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In this paper, we show that if b(x) � b∞ > 0 in Ω̄ and there exist positive constants
C, δ, R0 such that

b(x) � b∞ + C exp(−δ|z|) for |z| � R0, uniformly for y ∈ �,

where x = (y, z) ∈ RN with y ∈ Rm, z ∈ Rn, N = m + n � 3, m � 2, n � 1,
1 < p < (N + 2)/(N − 2), ω ⊆ Rm a bounded C1,1 domain and Ω = ω × Rn, then
the Dirichlet problem −∆u + u = b(x)|u|p−1u in Ω has a solution that changes sign
in Ω, in addition to a positive solution.

1. Introduction

In this paper, we will study the existence of solutions of semilinear elliptic problem

−∆u + u = b(x)|u|p−1u in Ω,

u ∈ H1
0 (Ω), u �≡ 0,

}
(1.1)

where N = m+n � 3, m � 2, n � 1, 1 < p < (N +2)/(N −2), ω ⊆ Rm a bounded
C1,1 domain, Ω = ω × Rn, b(x) is a positive, bounded and continuous function
on Ω̄. Moreover, b(x) satisfies assumption (H1) below.

(H1) b(x) � b∞ > 0 in Ω̄, b(x) �≡ b∞ and

lim
|z|→∞

b(x) = b∞ uniformly for y ∈ �.

It is well known that (1.1) has infinitely many solutions if Ω is bounded (n = 0 in
our case) (see [15], and the references therein). Here, we only interest in unbounded
domains (n � 1 in our case). If Ω = Rn (m = 0 in our case), the existence of
solutions of (1.1) has been investigated, among others, in [1–3, 6, 11, 12, 17] (where
general nonlinearities are considered). In [17], Zhu has studied the multiplicity of
solutions of (1.1). He has given the following result.

Assume that N � 5, lim|x|→∞b(x) = b∞, b(x) � b∞ and that there exist positive
constants C, γ, R0 such that b(x) − b∞ � C|x|−γ for |x| � R0. Then (1.1) has at
least two pairs of non-trivial solutions.

His result is our particular case (see theorem 1.2). If m � 1, n � 1, that is,
Ω is an unbounded cylinder, then Lions [11] used the concentration-compactness
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method to prove the existence of solutions concerning equation (1.1). In this paper,
we use the concentration-compactness argument, due to Lions [11], to estimate the
decay of solutions developed in [8], and some ideas of Cerami et al . [5] to prove the
existence of another solution without constant sign.

Throughout this article, let x = (y, z) be the generic point of RN with y ∈ Rm,
z ∈ Rn, N = m + n � 3, m � 2, n � 1, 1 < p < (N + 2)/(N − 2), with φ the first
positive eigenfunction of the Dirichlet problem −∆ in ω with eigenvalue λ1. This
paper is organized as follows. In § 2, we establish a decomposition lemma. In § 3,
we establish some regularity lemmas and asymptotic behaviour of the solution of
equation (1.1). In § 4, we prove some auxiliary lemmas and finally show the existence
of another solution without constant sign.

We now state our main results.

Theorem 1.1. Assume that N = m + n � 3, m � 2, n � 1, b(x) satisfies condi-
tion (H1) and there exist positive constants C, δ, R0 such that

b(x) � b∞ + C exp(−δ|z|) for |z| � R0, uniformly for y ∈ �.

Then (1.1) has a solution that changes sign in unbounded cylinder domains in
addition to a positive solution.

Theorem 1.2 (Ω = RN ). Assume that N � 3, b(x) satisfies condition (H1) and
there exist positive constants C, δ, R0 such that

b(x) � b∞ + C exp(−δ|x|) for |x| � R0.

Then (1.1) has a solution that changes sign in RN in addition to a positive solution.

2. Preliminaries and a decomposition lemma

In this paper, we always assume that Ω is an unbounded cylinder or RN (N � 3),
unless otherwise specified. Now we begin our discussion by giving some definitions
and some known results. The energy functional of (1.1) is

I(u) = 1
2

∫
Ω

|∇u|2 + |u|2 − 1
p + 1

∫
Ω

b(x)|u|p+1, u ∈ H1
0 (Ω).

We shall denote by u0 the positive ground-state solution of (1.1), found in [11], if
b(x) satisfies condition (H1).

Consider the equation

−∆u + u = b∞|u|p−1u in Ω,

u > 0 in Ω, u ∈ H1
0 (Ω),

}
(2.1)

and its associated energy functional I∞ defined by

I∞(u) = 1
2

∫
Ω

|∇u|2 + |u|2 − 1
p + 1

∫
Ω

b∞|u|p+1, u ∈ H1
0 (Ω).

By [11] or [10], equation (2.1) has a ground-state solution ū.
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Now we define

g(u) =

⎧⎪⎨
⎪⎩

∫
Ω

b(x)|u|p+1∫
Ω

|∇u|2 + |u|2 if u ∈ H1
0 (Ω) \ {0},

0 if u ≡ 0,

(2.2)

M1 = {u ∈ H1
0 (Ω) | g(u) = 1},

c1 = inf{I(u) | u ∈ M1},

c∞ = inf{I∞(u) | u ∈ H1
0 (Ω), I∞′

(u)u = 0}.

By [11], for c1, c∞, u0, ū, we have the following,

c∞ = I∞(ū) = sup
t�0

I∞(tū),

c1 = I(u0) = sup
t�0

I(tu0) < c∞,

⎫⎪⎬
⎪⎭ (2.3)

provided condition (H1) holds.
We give the following decomposition lemma for later use.

Proposition 2.1. Let {uk} be a (PS)c-sequence of I in H1
0 (Ω),

I(uk) = c + o(1) as k → ∞,

I ′(uk) = o(1) strongly in H−1(Ω).

Then there exist an integer l � 0, a sequence {xi
k} ⊆ RN of the form (0, zi

k) ∈ Ω
and functions u, ūi ∈ H1

0 (Ω), 1 � i � l, such that, for some subsequence {uk}, we
have

uk −
(

u +
l∑

i=1

ūi(· − xi
k)

)
→ 0 as k → ∞,

c = I(u) +
l∑

i=1

I∞(ūi),

−∆u + u = b(x)|u|p−1u in H−1(Ω),

−∆ūi + ūi = b∞|ūi|p−1ūi in H−1(Ω), 1 � i � l,

|xi
k| → ∞, |xi

k − xj
k| → ∞, 1 � i �= j � l.

Proof. The proof can be obtained by using the arguments in [2] (also see [11, 12]).
We omit the details.

3. Asymptotic behaviour

In order to get the asymptotic behaviour of solutions of (1.1), we need the following
lemmas.

Lemma 3.1. Let Ω ⊆ RN be a C1,1 domain in RN and let f satisfy the following
condition.
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(H2) We have

|f(u)| � C(|u| + |u|p), 1 < p <
N + 2
N − 2

for some positive constant C.

Let u ∈ H1
0 (Ω) be a weak solution of equation −∆u + u = f(u). Then u ∈ Lq(Ω)

for q ∈ [2, +∞).

Proof. The proof follows by the classical regularity theory based on a result of
Brezis-Kato [4]. We will write it in detail for the reader’s convenience.

For s � 0, � � 1, let ϕ = ϕs,� = u min{|u|2s, �2} ∈ H1
0 (Ω). Since u ∈ H1

0 (Ω) is a
weak solution of equation −∆u + u = f(u). Then we have∫

Ω

∇u · ∇ϕ = −
∫

Ω

uϕ +
∫

Ω

f(u)ϕ.

Suppose u ∈ L2s+p+1(Ω). Since f satisfies condition (H2), we obtain that∫
Ω

|∇u|2 min{|u|2s, �2} + 2s

∫
{x∈Ω||u(x)|s��}

|∇u|2|u|2s

�
∫

Ω

|u|2+2s + C

∫
Ω

|u|2+2s + C

∫
Ω

|u|2s+p+1

� C.

Now we conclude that∫
{x∈Ω||u(x)|s��}

|∇(|u|s+1)|2 � C

∫
Ω

|∇(u min{|u|s, �})|2 � C

for any � � 1. Hence we may let � → ∞ in order to derive |u|s+1 ∈ H1
0 (Ω). Note

that H1
0 (Ω) ↪→ L2N/(N−2)(Ω), so u ∈ L((2s+2)N)/(N−2)(Ω).

Now let s0 = 0 and 2si + p + 1 = (si−1 + 1)(2N/(N − 2)) for i = 1, 2, . . . . Then
u ∈ L2si−1+p+1(Ω) implies u ∈ L2si+p+1(Ω). Also, it is easy to see that si → ∞ as
i → ∞. Therefore, u ∈ Lq(Ω), 2 � q < ∞. This completes the proof.

Now we quote a global regularity for the unbounded C1,1 domain Ω in [8].

Lemma 3.2. Let g ∈ L2(Ω)∩Lq(Ω) for some q ∈ (2,∞) and u ∈ H1
0 (Ω) be a weak

solution −∆u + u = g in Ω. Then u ∈ W 2,2(Ω) ∩ W 2,q(Ω).

First, we give a rough asymptotic behaviour of solution of (1.1) at infinity.

Lemma 3.3. Let u be a solution of (1.1). Then

lim
|z|→∞

u(y, z) = 0 uniformly for y ∈ ω.

Proof. Let u satisfy

−∆u + u = b(x)|u|p−1u in H−1(Ω).
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By lemma 3.1, we obtain u ∈ Lq(Ω) for q ∈ [2,∞). Hence g(x) = b(x)|u|p−1u ∈
Lq(Ω) for q ∈ [2,∞). Then, by lemma 3.2, we have u ∈ W 2,q(Ω) for q ∈ [2,∞).
By [8, lemma 2.10], u ∈ C1(Ω̄) and there exists C > 0 such that, for any r > 1,

‖u‖L∞(B̄c
r) � C‖u‖W 2,N (B̄c

r),

where B̄c
r = {x = (y, z) ∈ Ω | |z| > r}. Hence lim|z|→∞ u(y, z) = 0 uniformly for

y ∈ ω.

Finally, we give here a precise asymptotic behaviour for positive solutions of (1.1)
at infinity. First, we consider the case of unbounded cylinders.

Proposition 3.4. Let u be a positive solution of (1.1) in an unbounded cylinder
Ω = ω × Rn ⊆ Rm+n, m � 2, n � 1 and φ be the first positive eigenfunction of
the Dirichlet problem −∆φ = λ1φ in ω. Then, for any ε > 0, there exist constants
Cε, C̃ε > 0 such that

u(x) � Cεφ(y) exp(−
√

1 + λ1|z|)|z|−(n−1)/2+ε

C̃εφ(y) exp(−
√

1 + λ1|z|)|z|−(n−1)/2−ε � u(x)

⎫⎬
⎭ as |z| → ∞, y ∈ �. (3.1)

Proof. We divide the proof into the following steps.

Step 1. First, we claim that, for any δ > 0 with 0 < δ < 1+λ1, there exists C > 0
such that

u(x) � Cφ(y) exp(−
√

1 + λ1 − δ|z|) as |z| → ∞, y ∈ �.

Without loss of generality, we may assume δ < 1. Now, given δ > 0, by lemma 3.3,
we may choose R0 large enough such that

b(x)up(x) � δu(x) for |z| � R0.

Let q = (qy, qz), qy ∈ ∂ω, |qz| = R0 and B be a small ball in Ω such that q ∈ ∂B.
Since φ(y) > 0 for x = (y, z) ∈ B, φ(qy) = 0, u(x) > 0 for x ∈ B, u(q) = 0, by the
strong maximum principle, ∂φ/∂y(qy) < 0, ∂u/∂x(q) < 0. Thus

lim
x→q

|z|=R0

u(x)
φ(y)

=
∂u/∂x(q)
∂φ/∂y(qy)

> 0.

Note that u(x)φ−1(y) > 0 for x = (y, z), y ∈ ω, |z| = R0. Thus u(x)φ−1(y) > 0
for x = (y, z), y ∈ �, |z| = R0. Since φ(y) exp(−

√
1 + λ1 − δ|z|) and u(x) are

C1(ω × ∂BR0(0)), if we set

α1 = sup
y∈�,|z|=R0

(u(x)φ−1(y) exp(
√

1 + λ1 − δR0)),

then α1 > 0 and

α1φ(y) exp(
√

1 + λ1 − δR0) � u(x) for y ∈ �, |z| = R0.

Let
Φ1(x) = α1φ(y) exp(−

√
1 + λ1 − δ|z|) for x ∈ Ω̄.
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Then, for |z| � R0, we have

∆(u − Φ1)(x) − (u − Φ1)(x) = −b(x)up(x) +
(

δ +
√

1 + λ1 − δ(n − 1)
|z|

)
Φ1(x)

� −δu(x) + δΦ1(x)
= δ(Φ1 − u)(x).

Hence ∆(u − Φ1)(x) − (1 − δ)(u − Φ1)(x) � 0 for |z| � R0.
The strong maximum principle implies that u(x) − Φ1(x) � 0 for x = (y, z),

y ∈ �, |z| � R0, and therefore we get the claim.

Step 2. We claim that, for any ε > 0, there exists Cε > 0 such that

u(x) � Cεφ(y) exp(−
√

1 + λ1|z|)|z|−(n−1)/2+ε as |z| → ∞, y ∈ �.

Without loss of generality, we may assume that 0 < ε < 1
2 (n−1). Now, given ε > 0,

let mε = 1
2 (n − 1) − ε and

h(z) = 2ε
√

1 + λ1|z|−mε−1 + mε(mε − n + 2)|z|−mε−2.

Now we choose δ > 0 such that
√

1 + λ1 < p
√

1 + λ1 − δ. Then, by step 1, there
exist R0 > 0, C1 > 0 such that

u(x) � C1φ(y) exp(−
√

1 + λ1 − δ|z|) for y ∈ � and |z| � R0.

This implies that there exists C2 > 0 such that

b(x)up(x) � C2φ(y) exp(−p
√

1 + λ1 − δ|z|) for y ∈ � and |z| � R0.

We can choose R1 > 0 such that, for |z| � R1,

h(z) exp(−
√

1 + λ1|z|) − C2 exp(−p
√

1 + λ1 − δ|z|) � 0.

As in step 1, if we set

α2 = max
y∈�,|z|=R1

(u(x)φ−1(y)e
√

1+λ1R1Rmε
1 + 1),

then α2 > 0.
Let

Φ2(x) = α2φ(y) exp(−
√

1 + λ1|z|)|z|−mε for x ∈ Ω̄.

For x ∈ Ω, |z| � R1, we have

∆(u − Φ2)(x) − (u − Φ2)(x)
= −b(x)up(x) + h(z)Φ2(x)|z|mε

� −C2φ(y) exp(−p
√

1 + λ1 − δ|z|) + α2φ(y)h(z) exp(−
√

1 + λ1|z|)
� φ(y)(h(z) exp(−

√
1 + λ1|z|) − C2 exp(−p

√
1 + λ1 − δ|z|))

� 0.

Hence, by the maximum principle, we obtain that

Φ2(x) � u(x) for y ∈ � and |z| � R1.
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That is,

u(x) � α2φ(y) exp(−
√

1 + λ1|z|)|z|−(n−1)/2+ε for y ∈ � and |z| � R1.

Step 3. Given ε > 0, let m̃ε = 1
2 (n − 1) + ε and

g(z) = 2ε
√

1 + λ1|z|−1 + m̃ε(m̃ε − n + 2)|z|−2.

We can choose R0 > 0 such that g(z) � 0 for |z| � R0. As in step 1, if we set

β = inf
y∈�, |z|=R0

(u(x)φ−1(y)e
√

1+λ1R0Rm̃ε
0 ),

then β > 0 and

βφ(y)e−
√

1+λ1|z||z|−m̃ε � u(x) for y ∈ � and |z| = R0.

Now let Ψ(x) = βφ(y)e−
√

1+λ1|z||z|−m̃ε for x ∈ Ω̄. If x ∈ Ω, |z| � R0, we have

∆(Ψ − u)(x) − (Ψ − u)(x) = g(z)Ψ(x) + b(x)up(x) � 0.

Then, by the maximum principle, we obtain that

u(x) � Ψ(x) for y ∈ � and |z| � R0.

That is,

u(x) � βφ(y) exp(−
√

1 + λ1|z|)|z|−(n−1)/2−ε for y ∈ � and |z| � R0.

Remark 3.5. For the case b(x) ≡ b∞ > 0, we have that every positive solution
of (2.1) has the same asymptotic behaviour as in proposition 3.4.

Remark 3.6. From the above proof, we can deduce that u(x)φ−1(y) > 0 for x =
(y, z) ∈ Ω̄. Hence, for any compact subset K ⊂ Ω̄, there exist C1, C2 > 0 such that
C1φ(y) � u(x) � C2φ(y) for x = (y, z) ∈ K.

For the case Ω = RN (N � 3), the positive solutions of (1.1) also have a similar
asymptotic behaviour at infinity.

Proposition 3.7. Let u be a positive solution of (1.1) in RN (N � 3). Then there
exist C1, C2 > 0 such that

C1 � u(x)e|x||x|(N−1)/2 � C2 for x ∈ RN .

Proof. Consider the equation

−∆u + u = M |u|p−1u in RN ,

u > 0 in RN , u ∈ H1(RN ),

}
(3.2)

where M = maxx∈RN b(x).
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We denote the unique positive solution of (2.1), (3.2) by ū, ũ, respectively (see [9]),
and there exist constants C̄, C̃ such that (see [2, 3, 7, 16])

ū(x)|x|(N−1)/2e|x| → C̄ > 0 as |x| → ∞,

ũ(x)|x|(N−1)/2e|x| → C̃ > 0 as |x| → ∞.

}
(3.3)

By (1.1) and (2.1), we have∫
RN

[−∆(ū − u) + (ū − u)](ū − u)− =
∫

RN

(b∞ūp − b(x)up)(ū − u)−

�
∫

RN

b(x)(ūp − up)(ū − u)−

� 0.

That is,

‖(ū − u)−‖2
H1(RN ) � 0, where (ū − u)− = max{−(ū − u), 0}.

Hence u � ū in RN . Similarly, u � ũ in RN . By (3.3), we obtain that there exist
C1, C2 > 0 such that

C1 � u(x)e|x||x|(N−1)/2 � C2 for x ∈ RN .

4. Multiplicity of solutions

Let eN = (0, 0, . . . , 0, 1) ∈ RN and let

M2 = {u ∈ H1
0 (Ω) | g(u+) = g(u−) = 1},

N = {u ∈ H1
0 (Ω) | |g(u+) − 1| < 1

2 , |g(u−) − 1| < 1
2},

where g is defined by (2.2), u+ = max{u, 0} and u− = u+ − u,

c2 = inf{I(u) | u ∈ M2}.

Then we have the following lemma.

Lemma 4.1. There exists a sequence {uk} ⊂ N such that

I(uk) = c2 + o(1) as k → ∞,

I ′(uk) = o(1) strongly in H−1(Ω).

}
(4.1)

Proof. This lemma is similar to the one in [5] (or [17]) and can be proved similarly
(see [17] for a detailed proof). We omit the details.

The next lemma is the compactness result on energy level c2.

Lemma 4.2. Suppose that {uk} ⊂ N satisfies (4.1) and

0 < c2 < c1 + c∞.

Then {uk} has a subsequence converging strongly in H1
0 (Ω).
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Proof. From (4.1), it is easily to see that {uk} is bounded in H1
0 (Ω) and satisfies∫

Ω

|∇u±
k |2 + |u±

k |2 −
∫

Ω

b(x)|u±
k |p+1 = o(1) as k → ∞. (4.2)

By {uk} ⊂ N and the Sobolev inequality, there exists β, independent of k, such
that ∫

Ω

|∇u±
k |2 + |u±

k |2 > β > 0.

By proposition 2.1, there exist an integer l � 0, a sequence {xi
k} ⊂ RN of the form

(0, zi
k) ∈ Ω, functions u, ūi ∈ H1

0 (Ω), for 1 � i � l, such that, for some subsequence
of {uk} (still denoted by {uk}), we have

∥∥∥∥uk − u −
l∑

i=1

ūi(· − xi
k)

∥∥∥∥
H1

0 (Ω)
= o(1) as k → ∞,

c2 = I(u) +
∑
i=1

lI∞(ūi),

−∆u + u = b(x)|u|p−1u in H−1(Ω),

−∆ūi + ūi = b∞|ūi|p−1ūi in H−1(Ω), 1 � i � l,

|xi
k| → ∞, |xi

k − xj
k| → ∞ as k → ∞, 1 � i �= j � l.

If l � 2, that is, ū1 �≡ 0, ū2 �≡ 0, then we obtain I∞(ūi) � I∞(ū) = c∞ (i = 1, 2),
by (2.3), which implies a contradiction c2 � 2c∞ > c1 + c∞, since I(u) � 0. Hence
l � 1. Suppose u ≡ 0. Then l = 1 and

‖uk − ūi(· − xi
k)‖H1

0 (Ω) = o(1), as k → ∞.

From |xi
k| → ∞ and (4.2), we have∫

Ω

|∇ū±
1 |2 + |ū±

1 |2 =
∫

Ω

b∞|ū±
1 |p+1, ū+

1 �≡ 0, ū−
1 �≡ 0.

So
I∞(ū1) = I∞(ū+

1 ) + I∞(ū−
1 ) � 2c∞,

which contradicts c2 < 2c∞. Hence u �≡ 0. If {uk} does not converge strongly to u,
then ū1 �≡ 0. Again, I∞(ū1) � c∞. So we get c2 � I(u) + I∞(ū1) � c1 + c∞, a
contradiction. Hence {uk} converges strongly to u in H1

0 (Ω). Therefore, u ∈ M2,
and we complete the proof of lemma 4.2.

Now we prove one of our main results.

Theorem 4.3. Assume that b(x) satisfies condition (H1) and there exist positive
constants C, δ, R0 such that

b(x) � b∞ + C exp(−δ|z|) for |z| � R0, uniformly for y ∈ �.

Then (1.1) has a solution that changes sign in unbounded cylinder domains in
addition to a positive solution.
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Proof. From lemmas 4.1 and 4.2, we can show the existence of the second solution
(without constant sign) by verifying

c2 < c1 + c∞. (4.3)

We do this through ‘interaction computation’, which is similar to that found
in [5, 13, 17]. Let ūk = ū(x + 2keN ), uk = αu0 − βūk, where u0, ū are the positive
ground solutions of (1.1), (2.1), respectively. The existence of u0, ū is proved in [11],
provided b(x) satisfies condition (H1).

Define

h±(α, β, k) =
∫

Ω

|∇(αu0 − βūk)±|2 + |(αu0 − βūk)±|2 −
∫

Ω

b(x)|(αu0 − βūk)±|p+1.

We have that ∫
Ω

|∇( 1
2u0)|2 + | 12u0|2 −

∫
Ω

b(x)| 12u0|p+1 > 0,

∫
Ω

|∇(2u0)|2 + |2u0|2 −
∫

Ω

b(x)|2u0|p+1 < 0.

For k large enough,∫
Ω

|∇( 1
2 ūk)|2 + | 12 ūk|2 −

∫
Ω

b(x)| 12 ūk|p+1 > 0,

∫
Ω

|∇(2ūk)|2 + |2ūk|2 −
∫

Ω

b(x)|2ūk|p+1 < 0.

Thus, by ū(x) → 0 and u0(x) → 0, as |z| → ∞ uniformly for y ∈ �, there exists
k0 > 0 such that, for k � k0, we have

h+( 1
2 , β, k) > 0

h+(2, β, k) < 0

}
for all β ∈ [ 12 , 2],

h−(α, 1
2 , k) > 0

h−(α, 2, k) < 0

}
for all α ∈ [ 12 , 2].

By the mean-value theorem (see [14]), there exist α∗, β∗ such that 1
2 � α∗, β∗ � 2,

h±(α∗, β∗, k) = 0 for k � k0.

That is,

α∗u0 − β∗ūk ∈ M2 for k � k0.

Hence we only need to prove

sup
1/2�α, β�2

I(αu0 − βūk) < c1 + c∞ for k � k0.
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Indeed,

I(αu0 − βūk)

= 1
2

∫
Ω

|∇(αu0)|2 + |αu0|2 + 1
2

∫
Ω

|∇(βūk)|2 + |βūk|2

− 1
p + 1

∫
Ω

b(x)|αu0 − βūk|p+1 − αβ

∫
Ω

(∇u0 · ∇ūk + u0ūk)

� I(αu0) + I∞(βū) − βp+1

p + 1

∫
Ω

(b(x) − b∞)|ūk|p+1 + C1

∫
Ω

(up
0ūk + ūp

ku0).

Here, we have used the following inequality,

(t − s)p+1 � tp+1 + sp+1 − C1(tps + tsp),

for all t � 0, s � 0, where C1 > 0 is some constant. Thus

sup
1/2�α, β�2

I(αu0 − βūk)

� sup
α�0

I(αu0) + sup
β�0

I∞(βū)

− 1
2p+1(p + 1)

∫
Ω

(b(x) − b∞)|ūk|p+1 + C1

∫
Ω

(up
0ūk + ūp

ku0).

Without loss of generality, we may assume that δ < p/(p + 1). Now, given δ > 0,
we let ε = 1

4 (n − 1). Then, by proposition 3.4 and remarks 3.5 and 3.6, we have∫
Ω

up
0ūk =

∫
ω×{|z|�(2δ/p)k}

up
0ūk +

∫
ω×{|z|>(2δ/p)k}

up
0ūk

� C exp
(

−
√

1 + λ1

(
2 − 2δ

p

)
k

)[(
2 − 2δ

p

)
k

]−(n−1)/2+ε

+ C exp(−2
√

1 + λ1δk)
(

2δ

p
k

)p(−(n−1)/2+ε)

� C2 exp(−2
√

1 + λ1δk),∫
Ω

u0ū
p
k =

∫
ω×{|z|�2δk}

u0ū
p
k +

∫
ω×{|z|>2δk}

u0ū
p
k

� C exp(−p
√

1 + λ1(2 − 2δ)k)[(2 − 2δ)k]p(−(n−1)/2+ε)

+ C exp(−2
√

1 + λ1δk)(2δk)−(n−1)/2+ε

� C3 exp(−2
√

1 + λ1δk),∫
Ω

(b(x) − b∞)|ūk|p+1 �
∫

ω×{|z−2keN |�1}
|b(x) − b∞||ūk(x)|p+1

� C

∫
ω×{|z|�1}

|ū(x)|p+1 exp(−δ(2k − 1))

� C4 exp(−2δk),

where C2, C3, C4 are some positive constants independent of k.
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Let k large enough, we have

sup
1/2�α, β�2

I(αu0 − βūk)

� sup
α�0

I(αu0) + sup
β�0

I∞(βū)

+ C1(C2 + C3) exp(−2
√

1 + λ1δk) − C4

2p+1(p + 1)
exp(−2δk)

< c1 + c∞.

Thus c2 < c1 + c∞, which completes the proof of theorem 4.3.

Theorem 4.4. Assume that N � 3, b(x) satisfies condition (H1) and there exist
positive constants C, δ, R0 such that

b(x) � b∞ + C exp(−δ|x|) for |x| � R0.

Then (1.1) has a solution that changes sign in RN in addition to a positive solution.

Proof. Modifying the proof of theorem 4.3 and by proposition 3.7, we can prove
theorem 4.4. We omit the details.
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223–283.

12 P. L. Lions. On positive solutions of semilinear elliptic equation in unbounded domains. In
Nonlinear diffusion equations and their equilibrium states (ed. W.-M. Ni, L. A. Peletier
and J. Serrin) (Springer, 1988).

13 P. L. Lions. Lagrange multiplier, Morse indices and compactness. In Progress in nonlinear
differential equations and their applications (ed. H. Berestycki, J. M. Coron and I. Ekeland)
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