z

4 + O(z5)), (2.23)

where the coefficients a0, a2, a4 are defined by (2.21). By (2.22), (2.23) and standard
computations it follows that

Jν(z)
J ′

ν(z)
=

z

ν
− 2a2

ν2a0
z3 + O(z5),

which gives (2.20) exactly.

Lemma 2.7. For any λ > 0 the remainders R(λ, ε) and R̂(λ, ε) defined in the proof
of lemma 2.3 are O(ε3) and O(ε2√ε), respectively, as ε → 0. Moreover, the same
holds true for the corresponding partial derivatives ∂λR(λ, ε), ∂λR̂(λ, ε).

Proof. First, we consider R3(a) = R3(
√

λε(1−ε)), where R3 is defined in lemma 2.6,
and we differentiate it with respect to λ. We obtain

∂R3(a)
∂λ

=
aR′

3(a)
2λ

.

Hence, by lemma 2.6 we can conclude that R3(a) and ∂R3(a)/∂λ are O(ε2√ε) as
ε → 0.

Now consider R1(b) and R2(b) defined in (2.9) and (2.10). Since λ > 0, we have
that b > 0. Hence, the Bessel functions are analytic in b and we can write

2
√

λ
∂R1(b)

∂λ
=

εb1(ε)√
ε(1 − ε)

+∞∑
k=4

bk−1εk−1

(k − 1)!(1 − ε)k−1 (Y ′
ν(b)J (k+1)

ν (b) − J ′
ν(b)Y (k+1)

ν (b))

+
b1(ε)√

ε

+∞∑
k=4

εkbk

k!(1 − ε)k
(Y ′

ν(b)J (k+1)
ν (b) − J ′

ν(b)Y (k+1)
ν (b))′.

Here and in the following we write ν instead of νl. Using the fact that b =
√

λ/εb1(ε)
and lemma A.2, we conclude that all the cross products of the form

Y ′
ν(b)J (k+1)

ν (b) − J ′
ν(b)Y (k+1)

ν (b)

and their derivatives

(Y ′
ν(b)J (k+1)

ν (b) − J ′
ν(b)Y (k+1)

ν (b))′

are O(
√

ε) and O(ε), respectively, as ε → 0. It follows that R1(b) and ∂λR1(b) are
O(ε2√ε) as ε → 0.
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Similarly,

2
√

λ
∂R2(b)

∂λ
=

εb1(ε)√
ε(1 − ε)

+∞∑
k=3

bk−1εk−1

(k − 1)!(1 − ε)k−1 (Jν(b)Y (k+1)
ν (b) − Yν(b)J (k+1)

ν (b))

+
b1(ε)√

ε

+∞∑
k=3

εkbk

k!(1 − ε)k
(Jν(b)Y (k+1)

ν (b) − Yν(b)J (k+1)
ν (b))′.

Hence, R2(b) and ∂λR2(b) are O(ε2) as ε → 0.
Summing all the terms, and using lemma A.1 and corollary A.3, we obtain

R(λ, ε) = R3(a)
[

2ε

π(1 − ε)

(
ν2

b2 − 1
)

+
ε2

π(1 − ε)2

(
1 − 3ν2

b2

)

+
ε3b2

3π(1 − ε)3

(
ν4 + 11ν2

b4 − 3 + 2ν2

b2 + 1
)]

+ R1(b)
[
a

ν
+

a3

2ν2(1 + ν)

]
+ R2(b)

a

b
+ R3(a)R1(b).

We conclude that R(λ, ε) is O(ε3) as ε → 0. Moreover, it easily follows that
∂R(λ, ε)/∂λ is also O(ε3) as ε → 0.

The proof of the estimates for R̂ and its derivatives is similar and we omit it.

Remark 2.8. According to standard Landau notation, saying that a function f(z)
is O(g(z)) as z → 0 means that there exists C > 0 such that |f(z)| � C|g(z)| for
any z sufficiently close to zero. Thus, using Landau’s notation in the statements of
lemmas 2.3 and 2.7 indicates the existence of such constants C, which in principle
may depend on λ > 0. However, a careful analysis of the proofs reveals that, given
a bounded interval of the type [A, B] with 0 < A < B, the appropriate constants
C in the estimates can be taken to be independent of λ ∈ [A, B].

2.2. The case N = 1

We include here a description of the case N = 1 for completeness. In this section,
the ball B will be the open interval ]−1, 1[. Problem (1.1) reads

u′′(x) = 0 for x ∈ ]−1, 1[,

u′(±1) = ± 1
2Mλu(±1),

}
(2.24)

in the unknowns λ and u. It is easy to see that the only eigenvalues are λ0 = 0 and
λ1 = 2/M and they are associated with the constant functions and the function x,
respectively. As in (1.3), we define a mass density ρε on the whole of ]−1, 1[ by

ρε(x) =

⎧⎪⎨
⎪⎩

M

2ε
− 1 + ε if x ∈ ]−1,−1 + ε[ ∪ ]1 − ε, 1[,

ε if x ∈ ]−1 + ε, 1 − ε[.

Note that for any x ∈ ]−1, 1[ we have ρε(x) → 0 as ε → 0, and∫ 1

−1
ρε dx = M for all ε > 0.
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Problem (1.4) for N = 1 reads

−u′′(x) = λρε(x)u(x) for x ∈ ]−1, 1[,
u′(−1) = u′(1) = 0.

}
(2.25)

It is well known from Sturm–Liouville theory that problem (2.25) has an increasing
sequence of non-negative eigenvalues of multiplicity 1. We denote the eigenvalues
of (2.25) by λl(ε) with l ∈ N. For any ε ∈ ]0, 1[, the only zero eigenvalue is λ0(ε),
and the corresponding eigenfunctions are the constant functions.

We establish an implicit characterization of the eigenvalues of (2.25).

Proposition 2.9. The non-zero eigenvalues λ of problem (2.25) are given implic-
itly as zeros of

2

√
ε

(
M

2ε
− 1 + ε

)
cos(2

√
λε(1 − ε)) sin

(
2ε

√
λ

(
M

2ε
− 1 + ε

))

+
[
−M

2ε
+ 1 +

(
M

2ε
− 1 + 2ε

)
cos

(
2ε

√
λ

(
M

2ε
− 1 + ε

))]
sin(2

√
λε(1 − ε)) = 0.

(2.26)

Proof. Given an eigenvalue λ > 0, a solution of (2.25) is of the form

u(x) =

⎧⎪⎨
⎪⎩

A cos(
√

λρ2x) + B sin(
√

λρ2x) for x ∈ ]−1,−1 + ε[,
C cos(

√
λρ1x) + D sin(

√
λρ1x) for x ∈ ]−1 + ε, 1 − ε[,

E cos(
√

λρ2x) + F sin(
√

λρ2x) for x ∈ ]1 − ε, 1[,

where

ρ1 = ε, ρ2 =
M

2ε
− 1 + ε

and A, B, C, D, E, F are suitable real numbers. We impose the continuity of u and
u′ at the points x = −1+ε and x = 1−ε and the boundary conditions, obtaining a
homogeneous system of six linear equations of the form Mv = 0 in six unknowns,
where v = (A, B, C, D, E, F ) and M is the matrix associated with the system. We
impose the condition detM = 0. This yields (2.26).

Note that λ = 0 is a solution for all ε > 0. We thus consider only the case of
non-zero eigenvalues. Using standard Taylor formulae, we easily prove the following.

Lemma 2.10. Equation (2.26) can be rewritten in the form

M − λM2

2
+

λM2

6

(
1 + λ

(
2 +

M

2

))
ε + R(λ, ε) = 0, (2.27)

where R(λ, ε) = O(ε2) as ε → 0.

Finally, we can prove the following theorem. Note that (2.28) is the same as (2.18)
with N = 1, l = 1.
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Theorem 2.11. The first eigenvalue of problem (2.25) has the following asymptotic
behaviour:

λ1(ε) = λ1 + 2
3 (λ1 + λ2

1)ε + o(ε) as ε → 0, (2.28)

where λ1 = 2/M is the only non-zero eigenvalue of problem (2.24). Moreover, for
l > 1 we have that λl(ε) → +∞ as ε → 0.

Proof. The proof is similar to that of theorem 2.4. It is possible to prove that the
eigenvalues λl(ε) of (2.25) depend with continuity on ε > 0. We consider (2.27)
and apply the implicit function theorem. Equation (2.27) can be written in the
form F (λ, ε) = 0, with F of class C1 in ]0, +∞[ × [0, 1[ with F (λ, 0) = M − 1

2λM2,
F ′

λ(λ, 0) = − 1
2M2 and F ′

ε(λ, 0) = 1
6λM2(1 + λ(2 + 1

2M)).
Since λ1 = 2/M , F (λ1, 0) = 0 and F ′

λ(λ1, 0) �= 0, the zeros of (2.28) in a neigh-
bourhood of (λ, 0) are given by the graph of a C1-function ε �→ λ(ε) with λ(0) = λ1.
We note that λ(ε) = λ1(ε) for all ε small enough. Indeed, assuming by contradiction
that λ(ε) = λl(ε) with l � 2, we would obtain, possibly passing to a subsequence,
that λ1(ε) → λ̄ as ε → 0, for some λ̄ ∈ [0, λ1[. Then, passing to the limit in (2.27)
as ε → 0, we would obtain a contradiction. Thus, λ1(·) is of class C1 in a neigh-
bourhood of zero and λ′

1(0) = −F ′
ε(λ1, 0)/F ′

λ(λ1, 0), which yields (2.28).
The divergence of the higher eigenvalues λl(ε) with l > 1 as ε → 0 is clearly

deduced by the fact that the existence of a converging subsequence of the form
λl(εn), n ∈ N, would provide the existence of an eigenvalue different from λ0 and
λ1 for the limiting problem (2.24), which is not admissible.

Appendix A.

Here we provide explicit formulae for the cross products of the Bessel functions
used in this paper.

Lemma A.1. The following identities hold:

Yν(z)J ′
ν(z) − Jν(z)Y ′

ν(z) = − 2
πz

,

Yν(z)J ′′
ν (z) − Jν(z)Y ′′

ν (z) =
2

πz2 ,

Y ′
ν(z)J ′′

ν (z) − J ′
ν(z)Y ′′

ν (z) =
2
πz

(
ν2

z2 − 1
)

.

Proof. It is well known (see [1, § 9]) that

Jν(z)Y ′
ν(z) − Yν(z)J ′

ν(z) = Jν+1(z)Yν(z) − Jν(z)Yν+1(z) =
2
πz

,

which gives the first identity in the statement. The second identity holds since

Jν(z)Y ′′
ν (z) − Yν(z)J ′′

ν (z) = (Jν(z)Y ′
ν(z) − Yν(z)J ′

ν(z))′ =
(

2
πz

)′
= − 2

πz2 .

https://doi.org/10.1017/S0308210516000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210516000214


444 P. D. Lamberti and L. Provenzano

The third identity holds since

Y ′
ν(z)J ′′

ν (z) − J ′
ν(z)Y ′′

ν (z)

= Y ′
ν(z)

(
Jν−1(z) − ν

z
Jν(z)

)′
− J ′

ν(z)
(

Yν−1(z) − ν

z
Yν(z)

)′

= Y ′
ν(z)J ′

ν−1(z) − J ′
ν(z)Y ′

ν−1(z) +
ν

z2 (Y ′
ν(z)Jν(z) − J ′

ν(z)Yν(z))

= (Y ′
ν(z) 1

2 (Jν−2(z) − Jν(z)) − J ′
ν(z) 1

2 (Yν−2(z) − Yν(z))) +
2ν

πz3

= 1
2 (Y ′

ν(z)Jν−2(z) − J ′
ν(z)Yν−2(z))

− 1
2 (Y ′

ν(z)Jν(z) − J ′
ν(z)Yν(z)) +

2ν

πz3

= 1
2 (J ′

ν(z)Yν(z) − Y ′
ν(z)Jν(z))

+
ν − 1

z
(Y ′

ν(z)Jν−1(z) − J ′
ν(z)Yν−1(z)) − 1

πz
+

2ν

πz3

=
ν − 1

z

(
Jν−1(z)

(
Yν−1(z) − ν

z
Yν(z)

)

− Yν−1(z)
(

Jν−1(z) − ν

z
Jν(z)

))
− 2

πz
+

2ν

πz3

= −ν(ν − 1)
z2 (Yν(z)Jν−1(z) − Jν(z)Yν−1(z)) − 2

πz
+

2ν

πz3

=
2
πz

(
−1 +

ν2

z2

)
,

where the first, second and fourth equalities, respectively, follow from the well-
known formulae

C′
ν(z) = Cν−1(z) − ν

z
Cν(z),

2C′
ν(z) = Cν−1(z) − Cν+1(z),

Cν−2(z) + Cν(z) =
2(ν − 1)

z
Cν−1(z),

where Cν(z) stands for both Jν(z) and Yν(z) (see [1, § 9]). This proves the lemma.

Lemma A.2. The identities

Yν(z)J (k)
ν (z) − Jν(z)Y (k)

ν (z) =
2
πz

(rk + Rν,k(z)), (A 1)

Y ′
ν(z)J (k)

ν (z) − J ′
ν(z)Y (k)

ν (z) =
2
πz

(qk + Qν,k(z)) (A 2)

hold for all k > 2 and ν � 0, where rk, qk ∈ {0, 1,−1}, and Qν,k(z), Rν,k(z) are
finite sums of quotients of the form cν,k/zm, with m � 1 and cν,k a suitable constant
depending on ν, k.
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Proof. We shall prove (A 1) and (A 2) by induction. Identities (A 1) and (A 2) hold
for k = 1 and k = 2 by lemma A.1. Suppose now that

Yν(z)J (k)
ν (z) − Jν(z)Y (k)

ν (z) =
2
πz

(rk + Rν,k(z)),

Y ′
ν(z)J (k)

ν (z) − J ′
ν(z)Y (k)(z) =

2
πz

(qk + Qν,k(z))

hold for all ν � 0. First consider

Y ′
ν(z)J (k+1)

ν (z) − J ′
ν(z)Y (k+1)

ν (z).

We use the recurrence relations

Cν+1(z) + Cν−1(z) =
2ν

z
Cν(z) and 2C′(z) = Cν−1(z) − Cν+1(z),

where Cν(z) stands for both Jν(z) and Yν(z) (see [1, § 9]). We have

Y ′
ν(z)J (k+1)

ν (z) − J ′
ν(z)Y (k+1)

ν (z)

= Y ′
ν(z)(J ′

ν)(k)(z) − J ′
ν(z)(Y ′

ν)(k)(z)

= 1
4 [(Yν−1(z) − Yν+1(z))(Jν−1(z) − Jν+1(z))(k)

− (Jν−1(z) − Jν+1(z))(Yν−1(z) − Yν+1(z))(k)]

= 1
4 [(Yν−1(z)J (k)

ν−1(z) − Jν−1(z)Y (k)
ν−1(z))

+ (Yν+1(z)J (k)
ν+1(z) − Jν+1(z)Y (k)

ν+1(z))

+ (Jν+1(z)Y (k)
ν−1(z) − Yν−1(z)J (k)

ν+1(z))

+ (Jν−1(z)Y (k)
ν+1(z) − Yν+1(z)J (k)

ν−1(z))]

=
1
4

[
2
πz

(rk + Rν−1,k(z) + rk + Rν+1,k(z))

+
2ν

z
(Jν(z)Y (k)

ν−1 − Yν(z)J (k)
ν−1(z) + Jν(z)Y (k)

ν+1(z) − Yν(z)J (k)
ν+1(z))

− (Jν−1(z)Y (k)
ν−1(z) − Yν−1(z)J (k)

ν−1(z) + Jν+1(z)Y (k)
ν+1(z) − Yν+1J

(k)
ν+1(z))

]

=
1
4

[
4
πz

(2rk + Rν−1,k(z) + Rν+1,k(z))

+
2ν

z
(Jν(z)(Yν−1(z) + Yν+1(z))(k) − Yν(z)(Jν−1(z) + Jν+1(z))(k))

]

=
1
πz

(2rk + Rν−1,k(z) + Rν+1,k(z))

+
ν2

z

(
Jν(z)

(
1
z
Yν(z)

)(k)

− Yν(z)
(

1
z
Jν(z)

)(k))

=
2
πz

[
rk + 1

2 (Rν−1,k(z) + Rν+1,k(z)) − ν2

z

k∑
j=0

k!(−1)k−j

j!zk−j+1 (rj + Rν,j(z))
]
. (A 3)
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We now prove (A 2), as follows:

Yν(z)J (k+1)
ν (z) − Jν(z)Y (k+1)

ν (z)

= (Yν(z)J (k)
ν (z) − Jν(z)Y (k)

ν (z))′ − (Y ′
ν(z)J (k)

ν (z) − J ′
ν(z)Y (k)

ν (z))

=
2
πz

(
−qk − Qν,k(z) − rk

z
− Rν,k(z)

z
+ R′

ν,k(z)
)

. (A 4)

This concludes the proof.

Corollary A.3. The following formulae hold:

Jν(z)Y ′′′
ν (z) − Yν(z)J ′′′

ν (z) =
2
πz

(
2 + ν2

z2 − 1
)

;

Y ′
ν(z)J ′′′

ν (z) − J ′
ν(z)Y ′′′

ν (z) =
2

πz2

(
1 − 3ν2

z2

)
;

Y ′
ν(z)J (iv)

ν (z) − J ′
ν(z)Y (iv)

ν (z) =
2
πz

(
1 − 3 + 2ν2

z2 +
ν4 + 11ν2

z4

)
.

Proof. From lemma A.2 (see in particular (A 4)) it follows that

Jν(z)Y ′′′
ν (z) − Yν(z)J ′′′

ν (z) = − 2
πz

[
−q2 − Qν,2(z) − r2

z
− Rν,2(z)

z
+ R′

ν,2(z)
]

=
2
πz

(
2 + ν2

z2 − 1
)

.

Next we compute

Y ′
ν(z)J ′′′

ν (z) − J ′
ν(z)Y ′′′

ν (z) =
2
πz

[
r2 + Rν,2(z) − ν2

z

2∑
j=0

2(−1)2−j

j!z2−j+1 (rj + Rν,j(z))
]

=
2

πz2

(
1 − 3ν2

z2

)
.

Finally, by (A 3) with k = 3, we have

Y ′
ν(z)J (iv)

ν (z) − J ′
ν(z)Y (iv)

ν (z)

=
2
πz

[
r3 + 1

2 (Rν−1,3(z) + Rν+1,3(z)) − ν2

z

3∑
j=0

6(−1)3−j

j!z3−j+1 (rj + Rν,j(z))
]

=
2
πz

(
1 − 3 + 2ν2

z2 +
ν4 + 11ν2

z4

)
. �
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