Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-02-11T07:34:31.921Z Has data issue: false hasContentIssue false

Multiple solutions for semilinear elliptic equations in unbounded cylinder domains

Published online by Cambridge University Press:  12 July 2007

Tsing-San Hsu
Affiliation:
Department of Center of General Education, Chang Gung University, Kwei-San, Tao-Yuan 333, Taiwan (tshsu@mail.cgu.edu.tw)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we show that if b(x) ≥ b > 0 in Ω̄ and there exist positive constants C, δ, R0 such that where x = (y, z) ∈ RN with yRm, zRn, N = m + n ≥ 3, m ≥ 2, n ≥ 1, 1 < p < (N + 2)/(N − 2), ω ⊆ Rm a bounded C1,1 domain and Ω = ω × Rn, then the Dirichlet problem −Δu + u = b(x)|u|p−1u in Ω has a solution that changes sign in Ω, in addition to a positive solution.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2004