Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-11T01:44:57.011Z Has data issue: false hasContentIssue false

Global existence for the magnetohydrodynamic system in critical spaces

Published online by Cambridge University Press:  14 July 2008

Hammadi Abidi
Affiliation:
IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France (hamadi.abidi@univ-rennes1.fr)
Marius Paicu
Affiliation:
Laboratoire de Mathématique, Université Paris Sud, Bâtiment 425, 91405 Orsay, France (marius.paicu@math.u-psud.fr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article, we show that the magnetohydrodynamic system in $\mathbb{R}^N$ with variable density, variable viscosity and variable conductivity has a local weak solution in the Besov space $\dot{B}^{N/p_1}_{p_1,1}(\mathbb{R}^N)\times\dot{B}^{(N/p_2)-1}_{p_2,1}(\mathbb{R}^N) \times\dot{B}^{(N/p_2)-1}_{p_2,1}(\mathbb{R}^N)$ for all $1<p_2<+\infty$ and some $1<p_1\leq2N/3$ if the initial density approaches a positive constant. Moreover, this solution is unique if we impose the restrictive condition $1<p_2\leq2N$. We also prove that the constructed solution exists globally in time if the initial data are small. In particular, this allows us to work in the framework of Besov space with negative regularity indices and this fact is particularly important when the initial data are strongly oscillating.

Type
Research Article
Copyright
2008 Royal Society of Edinburgh