Proceedings of the Royal Society of Edinburgh, 138A, 447-476, 2008

Global existence for the magnetohydrodynamic
system in critical spaces

Hammadi Abidi
IRMAR, Université de Rennes 1, Campus de Beaulieu,
35042 Rennes cedex, France (hamadi.abidi@univ-rennesl.fr)

Marius Paicu
Laboratoire de Mathématique, Université Paris Sud, Batiment 425,
91405 Orsay, France (marius.paicu@math.u-psud.fr)

(MS received 30 November 2006; accepted 20 March 2007)

In this article, we show that the magnetohydrodynamic system in R with variable
density, variable viscosity and variable conductlwty has a local weak solution in the
Besov space Bﬁi/pl (RN) x B(N/m)_l(RN) X B( /pz)_ (RN) for all 1 < p2 < 400
and some 1 < p1 < 2N/3 if the initial density approaches a positive constant.
Moreover, this solution is unique if we impose the restrictive condition 1 < pa < 2N.
We also prove that the constructed solution exists globally in time if the initial data
are small. In particular, this allows us to work in the framework of Besov space with
negative regularity indices and this fact is particularly important when the initial
data are strongly oscillating.

1. Introduction

In this paper we study the existence and uniqueness of solutions for the magneto-
hydrodynamic (MHD) system with variable viscosity and variable density, which
describes the coupling between the inhomogeneous Navier—Stokes system and the
Maxwell equation:

Op + div(pu) = 0,
32
O (pu) + div(pu @ u) — 2div(u(p) M) + V(H + 2) =pf +div(B® B),
VB
a(p)
divu = div B = 0,
(p;u, B)lt=0 = (po, uo, Bo),

ﬁthiv( >B'Vuu«VB,

(MHD)
where M = %(Vu +tVu) is the symmetrical part of the gradient, the external force
f is given, p(-) > 0 is the viscosity of the fluid, o(-) > 0 is the conductivity and
II(t,x) is the pressure in the fluid. Moreover, we suppose that o and p are C*
functions and that

1
0<og<—-—<0<o00o and 0<p<p. (1.1)

Q
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The homogeneous case (p = const.) of the system (MHD) was studied by Duvaut
and Lions [12]. They established the local existence and uniqueness of a solution in
the classical Sobolev spaces H*(R"), s > N. They also proved the global existence
of the solution for small initial data.

The inhomogeneous case has been studied by many authors: in particular we
mention Gerbeau and Le Bris [15] and Desjardins and Le Bris [11], who studied
the global existence of weak solutions of finite energy in R? and in the torus 7°.
On the other hand, the local existence of strong solutions was recently considered
by Abidi and Hmidi [2]. They also proved the global existence of strong solutions
when the initial data are small in some Sobolev spaces.

The principal aim of this paper is to study the strong solutions in some Sobolev—
Besov critical spaces of negative regularity index. Working with initial data in
Besov spaces of negative regularity allows us to choose the initial velocity and the
initial magnetic field to be very irregular (even discontinuous) functions. On the
other hand, working in spaces of negative regularity allows us to prove that the
system (MHD) is globally well posed for strongly oscillating initial data.

In the following, we suppose that the initial density verifies inf, po(z) > 0 and,
thus, by the maximum principle for the transport equation, we have inf, p(t, z) > 0.
We also suppose that the density of the fluid is a small perturbation of a constant
density which we choose to be equal to 1. This implies that we can use the transform
a = (1/p) — 1, which allows us to work with the following system:

oa+u-Va=0,
B2
Ou+u-Vu+ (1+ a){VU + V<2> - 2div(/l(a)./\/l)}
=f+(14a)B-VB, MHD
0B —div(6(a)VB) = B-Vu—u- VB,
divu = div B = 0,
<a7ua B)|t:0 = (a07u07BO)7

where

1 1
i(a) = p| —— and ¢(a) = —————
fila) “<1+a> @) = /A +a)
are regular functions.
Let us recall the theorem proved in [2]. We denote by P the Leray projector on the
divergence-free vector fields and by Q = I — P the projector on the gradient-type
vector fields. The Besov spaces are defined in the next section.

THEOREM 1.1 (Abidi and Hmidi [2]). Let 1 < p < 6. There exists a constant c
depending on p and on the functions p and o such that, for ug, By € B;?{/p)_l(RS)
with

divug = divBy =0, fe L'Ry;BS/P 7 (RY),
with Qf belonging to L2 (Ry; B;?{/p)_Q(RP’)) and ag € B;{p(R:S), where

loc

HaO”Bi{P sec
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there exists a T € (0,400] such that the system (Mrl\{/D) has a solution (a,u, B,VII),
where

a € Cy([0,T); BYP) N L=([0, T); BY),
u, B € Gy([0,T); BV~ n LY (0,T; BSY/P .
Moreover, there is a sufficiently small constant ¢ > 0 such that, if
luoll garm—+ + 1 Boll garm—s + Ifll g w1y < 1 inf(u', o),

with p' = (1) and o = 5(1), then T = +oo. If 1 < p < 3, then this solution is
unique.

This result can easily be generalized to the case of fluid evolving in the whole
space RY . However, the result does not provide uniqueness for N < p < 2N, which
would allow one to conclude that the system (MHD) is globally well posed for
strongly oscillating initial data. Addressing the issue of uniqueness is the principal
motivation of our work. -

In order to have a clearer idea of uniqueness, let us note that the system (MHD)
can be written as a coupled system of a transport equation for the density and
a Navier—Stokes-type equation for the couple (u, B). Let us note also that the
stabilizing effect of strongly oscillating initial data is well known for the classical
homogeneous Navier—Stokes equation. Indeed, for the Navier—Stokes system in the
homogeneous case (p, B = const., p1 > 0), i.e

O+ u - Vu— pAu+ VII =0,

divu =0, (NS,)

ult=0 = uo,
the classical approach is to obtain global existence and uniqueness of solutions for
small initial data in the Besov space B 1+(N/p)(RN) forall 1 < p < oo (see [4]). The
Cannone-Meyer—Planchon result generahzes the classical theorem by Fujita and
Kato [14], which gives the existence and uniqueness of solutions in the framework
of classical Sobolev spaces HN=U/2(RN), to Besov spaces of negative regularity
index. The interest in such a result comes from the fact that initial data which are
large in H(N/2)— 1(]RN ) become small in the presence of oscillations in the norm of
the space B 1+(N/p when N < p < +o00. In particular, we find that the very fast
oscillations Of the initial data stabilize the Navier—Stokes system in the sense that
the solution exists globally in time.

THEOREM 1.2 (Cannone et al. [4]). Let 1 < p < 400 and let ug € B(N/p) "(RY)
be a divergence-free vector field. There then exists a time T > 0 such that sys-
tem (NS, ) has a unique solution,

ue Cy([0,T); BN n L0, T; BIYPH).
Moreover, there is a constant ¢ > 0 small enough such that if
. o <
luoll govm—1 < e,

then T = oo.
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In this paper we will show the existence and uniqueness of global solution for
system (MHD) for strongly oscillating initial data. For this it will be necessary
to work in spaces with negative index of regularity. Let us note that the result
of [2] does not make it possible to construct a unique global solution for the data
in spaces of negative index, since we have uniqueness of the solution only in the
case when 1 < p < N. Also let us note that we have existence of a global weak
solution when N < p < 2N for small data. We prove, in fact, that the (MHD)
system is globally well posed for oscﬂlatlng initial data, when (1 /po) —1¢€ Bg / .
and ug, By € B( / 2)= ! with p1 < p2 and

R T S S

pop N po op2 N
Note in particular that we obtain the Abidi and Hmidi results as a particular case
of our theorem by taking p; = pe. The improvement obtained in our results is due
directly to the fact that we work with the density, velocity field and magnetic field
belonging to Besov spaces with different index of integrability. The method of the
proof is based on the regularizing effect for the heat equation (for more precise
details, see [6]). To be more precise, we point out a result of harmonic analysis
due to Danchin [9], which is a Poincaré-type inequality for functions localized in
frequencies. This enables us to gain two derivatives on the solution from the heat
equation starting from the Laplacian. Thus, for initial data in B 1+(N/p2) (RN), w
find that the solution belongs to the space i ([0, T7; ;jﬁN/ r2)y. Wthh is a subbpace
of Ll(Llp(RN %) This is the principal reason why one cannot work with the initial
data ug € sz . FIN/P2) o S 1,

We prove an existence result in critical Besov spaces (for the definition see the
next section). Our principal result is as follows.

THEOREM 1.3. Let 1 < p; < pa < +00 be such that

LR T N N
p p2 N N “p1 p2
There exists a positive constant ¢ depending on p1, p2 and on functions p, o such
that, for
uo, By € BEYPTHRY)  with divug = div By = 0,
fe Ll Ry BENP TN RN)) with Qf € L2 (Ry; BENP) 72 (RY)) and

ap € Bg/fl (]RN) where ||a/0HBN/;1;1 <gc,
P11

there exists T(ug, By, f) > 0 such that system (MHD) has a solution (a,u, B, VII)

with
a € Cy([0,T); BTy N L>=([0,T); BY/TY),
u, B € Cy([0,T); BNPP ™ n L0, 75 B

and VII € L2/~ (BN =170y i,

p2,1

2N 1 1 1
b2
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Moreover, there exists a positive constant ¢ such that if
laoll goxrmar— + 1 Boll gevimnr—s + 1/l a g, oy < @1 inf(u', o),

with pt = (1), ot = &(1), then T = +oo.
If, in addition, we have that 1 < ps < 2N, and
1 n 1 S 2
p p2 N’

then such a solution is unique.

Proof. The proof of theorem 1.3 is carried out in two stages. Firstly, we show the
uniqueness result that is based on a logarithmic estimate combined with Osgood
lemma. Secondly, for the existence part we proceed as follows: we regularize both
the initial data and the system (MHD), for which we establish the existence of
solutions. After this step, we show that we can bound the existence time from
below. Finally, we prove that the sequence of the approximate solutions converges
to a solution satisfying our initial problem.

REMARK 1.4. In the case of variable viscosity and variable conductivity, we need
the more restrictive condition p; < po. This condition does not appear in the case
where the viscosity is constant (see [3]).

REMARK 1.5. This theorem allows us to construct a solution (local in time in gen-
eral, respectively global in time when the initial data is small compared with vis-
cosfcy) for wg, By € szlr(N/m)(RN) and all 1 < py < +o0. In fact, it is suffi-
cient, for example, to consider the density such that ag = py;' —1 € Bx,(RV)
when N < py < +4oo. In the case when 1 < ps < N we take, for example,
p1 = po (other choices are possible; it suffices, for example, to take p;, which
verifies sup(1, Npa /(N + p2)) < p1 < p2).
On the other hand, we obtain a unique solution for all ug, By € Bmlf (N/p 2)(]RN )
and for all 1 < pz < 2N. In order to obtain this, it suffices to consider, for example,
ag = Po —1€ B /m(RN) with p; = 2N/3 when N < py < 2N and it suffices to
take sup(1, Npg/(N+P2)) < pp < p2 when 1 < py < N.

REMARK 1.6. In particular, theorem 1.3 implies the existence of a unique global

solution for system (MHD), when the initial data (pg,uo, Bo) have the particular
form

ap=py ' — 1€ SR?),
ug = & *sin < (=020, 010",0),
B()=E BSIH<6)< 82¢ 81(]5 )

with a, 3 € [0,1), inf,ers po > 0 and ¢* € S(R?), with ag small and £ > 0 small
enough. Indeed, it is easy to verify the following assertion. Let ¢ € S(R3), k € R3,
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k| # 0 and (0, p,r) € R} x [1,00)% Then, the function ¢.(z) = ¢(x)e'**/¢ is small
in the space B, 7. More precisely, we have
lell e < Cl0)e7,
where C(6) = ¢l

2. Preliminaries

1. Notation

Let X be a Banach space and let p € [1,00]. We denote by L?(0,T; X) the set of
measurable functions f : (0,7) — X, such that ¢ — ||f(¢)||x belongs to L?(0,T),
and we denote by C([0,7); X) the space of continuous functions on [0,7") with
values in X, Cy([0,T); X) := C([0,T); X) N L>=(0,T; X). Let u* = u(1), ji(a) =
w(1/(1 +a)), 6(a) = 1/(c(1/(1 4+ a))), o = 5(1) and, for 1 < p < oo, we denote
by p’ the conjugate exponent of p given by 1/p+1/p’ = 1.

2.2. Littlewood—Paley theory

In this section, we briefly recall the Littlewood—Paley theory and we define the
functional spaces in which we will work. To this order, we use a unit dyadic (see
for example, [5]). Let C C R" be the annulus centred in 0, with the small radius 3,
and the big radius 3 5. There exist two posmve radially symmetric functions y and
¢ belonging respectively to C§°(B(0, 3)) and to C5°(C) such that

Zg@ “9¢)=1 forall§#0 and x(¢ —|—Z<p “9¢) =1 forall £ € RV,
q€Z qeN

We define the following operators:
Aqu=p(279D)u forallgeZ and Sgu= Z Apu  for all g € Z.

p<q—1
Moreover, we have
u= ZAqu for all u € S"(RY)/P[R"],
qEZ

where P[R¥] is the set of polynomials (see, for example, [17]). Moreover, the Little-
wood—Paley decomposition satisfies the property of almost orthogonality:

ApAgu=0 ifk—¢| >2 and Ap(Se—iuldgu)=0 if|k—q| 25 (2.1)
DEFINITION 2.1. For s € R, (p,7) € [1,4+0oc]? and u € S'(RY), we define
1/r
lulls;, = (28,0l
qE€L

with the usual change for the case when r = +00. Then for s < N/p and s < N/p,
r =1, we define
s N .
By, ={ueS'RY) | |ull, <ook
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otherwise, we define B‘;T as the adherence in &’ of functions belonging to the

Schwartz space, for the norm || - || 5. -
p

Let us now recall the Bernstein inequality (see, for example, [5]) which allows us
to obtain some embedding of spaces.

LEMMA 2.2 (Bernstein). Let (r1,72) be a couple of non-negative real numbers such
that r1 < ro. There then exists a non-negative constant C such that for any integer
k, any couple (a,b) such that 1 < a < b < oo and every function u in L*(RY), we
have

supp Fu € B(0,Ar1) = sup ||0%u||s < CRAFFNA/a=1/0) )10
|a|=k

supp Fu € C(0,Ar1, Ary) = C*X¥||u)|za < sup [|0%upa < CFNF||u)|pa.
|| =k

In order to obtain a better description of the regularizing effect of the transport-
diffusion equation, we will use the spaces Lf.(B5,.) introduced in [7].

DEFINITION 2.3. Let s € R, (r,p,p) € [1,400]® and T €0, +-00]. We then say that
fe Lp(Bg,), if

T r/p\1/r
lsgss = (2 ([ 18us @l ar) ) <oc,
q€Z 0
with the usual change if r = cc.

For 6 € [0,1], we have

”UHZ/)T(B;T) < HUH%?(B;;)HM 27%20(3;%) (2.2)
with ) 0 oy
== and s =0s; + (1—0)ss.
P P P2

Note that the Minkowski inequality implies that
lullzg sy < Nullpg sy To<r and ullpy g ) <llulzgss, fr<p

We now give the product laws in Besov spaces based on different Lebesgue spaces.
These product laws are studied in detail in [3].

PROPOSITION 2.4. Let (p,p1,D2,7, A1, \2) € [1,00] such that

1 1 1 1 1 1 1 1 1
- < —+—, p1<Ay, p2< A -<—++—<1 and -<—+—<1
P P11 D2 P p1 A D P2 A2

N

Then, we have the following inequality.

If

. 1 1 N N N N
$1+8y+Ninf (0,1 —— —— ) >0, s1+—<— and sS9+— < —,
p1 P2 A2 ;1 Al D2
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then
||'U/U||BZ}T+827N(1/P1+1/P271/P) 5 ||u||B;i1THU||B;§,oo (23)

When

N N N N

S1+ —=— and 82+7:77

X2 p1 Al D2

we replace
lull gz Mollpzz . and lvll gz

by

lullgs Nvllggz, and ollgsz aree:

respectively. If

+ N d + N N
s — =— and s —=—,
TN m TN
we take r = 1.
If
N N N N 1 1
s1+82=0, s€¢|———,———]| and —+ — <1,
Al p2p1 A p1 D2
then
vl mamavm S lullgn ol (2.4)

If |s| < N/p for p > 2 and —N/p’' < s < N/p otherwise, we have
T T P o (25)

REMARK 2.5. In the following, p will be equal to p; or to py and
1 1

— — — if p1 < po,
1_ P1 D2
A1

— —— ifpp <p1.

P2 P

REMARK 2.6. Note that, for p; = po, we obtain the classical product laws. On
the other hand, if s; < N/p;, s1 + s2 > 0 and p; < py, we obtain that uv €
B;;jsr(N/pl); otherwise, if s; < N/py, we obtain uv € B;ijST(N/m). The inter-
pretation of this is that in a product law we can cancel a smaller number of deriva-
tives than usual, if we measure these derivatives with an LP Lebesgue space with

small p > 1.

REMARK 2.7. Proposition 2.4 is also satisfied in [N/tp(B;)T). For example, the inequal-
ity (2.5) becomes

luvllpy < llullpy vl gyen e

whenever |s| < N/p for p > 2 and —N/p’ < s < N/p, 1 < p,p1,p2 < oo and
1/p=1/p1+1/p1.
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3. Estimates for the transport and Stokes equations

We note that the MHD system with variable density consists of a transport equation
for the density and a Stokes equation for the velocity vector field. We begin by giving
the necessary estimates for the transport and the non-stationary Stokes equations
(for the proofs, see [3]).

PROPOSITION 3.1. Let (p1,p2) € [1,+00)> and —1 — Ninf(1/p2,1/p}) < s <
1+ Ninf(1/p1,1/p2), where p is the conjugate exponent of py (respectively, —1 —
Ninf(1/p2,1/p)) < s < 1+ Ninf(1/p1,1/p2)) andr € [1,400] (respectively, r = 1).
Let u a free-divergence vector field such that

Vu € LY0,T; BY/P2 0 [>)

p2,T

(respectively, u € L*(0,T; B;Z{m)ﬂ)). We suppose that

fel*0,T;B: ).

p1,7

po € B3

p1,m?

Let p e L®(0,T;B: )N C([0,T);S) be a solution of the following system.:

p1,T
Op+u-Vp=F,
pli=0 = po-

There then ezists a non-negative constant C depending on N and s such that

ol 250 5,

T

t
<o (Il + [ 170y, df), (3.1)

where

t t
Ut) = / ||Vu(T)||BN2/mme dr and U(t) = / ||u(T)||B(N/p2>+1 dr,
0 P27 0 P21
respectively.

PROPOSITION 3.2. Let p €]1,00[ and —1 — Ninf(1/p,1/p') < s < N/p, where p
18 the conjugate exponent of p. Let ug be a divergence-free vector field with the
components in B;’r and g a vector field with the components in f/lT(B;T) Let
u and v be two divergence-free vector fields such that Vv has the coefficients in
LY(0,T; B{,Y{p N L) (respectively, LIT(BN/’))) and u € C([0,T); B;yr) N f/lT(Bf,f,z)

p,1
Let u be a solution of the non-stationary Stokes system

du+v-Vu—vAu+ VI =g,
divu = 0, (L)

U|t:0 = Uup.

There then exists C > 0 depending on N and s such that u verifies the following
estimate:

lell g 35 ) Il Ersa2y + IVl 2y s

< exp (CIVell gy luoll g+ Cllallzy ss o} (3:2)
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Moreover, if 2 < p and s = —1 — N/p, then we have the following estimate:

HUHL%(B;OO) +vlullzy g2y + ||VHHL1T(B;W)
<exp (CHVUHUT(B%I»)){”UO”B;M + C\|9\|£1T(B;7m)}- (3.3)

Let us now recall the Osgood lemma [13], which allows us to infer uniqueness of
the solution in the critical case (see §4.3).

LEMMA 3.3 (Osgood). Let p > 0 be a measurable function, let v be a locally inte-
grable function and let p be a positive, continuous and mon-decreasing function
which verifies the following condition:

/Olljz):—i—oo.

In addition, let a be a positive real number and let p satisfy the inequality

MU<G+A7®M@@D®-

Then, if a =0, the function p vanishes.
If a # 0, then we have
' bodr
—MWW+M@</7@® mmw@:/gf_
0 » ()

Finally, we recall the following result of logarithmic interpolation (see [10, propo-
sition 2.8)).

LEMMA 3.4. Let (p,A) € [1,400])?, s € R, t € Ry, e € (0,1] and u € L}(B35) N
L}Bg 1) N LN Bsts). Then

lellzaas H“”E?(Bz,m)l < N lullgasame) + lull2r spte )
L) Bs,) S P :

lullzss,

4. Proof of theorem 1.3

We will proceed in two steps. First we prove the uniqueness of the solution which
is principally based on a logarithmic estimate and on the Osgood lemma, which is
useful in the case of logarithmic estimates. The second part is devoted to the proof
of existence of the solution.

4.1. Uniqueness

Let 1 < p2 < 2N and 1 < p; < ps be such that 1/p; + 1/ps > 2/N and
1/p1 < 1/p2 4+ 1/N. We denote by (a*,u’, VII?) for 1 < i < 2 two solutions of the
(MHD) system. We define

(M 6M) = (1(Vui + V'), M2 — M)
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and
(6a,0u, VOII,0B) = (a* — a*,u?® —u',VII? — VII' B*> — BY).
We can easily check that

dda + u? - Véa = —du- Val,
0pdu 4+ u? - Vou — p* Adu + VSIT = H(a',u', VII*, BY),
0B +u* - VOB — o' AdB = G(a',u', BY),
divéu =divéB =0,
where
H(a',u',VII', B
= —6u-Vu' +a' (p' Adu — VSIT) + da(p Au? — VII?)
+ 2div[(ji(a®) — p')oM]|
+ 26a div((fi(a®) — p')M?] + 2a* div[(fi(a") — pt)oM]|
+2div[(i(a®) — p(a’))M'] + 20" div[(a(a®) — A(a'))M?] = 36aV (B?)
—(1+d"YW(B*? - (B"Y)+ (1 +a")(B* VOB +6B-VB') + éaB*  VB?

and

G(a',u’, B) = B%-Véu+ 0B - Vu! — du - VB?
+ div{(5(a®) — 6(a*))VB?} + div{(5(a') — 0')VIB}.

In our discussion we will distinguish between two cases: the first case deals with the
situation where 1/p;+1/p2 > 2/N and the second case concerns 1/p1+1/ps = 2/N.
The distinction between the two cases appears on the level of the product laws that
we use.

4.2. The case where N > 3,1 < p2 < 2N and 1/py +1/p2 > 2/N
We have established the following result.

PROPOSITION 4.1. Let (a',u’, VII', B), with i € {1,2}, be two solutions of sys-
tem (MHD ), corresponding to the same initial data

ap € B /pl ug, By € B(N/p2)_1, divug =divByg =0

and the external forcing term f belongmg to L ([0,T*); Bz(,iv{m) 1) such that Qf

belongs to Li ([0, T*); B;iv{pg) ). Assume that for i = 1,2 we have

at € C([0,T*); BY/P (RNY),

p1,1
u' € O([0,T%); BYP ™) N LL ([0, T%): BEYP2H,

B € C((0,T%); BP0 L (10, 77); BOYPT,

p2,1

VIT' € Lioo((0,7%): B 7).

p2,1
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There exists a positive constant ¢ such that if we have
a

a : <c
I L (Bp/PinLe) S ©

then (a?,u? VII? B?) = (a',u!, VI, BY).

Proof. The first step of the proof consists in proving that (da,du, VOII,dB) € FZY,
where

EFp = O([0,T); BRA™ ™) < (Lp(B/P) nO([0, T): Bt ™) < (LR(BR" ™)

p1,1 P2, pa2,l pa,l
N 5(N/p2)—2
x LL(BY/Pyno(jo,1); BUYP72).

We define, for all ¢ < T, the quantity
A(t) = || (8a, 5u, VOIT,6B)|| 7
- Hda||L?°(B;(flv,/1p1)71) * H(SUHL?"(BS;,GPZ)*Z) * M1||6u||L%(B;1)V2/,’i2)
1
+ ||V6HHL%(B;J2V’/1P2)72) + ||5B||L?O(B;12\f,/lp2)72) +o H(SB”LHB;VZ/,’{Z)'

In order to prove that the solution belongs to the space F%, it suffices to have
(a* — ag, @, Vﬂi,ﬁi) € FF, where we have defined (i, VII*, B%) by u' = ur, + ',
VIt = Vﬂz +VII' et B* = By, + B*. The quantities ur, VI and By, are defined
by the system given below:

8tUL — MlAuL + VI = f7

8tBL - JIABL = 0,
divuy, = div By, =0,
(ur, Br)|t=0 = (uo, Bo).

Indeed, by [6, proposition 2.1] we see that uy, and By, have their components in the

space
C([()’T];B(N/Pz)*l) ﬂLl(O,T;B(N/p2)+1)

p2,1 p2,1
and VII;, € L'(0,T; Bg{{pz%l). The quantities (a*, VI, BY) verify
o' — ptAut + VII' = K(a*,u’, VII*, BY),
O:B' — o' AB" = L(u', BY),
diva® = divB’ =0,
(ai’ Bi)|t=0 = (Oa 0)7

(MHD04)

where

K(a',u',VII', B") = —u" - Vu' + a'(p' Au' — VIT?) + (1 + ") div[(i(a’) — pt) MY
~ Y1 +d")VB? +(1+a")B - VB

and

L(u',B’) = B'- V' — ' - VB + div{(5(a) — 0*)VB'}.
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We apply the operator P to the first equation of the system (MHD,,0q) and we
obtain ‘ _ o o
o' — ptAu' = P(K(a*,u', VII', BY)). (4.1)

In the same manner, the divergence operator applied to the same equation gives
div((1 + a")VITY) = div Qf
—div(u’ - V' + 1(14a*)VB™ = (1 + a’)B' - VB')
+div(pt(a*Au®) + (1 + o) div][(f(a’) — pH) M),  (4.2)
Combining the inequality (2.2) together with the hypothesis concerning the solu-

tions stated at the beginning, we find u’, B' € L%(Bg/’fz). On the other hand
inequality (2.5) gives

v @u', B'®B' and Bi? c L%(Bz(é\%m)fl)

for po <2N, N >3 and 1/p; + 1/p2 > 2/N. Inequality (2.3) then implies that

ut-Vul a' A’ € LA(BYPIT), (14a))BVBL, (1+a') VB € LA(BINPD7?),

Now inequality (2.3) and Taylor’s formula with a remainder in the integral form
imply

10+ 0 divl(a(a) — )My oy S (14 ol g o)
x 1Gta®) = )M g
Sl e oy 1 g a3y
We conclude also that the left-hand term of equality (4.2) belongs to L%(B;i\{{pz)_?)).
On the other hand, inequality (2.3) gives

||alVHZ||L2T(BI<)12\"/1P2)*2) < ”aZ”L%O(B,])Vl/f;gnLoc) “Vﬂl“L%(B;JQ\’/1P2)*2)'
Consequently, the smallness condition on a’ together with (4.2) give that

VI € L3(BIP 7).

This allows us to obtain, using the hypothesis concerning a* and the inequality (2.3),

that a'VII' € LlT(B;{I{pQ)*Q). So we conclude that K(a*,u?, VII', BY) belongs to

LlT(BI()Z{pZ’)*Q). In the similar manner we have L(u’, BY) € L%(ng{pz)*z). Since
the operator P is continuous on the spaces B, .., the terms on the left-hand side of
equality (4.1) belong to L%(B(N/pz)_Z). Consequently, applying [6, proposition 2.1],

p2,1
we obtain that

@', Bl e LL(BY/P)ynC((0,T); BN 7% and  VII' e L (BIP) 7).

p2,1 p2,1 pa,1
For a, we write 0;a’ = —u' - Va'. Since
L1
251 SN 25
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therefore, the product laws (2.3) allow us to see that d;a® belongs to LQT(B(N/pI)fl),

p1,1
which, by the Cauchy—Schwarz inequality, gives

(a' —ap) € C([0, T); BN,

p1,1

Finally, we have (da, du, VOII,0B) € F¥.
Using propositions 3.1 and 3.2 we prove successively that, for all t < T,

2 1
||5aHL;>°(B;11\’/{’1>*1) S exp (Cllu ||L§(B;12",/1P2>+1))||5““L§(B;\’2{q2)|‘va [

LBy Ty
15

1
”(SuHL?o(BI();V,/lPQ)*?) + H HéuHL%(BZZ)\;/I{z) + HV(SHHL%(B;;V,/IPZFQ')

S e (Ol ggaparen)JHH (@, VIT By oo

and
108l irpm—2) + 0 1OBl Ly ey
S oxp (Ol gy pgperen) NG 0 Bl gy yom ==
We will estimate next the term H(a®,u?, VII*, B%). Inequalities (2.5) and (2.3) give
| — ou- Vu' +a* (u* Adu — VSIT) + Sa(p' Au® — VHQ)”L,}F(B;%F?)*Q)
S ||§u||L2T(B;;"/1P2>‘1)HUIHLQT(B{,VQ/"{Z)
10l e 721 ey (1800l gy (07p-2) + VO Ly vrpnr-2))

2 2
100l e gz AWy giaviem =) + IVl sy

Owing to (2.3) and Taylor’s formula with a remainder in the integral form, we find
that

I divl((a") = 1)6M] + o' div{(iia’) = )SMIl 1y (g,

5 ||a1||L%°(B,]:]1/7&F]L°°)||6u||L%1(BI]7\;<I{2) (43)

for p1 < pa. Using once more the inequality (2.3), Taylor’s formula, inequality (2.5),
and the fact that the space of Besov is stable by the action of a C*°-function (see,
for example, [16]), one obtains

. ~0 2 ~r 1 2
I div{(a®) = pla DM o,
T
5/ 172(a®) = (@' )] govsmn -1 [IV62 || gy
0 P11 p2,1

T
S [ 10l g2 1921 gy .
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Combining inequality (2.3) with an interpolation result in the temporal variable,
we prove that

160V (B2 -2

< [éall

)

2\2
(B) ||L%~(BZI,\;<I£2)
2
L3 (By/52)

@yl
< 118all e g+ 1B
2 2
S 0all e gyizn - 1B W e astyipm =) 1By ey
In the same manner we find

(14 a")V((B?*)? - (31)2)||L1T(Bg/1p2>72)

1 2
S (”B ”L%(B;:;/’P) + ||B ||L%(B;J2V,/lp2)+1))||6BHL%(B;12\77/1P2)*1)

2
5 ; ||BZ||L%(B;7V2<5;2)(||6B||L%O(B£12\”/1P2)72) + ||6BHL%(B;\;/‘1'2))
We have X ) 1 1
1 1
— 4+ —>—=, p2<2N and |—-——|< —,
P1 P2 N 2 D1 Do N

so the inequalities (2.3) and (2.5) imply

2 2
||5CLB VB ||L%(B;12\fy/1172)—2)

2 2
S0l e iz 1B e ayipm ) 1B Ly sty

Since one has

1 1 1 1 1

2
— = —| < = —+—> =, < )
pr p2l N pi p2 N Prspa
lemmas 3.1 and 3.2 of [1] remain valid. Thus, combining the preceding inequalities

with these lemmas, we find

|H(a',u',VII', B

||L%(B;12\”/1P2)*2)
1 2 2 1 2
SO0y sy + IV ommrsy + 1B Bl vimmn,

1 2 1
+ H(B B )HL%(B;;VﬁPﬁ*l) + Ha’ ||L70§(Blzj\,1<€émLoo)}

T
[ 00l g1 .

We need now to estimate G(a’,u’, B%). Since div B = 0, using the inequalities of
Bernstein and (2.5) together with an interpolation argument, we then obtain

||B2 : V(su”L%(BI(Jl;/lPQ)—% S ||B2 ® 5“”[]%(3;12\77/1?2)—1)
< 2 . . _
SIB ”L%(B;\;/fl’?)Hau”L%(B(p];/l”) n

2
5 ||B ||L%-(B;1)V2/Il72)(||5u||L%—‘O(B;()ZZV/1p2)72) + H(SUHL%(B;\;/IIQ))
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In the same manner, we have

1 1
0B - V! = bu- VB, o,

1
5 Hu HL%(B;\;?) (”(SBHL%?(B;;V'/IIQ)*?) + ”(SBHL%“(B,J;\Z‘;Z))
1
+11B ”L%(B;Z‘i?)(H5“||L39(B;§/1’”2>*2> + H‘S“”L%(B;Z‘i%)'
Arguing similarly to the case of inequality (4.3), one finds that
(a1 1 1
A (@) — VOB sovimmr—s) S 108 e ey 1By i

Using the above estimates and [1, lemmas 3.1, 3.2], and arguing in the same manner
as for the H term, we obtain finally that

”G(aiauiaVHiaBi)” (B;I;’/lpz) 2)

2
S (!, u )HLlT(B;f;/1P2>+1)QLzT(B;VZ{qz) VI Ly (g0,
1 p2 1
+ ”(B aB )||L’IT(B;);V,/IPZ)+1)OL%‘(BZ]7\;/,II)2) + ||Cl ||L%°(B,1)\]1/,2F1L°°))
T
+/ 16a ()|l sv/mn-1 B[l yxsna+1 dt.
0 P11 p2,1
Thus, one finds for ¢ < T that

1 2 2
’y(t) 5 V(t)(H(u U )||L%(B;g’/lm)Jrl)mL%(B;\;/’ll’Q) + HVH “LIT(B;;V/IP2)*1)

+ ”alHL%C(B;,Vl/,f,éﬁLOO) + H(BlaB2)HL%F(BI()I2V./1P2)+1)OL2( 52/1-12)>

T
+/ V(t)|\(u2,BQ)HB<N/p2)+1 dt.
0 p2,1

We choose a small time 77 < T such that, for a constant ¢ > 0 small enough, we
have the following inequality:

”(u U )HLl (B(N/p2)+1)mL2 (BN/pz) + ||VH2||L1T (B(N/po)—l) <c
1 P2,
and
||(B1’BQ)||L%~1(Bé]2v/1p2)+l)ﬂL2( N/Pz)

< ¢, for all t < T, we have

. . 1
Using the assumption that ||a HL%C1 (BN/2L L)
C/ || U B )||B(N/p2)+1 dt.
Since the function
t e [l

pUpa+t + ||BQ||B;1;/1PQ>+1

is locally integrable, we deduce by lemma 3.3 that v(¢) = 0 for all ¢ € [0,77]. It is
easy to see that this property is conserved on the whole time interval and we obtain
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finally that v(¢t) = 0 for all ¢ € [0, 7. Thus, the proof is complete in the case when
1 < p2 < 2N. The above calculations are available for p # 1 (since they are based
on proposition 3.2). The case p =1 is deduced by injection. O

4.3. The case 1/p1 +1/p2 =2/N or N =2 or ps = 2N

In thiS case lhe COIldlthIl
||CL ||l°° B /Flmloo c
( P1 ) \

is not sufficient. To show uniqueness, one needs to suppose that ||a!|| <ec.

More precisely, we have the following proposition.

PROPOSITION 4.2. Let (a',u!, VII, B') and (a?,u?, VII?, B?) be two solutions of
(MHD) corresponding to the zmtwl data ag € B /11, ug, By € B( / 2)= ;} where
divug = div By = 0 and f is such that its components are in Li. ([0, T*) BN/p2)= D)

pa2,l
and Qf belongs to L ([0,T*); B;N{p2)72). We assume that, fori=1,2, we have

a' € C(0,17):8) N Lis (10, 77): By 1),

u' € O(0,7%); By ™) 0 Lie(10.7%); B ™),

B € O([0,77); By ™ ™) 0 Lo (0.77): Byt ™ ™),
VIT' € LL ([0, T%); BLYP 7).

Ny
L By 1)

p2,1
p2,1

There then exists a positive constant ¢ which does not depend on these solutions
such that the inequality

implies (a?,u?, VII?, B?) = (a',u!', VII', BY).
Proof. We need to prove first that (da,du, VOII,§B) € Gr, where

Gr = LOO(B;l(;Jl\T/pl) Yx L} (BN/p2) OLO"(B 2+(N/pz)) N (B 2+(N/pz))
% LT(BN/W) N LOO(BpQQ,;_O(N/p2))'

p2,00

The estimates in this space allow us to obtain the uniqueness of the solution by the
application of the Osgood lemma. We define

) = 60l oo, + 100l 1y v

+ ||V5H|| —2+(N/p2)) + H(sB” —2+(N/F2) + ||6B|| N/P2)

L (Bpy

The term G is dealt with in the same way as in the first case. The only difference to
be noted appears in the treatment of the products of the type a*VII*. Here inequal-
ity (2.4) should be used to ensure that the left-hand side term of equality (4.1)
belongs to LQT(B:;;O) Thus, [6, proposition 2.1] implies that (da,du, VOII,0B) €
Gr.
In this case it is sufficient to study the case 2/N = 1/p; + 1/pa, since one can

deduce the other cases from this one. Indeed, if p; = 2N, then p; = 2N/3, since

1 < 1 n 1 q 2 < 1 . 1

—<—=+— and —<—+—.

o N ps N “pi p2
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Therefore, it is a particular case of 2/N = 1/p; + 1/pe. For N = 2, one starts
with po = 4 and p; = %. Afterwards, by injection, one will have uniqueness for
1<p < % and 1 < p2 < 4; by the same argument we obtain the uniqueness for
1<pr<4and 1 < ps < %. Hence one can suppose that 2/N = 1/p; + 1/ps.
Moreover, one can suppose that pa > 2 since inequality (3.3) is valid for p > 2. The
case p2 < 2 follows by injection.

Using propositions 3.1 and 3.2, we have

100l e g1y < 5P (CIVE Ny gy 10U - Vol gy, (4.4)
150z, + 1505y gy + NV o,

< Cexp (C||Ve?|| DIH (@', VT, Bi)HElT(B;;gN/M)

(4.5)

>N
LBy 5

and

1B o 528005, + 0 100l gy 0

< Cexp (C’||Vu2||L%(B;z)V/€2))HG(ai,ui,Bi) (4.6)

”I:%-(BE;ISN/”))'

Combining the estimates of da, inequality (2.3), the Bernstein and Minkowski
inequalities, we obtain

1 1
Héuva ||L}(B§)1£f/£1)*1) 5 ”(SUHL%(B;)\;/ZP)HG ”i?c(Bé\’l/lil) (47)
By lemma 3.4 one has

Héu”L}(B;f;?)

||6’U,||~1 5(N/p2)—1 +||6u||~1 514+(N/p2)
§||5U\|E1(Bw/pz)log <e+ Lt(Bvaﬁé ”) L} (Bpy oo )>
¥ P, 00 Ul = ~N/p
Li(Bpy,o3)

2 i 2 i
tzizl ||/U/7‘||Ltoo(Bé12V7/ol‘é2)*1) + Zi:1 ||u7’||L%(B;;(1N/p2))>

< SN
< loullzy cayyzey tog o ol

1N
Li(BY%2)

(4.8)

We will now estimate the term H (a?,u’, VII*, B*). Since div éu = 0 the inequalities
of Bernstein, (2.5) (for po < 2N) and (2.4) for (p; = 2N) imply

Hdu : VU1||E%(B;;;§N/1)2>) /S ||5u 0y u1||E%(B;2{¥N/p2))
1
5 ||U’ |‘i%(352<11’2)||6uHi/%(Bgzlzo(N/P2))

S ||U1|‘53(BIJJV2{I{2)(||5U\|i%(3g{gg) + ||6u|‘L?O(B;2%§N/P2))>'
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Since p1 < p2, 2/N < 1/p1 + 1/p2 < 1, owing to inequalities (2.4) and using the
Bernstein inequality, we have

la* (p* Adu — VIT) + Sa(pu' Au? — VIT?)| 71, 24 (N/p2)
Lt (BP2=°0 )
S ”(11”[*/;?0(311:11/711’1) (||5u‘lﬂ}(31i\;/gg) + ”V(SHHE%(B;;;(N/M)))
t
+ [ 180l g (02w + IV g .
The Minkowski inequality, (2.4), (2.3) and the Taylor formula imply
60 div((a?) — B IME]l 1, gy asivrmn,
t
5/ 16all —1+cv/mn || ((a®) —Ml)MQHB;V/z;z dr
0 p1,0© 2>
t
S [ 8l gm0 W) = ] g 192

t
2 2

S 1@y [ 190l gasonrm 1020 gy dr

Using the Bernstein inequality and (2.3), we find

I div(a(a") — )Ml gy )
~ 1 1

S ||:u(a ) —H ||f‘too(31{.\71<1{1)Hvaulli%(gé{gl\’/m))
< lla

ez oy 10l ey (4.9)

This and the Minkowski inequality, (2.4), the Bernstein inequality, (2.3), Taylor’s
formula and (2.5) give

la" div[(@(a®) — A DM 5, s 100m0),
t
S / lat [l gv/en 1 (A(a®) = (@) M| y=14v/m) AT
0 P11 p2,00
t
S [ a®) = a0 19 g 7
t 2
S /0 19all g1 ovren Zl lall gav/ms ||u2||3;2+)<11v/p2> dr
&

t
< / ||(5a||371+(1v/p1) ||u2||Bl+(N/p2) dr. (4.10)
0 P1,00 pa,1
In the same manner we obtain the following estimates
|a* div[(fi(a') — “1)6M]Hi}(3;22$é”/”2’)
1 ~0 1 1
S 10t g iy 1) = EMIL gy s,
< llal2 eg

. = SN
LB/ Li(Bp)22)
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and

t
I div{(i(a®) — (") M)y 524072, S/ 16all y—1+v/mp) U] g1+/ma) AT
t Pp2,00 0 P1,00 p2,1
(4.11)

Using the Minkowski inequality, (2.3), the fact that Bﬁ; / P? is an algebra and inter-
polation, we obtain

t
100V (B2l 5 ey S [ 186l gagcom BRI e

t

2 2
S [ sl g0 VB VB s
Since div B? = 0, in an analogous manner, we obtain
t

||(SG/BQ . VBQHE%(BI?;,QNM)?)) S./ /0 ”(SGHB;II,J;SN“’U ||B2||B;21’41,(N/p2) ||Bz||B;;(1N/p2) dT.

Owing to inequalities (2.4), (2.5) and a classical interpolation argument, we can
write

1(1+a")V((B*)? = (B)) 1y g=2ev/m0)
Lf,(sz,oo )
S (1 + ||a1||i;>°(311:’1/1{1))||(32)2 - (Bl)ZHE%(B;;’gN/pz))

z; 130z o) 1B 22 00rma)

V]

7

[

Z ||BZ||L2(BN/172) (||5B||Loo(B—2+(N/p2)) + ||5BHL1(BN/172))
i=1

Since div 6B = div B? = 0, in the same way we will have
|(1+a")(6B-VB' + B?. vaB)Hp(B_MN/m))

~ Z HBl||L2(BN/P2 (||5BHL<>C(B 2+(N/P2)) + H(SB”Ll(BN/PQ))
i=1

Combining all these estimates, we are able to establish
||If(a,i7 ui7 VHi, Bi)HE%(B;;:D(N/m))
5 7<t)(||<u1’ uz)HLl(BlJr(N/Pz))mLz(BN/Pz)
+ ||a1HLOO(BN/p1 +||(B*, B2)||L1(B1+(N/p2))nL2(BN/p2))

/ I8l 5,1 g(7) . (4.12)

where g is a locally integrable function.
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We now give the estimates for G. Using the Bernstein inequality and (2.5) for
p2 < 2N, (2.4) for po = 2N, by interpolation we obtain

|B?-Véu+ 6B - Vu' — éu- VB1||M(B;;§N,,)2))
S|IB?®6u+dB@ut —du® Bl|\it1(B;21,4o.c<N/,,2))
S ||(BlaBQ)||,3§(BIJJV2{qz)H‘SUHig(B;Z{;gN/m)) + ||5B||;g(3521;(zv/p2>)||U1||ig(3g{g1)
S ||(BlaB2vUI)HH(B;\;{I;Q)(H‘SB”L?O(B;Q{gN/m)) =+ H5B||E}(Bzfj\;/,gg)
F10ull e gz svrmary +10ullzy s0ma) ).

We obtain identically to (4.11) and (4.9) that

t
I diV[(&(aQ) — 5‘(@1))VBQ]HE%(BP,;;D(N/;,Q)) < /0 ||(5CLHBI?11$O(N/;)1) ||B2‘|B;;,(1N/p2) dr
and

: ~r 1 1 1
H le[(O‘(a ) -0 )V(SB]HL”/%(BP*;J&J(N/Pw) S ||a ||Zt°o(B;I,Vl/€l)H(SB”Z%(B;)\;/@%)

We deduce from these estimates that
i i i 1 pl p2 1
”G(alvulv Bz)||j%(B;Z%JgCEN/P2)) 5 ’Y(t)(H(u B, B )Hi%(Bé\;/II?) + Ha ”it”(BéVl/?l))
t
+/[; Il(saHB;ll)«géN/pl)HBQHB;;:(IN/IW) dT
Using the above estimate together with those given by (4.12), we have

V(t) S ’Y(t)(||(u17u2aBlaBz)”L%(B;;(IN/PQ))OE%(B'IJJ\;/EQ) + ||a1H15?°(B,],Vl/’I1))

t
+/ 18all y—vs v 9(7) d.
0 P11

Using the above estimate, we may choose a sufficiently small time 73 so that, using
inequalities (4.4), (4.7), (4.8) and the smallness of a', for all ¢ € [0, T1], we obtain

¢ a(T)
t) < 1 + ) |0ull 5, , an/ps dr,

LL(BpYR2)
with
2
a(T) = Z;T”ul”L%o(B;;j(N/pz)) + HUZHLlT(B,l,;gN/p?)).
1=
Owing to the fact that « +— xlog(e + (a(T)/x)) is an increasing function on R,
for all t € [0,77], we have

() < /Ot’y(T) log <e + %)g(ﬂ dr.

So, by lemma 3.3, we deduce that v(t) = 0, for all ¢t € [0,T}]. By inequality (4.4),
this gives da = 0. Standard arguments now yield the required conclusion. We note
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that the method used in this section (the logarithmic interpolation argument and
the application of the Osgood lemma) is inspired by the proofs of the uniqueness
given by Danchin [10] and was used by the authors in [3]. O

4.4. Existence

Throughout this section we assume that p; < pa, 1/p1 +1/p2 > 1/N and 1/p; <

The proof of existence of a solution is performed in a standard manner. We begin
by solving an approximate problem and we prove that the solutions are uniformly
bounded. The last step consists in studying the convergence to a solution of the
initial equation.

STEP 1 (construction of a regular approximate solution). Let us recall first the fol-
lowing result (see [1, lemma 4.2]).

LEMMA 4.3. Assume that s; € R and (pi,r;) € [1,00[* for i = 1,2. Let G €
B3t (RN). There then exists G € H®(RY), such that for all e > 0 there is an nyg

pir1

such that

[leiyel B, SE for all n > ny.
If we have divG = 0 and QG € B;gm, then we can choose G™ quch that divG™ =0
and QG™ is uniformly bounded with respect to n in the space B2, .

Owing to the above lemma there exist
ag,ug, By € HX(RY) and f" € Lip(Ry; H*(RY))
such that we have
lag |z < llaol[ e,
divug = div By =0,

1951y o2y SN w2y
Now, owing to [2, theorem 1.1], we deduce that system (MHD) with the initial data
(afy,ugy, By, f™) admits a unique local-in-time solution (a™,u™, VII™, B™) verifying

a™ € C([0,T™); H L (RY)),
u", B" € C([0,T"); H*(R™)) N L. (H*?),
vi" e L'([0,77); H*(RY)) with s > N —1.

STEP 2 (estimates of the regularized solution).
Let T € [0,400] be defined as inf,enyT™. Our first goal is to prove that T' > 0
such that (a™,u™, VII™, B"™) belongs to and is uniformly bounded in the space

oo/ N (N 1 =00/ 15 (N -1 (N, -1
Er = (LFBY TN (LABY Py 0 Ly (B ) LL (B P~
S(N 1 Foor (N —1
< (Lr(Bo ™ N LE (B 7).
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Let (u},II}) be a solution of the following non-stationary Stokes system
out — pt A + VI = f,
OB} — o' AB} =0,
divu} =div B} =0,
(uZ, BE)le=0 = (ug, By)-

(L)

By construction, uf, Bf € B;)iv{pz) "M H* and freLl (Ry; Bg{{m)_l N H?). So,

following [9, proposition 2.3], we have

(u}, VI, BY) € (BP0 H?) < LHBY P T nE) x L (BYP 7 nH?)

p2,1

and, moreover, u?, B? € L} (BI()Z{M)H) for all ¢ > 0.

Let u™ = u} +@", VII" = VII} + VII" and B" = B} + B". Then
(a™,u™, VII™,B") € C([O,T”);HSH(RN)) X (C[O,T”);HS(RN))
X Lpn (H*(RY)) x C([0,T7); H*(R™))
and verifies
oa™ +u" - Va" =
opu" +u" - Va" — ptAu" + VIIT = H(a",u",VII", B"),
OB™ +u"-VB" — o' AB"
= —div[((a") — 0')VB"] + B" - Vu" —u" - VBY,
diva™ = div B"™ = 0,
(anvﬂnvgn”tzo = (agv()?o)?

where
H(a™,u™,VII", B") = —u" - Vu? + a"(p' Au™ — VII™)
+2(1+ ) div{(7(a") — ) M"}
+ (1 +a™)(B"-VB" - 1vB"?)
with M™ = L(Vu® +! Vu™). We find that (a™,a", VII", B") belongs to Er» by
following the arguments in [1].
Now we are in a position to prove that 7" > 0 such that (a™,u™, VII™, B™) is

bounded in Er.
In what follows, we will use the following notation:

U = 0N e =y T 18y gy T IV Ly v -,
and

B"(t) := | B" ||L<>o(B<N/”2> 1+ |B” || (BN o+
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Since 1/p1 < 1/N + 1/p2, according to proposition 3.1, we have
025, apmny < &5 (CI Ly, sy s o6
S exp (Cllu"llyy, g llaoll e
Moreover, proposition 3.2 implies that
U"(T”) < CeXp (C”VUTLHL,}n(BS;/IP)) ||I{(a,n7 un, VH"’ Bn)||L§,"(BE,I2V/1p2>71)

Since 1/p; + 1/pa > 1/N, the inequality (2.3) implies that

la™ (' Au™ — VH”>‘|L1TH(B,‘,§€”2)_1>
S IIan||L$n(B;Vl<ql)(||u"||L1Tn B+ + ”vﬂn”LlTn(Bifj/f”’l))' (4.13)
From the Bernstein inequality, (2.3) and a classical interpolation argument, we may
infer that
Jur - v < " @ |

S lu

R "
Lin (Byy 7 Lin (Bp)/1?)

TLHL%,L(BQ;/’F)HU%HL%”(B;\;/IP) (414)

Since p; < p2 and 1/p; +1/ps > 1/N, the Bernstein inequality, estimate (2.3), and
Taylor’s formula imply that

(14 ™) div{(ala™) = )M Yy oy
n ~0on 1 n
S (1 + Ha’ ”L%"n(BZJ)\;/T))H(M(a ) — K )M ||L%H(B;\f2/)1;2)
n ~ron 1 n
S (U 10" e g NI = 1 i [0™ g gvppmnsn
S (]‘ + Han”L%",L(B;\;/T)) Ha'n”fl;?”(B;\;/ﬁ'l)Hun”L%ﬂ"(B;;\iQPZ)‘Fl)
and
[+ am) (B VB = 39B")] o
n n n n2
S (1+HCL ||L7°9n(B,J)\,1<11)1))(‘|B ®B |‘L%~n(BIJ,\;<I{2)+||B ||L%"n(31]g\;/€2))
S (19 s, ) B s, =y 1B Ly, sy
For B", we have
OB "+u"-VB" o' AB" = —div[(6(a™)—c")VB"]+B"-Vu"+ B} -Vu" —u" -V BY,
By proposition 3.2 and inequalities (2.3) and (2.5) we deduce that, for ¢ € [0, T™],
B"(t) < Cexp (C”un”L%(B;fz\’/le)-%-l))

"l

X {”32”@(352@2)||un||L§(BII)\;<1;2) + ||a i?o(B;Vl/ﬁl)||Bn||L%(B;12V/1p2>+1)

+ ||un”Ltoo(B£12\”/1P2)*1) HBZLHL%(BLQ’,/IMHI) }

https://doi.org/10.1017/50308210506001181 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210506001181

Global existence for the MHD system in critical spaces 471

So, by interpolation, we have

1/2 1/2
. <
HUHL’;’(BZJ,\;/Y‘P) X ”U”L}(B;g/l”)“) ”vHL?O(B;;,Y(N/m))

for all v € L%(B(N/m)‘“) N L?O(B(N/pz)—l);

p2,1 p2,1

thus,

B"(t) < exp (CHun||L%(B:’();\”/1P1)+1))

1/2 1/2
X {HBE”L?(BL%I’”’I)”BE”Lg(B;;\’,/f?)“)
1/2 1/2
X HunHL,?O(B;’;’/l”)*I)HunHL},(Bg’/l”Z)“)

+ ”an”fl?o(gé\’l/lil)”BnHL%(B;l;’/lpz)Jrl)
n n
+ u ”Lgo(ng/szl)HBL||L%(BI<JJ2V,/IPQ)+1)}.
In the same manner, we have

U™ (1) S exp (Clul 1y g

1/2 n1/2

x |||uf .

[||UL||L:B$/1”)71) [[uf, \\L%(B;g/lm)ﬂ)
xJlu" /2 [

oo [ (N, -1 (N, +1
LBy T LB

n n
10 e sy (4 107 e )
X (1™l g pvipmresy + VI vrmars
+ ”BnHLgo(B;gﬁW“)||B”||L%(B;§,/f’2)“))]' (4.15)
Let ¢ be a small positive real number. There then exists 77 > 0 such that
||(U'L7 BL)HL}I (Bé’z\’ﬁm)*l) + ||VHL||L1T1(B;12V7/1P2>*1) <(¢ (4'16)
and (see [9, proposition 2.3])
||UL|\E%.@1(B$1/11)2)—1) < ||U0||B£1;/1p2>—1 + HPf”LlTl(B;J;’/f?)‘l) = Uy.
Consequently, we have
||U7LL||L1T1(B;);’7/1P2)+1) + ||VHEHL1T1(B;JJ/1PZ>—1) <C¢ and ||u7l7:||i%ol(31(712\’)/11’2)—1) < CUo
(4.17)

and

||BZL||L1T1(B;1;/IW>+1) <C¢ and ||Bf||iﬁ(3$ﬁp2>,l) < CllBoll gerpar-s- (418)
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In the following we can suppose that T™ < Ti; otherwise, we take a smaller T™.
Let t <T™. Then

Bn(t) < Cexp (C(C + ||ﬂn||L1(B(N/lp2)+1)))
t P2,
1/2 . 1/2 _ 1/2
AP0+ 1" e gipr—)) ™ (CH Ty grpren))
gy CHIB gy o)) & U0 1 e gy =) )
and
||a”H[:?o(B:)\;/P1) < Cexp (C(¢C+ ||1TL"||L%(BI(D;V{1P2)+1))) ||ao||32{'v1<;{1. (4.19)
Let T5 < T™ such that
exp (C(C + H’anHLl (B(N/p2)+1))) < 2. (420)
To p2,1

Therefore, if
1602||a0||BN/p1 g 1,
P11

then
1"l 75, 52y < 2C ol v (4.21)
and
n 1/2 1/2 n 1/2
B (Ty) < AC{C 2 Boll -1 (U + 1 o)

_ 1/2
X (C + Hun||L%(B;12V,/1P2)+1))

+ QCCHGOHBN{P + C(Uo + ||an||LM(B(N/p2)7l)) } (4.22)
P, t p2,1
Using inequalities (4.15) and (4.22) satisfied by B"® = B} + B™, we obtain that

U™ (Ty) < C{CWU™ (T3) + Vo) + 2Caoll s (14 2C ol s ) (€ + U™ (T2)
+ C||Bo||Bz<)12v/1p2>—1 (1+ 20||ao||3117v1{z;1 UG+ ¢+ U™ (1))}
Using (4.21) and the smallness of ag, for ¢ small enough, we obtain
U™(T) < ¢C(Vo, ||a0|\3115v1<€1, HBO|‘B}(712\7’/1P2)71)~ (4.23)

Taking ¢ small enough, we observe that inequality (4.20) is satisfied. Consequently,
a standard argument then yields that T = T™. The same type of reasoning allows
us to show that 7" = T, with uniform control.

In what follows, we give a precise estimate of the pressure term. Namely, we prove
the following lemma.

LEMMA 4.4. Let 0 < n < inf(1,2N/ps) be such that 1/N +n/N < 1/p1 + 1/pa.

Then VII™ is uniformly bounded in Lii(zfn)(B;Z{pQ)flfn).

https://doi.org/10.1017/50308210506001181 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210506001181

Global existence for the MHD system in critical spaces 473

Proof. Applying the divergence operator to the equation containing the pressure
term, we obtain

div((1 +a™)VII") = div{(l + a")(div{fi(a")M"} + B" - VB" — 1V B"?)
+Of" —u" - Vu'}.
By construction of f™ and by mterpolatlon we have the result that Q f™ is uniformly

bounded in L7 /(2 n)(B(N{p2)7 ~"). Then, by 1nterpolat10n we have the result

P2,
that u™ is unlformly bounded in LQ/(1 ")(B(N/m) ™). Since n < 2N/pa, inequal-

ity (2.5) implies the estimate
bVl g sy om S " @0 gy i)
S HunHLzT/lu—n)(B(N/lpz)—n)||u"||L2 (B2
which shows that ™ - Vu™ is uniformly bounded in LZ/(2 77)(BZ()N/]DQ) '), In the

same way (14 a™)div{ia(a™)M"}, for p1 < p2, and 1/p1 +1/p2 > 1/N, the Bern-
stein inequality and (2.3) imply that div{ji(a™)M"} is uniformly bounded in

N 1 S(N -2
Ly (B n L2 (B 7).

Therefore, by an interpolation argument, we find that div{i(a™)M"} is uniformly
bounded in LQ/(2 ")(B(N/M) 7). Since

p2,1

inequality (2.3) implies that (1 + a™) div{i(a™)M"} is uniformly bounded in
2/(2—n) ; 15(N/pa)—1—
LT{( 77)(32527{]) ) 71)

in the same way as for (14 a™)(B"-VB" — $VB"), so VII" is also uniformly

bounded in L?F{ 2777)(3;5{172)717"). Indeed, using the fact that

0”5 (s < 2CNaoll gpms < L
1 ) 5

we deduced that the IT™ verify an elliptic equation which is a small perturbation
of the Laplace equation. O

By the construction of the time of existence, we conclude that T7 = oo, provided
that

||UOHB;1;/1P2)*1 + ”BO”BI(]J;QPQFI + ||f||L1(R+;B;12\’Y/1p2)71) < C/ inf(/‘lval)'

4.4.1. Passage to the limit

Let us note first that by construction of (uy, f™), the sequence (u},VII}, BY)
converges strongly to the solution (ur,VIIy, Br) of the system (L). However, to
show that the weak limit of (a”, ", VII™, B") is a solution to the system (NL), we
need to use some compactness arguments.
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We have already established that (a™, 4", VII™, B") is uniformly bounded in

LE(BY/Py x L (BN 71 n Ly, (B

p1,1 p2,1 p2,1
> (N/p2)—1 Z oo 1 15(N/pa)—1 5(N, 1
X L%,H (BI()%{”?) ) x Z/Tl (B]g%{pz) )N l/}l (BI()%{”)+ ).

Moreover, VII™ is uniformly bounded in LZT{(%")(BISZ{M)*PU).
So, in order to use the Ascoli theorem, it suffices to estimate the time derivative
of a™, @™ and B"™ (see, for example, [8]). Following the proof of [2, lemma 4.8], the

following lemma is shown to hold.
LEMMA 4.5.

(i) The sequence (8;a™)nen is uniformly bounded in L3, (Bz(,zl\f{pl)_l),

(ii) The sequence (0™ )nen is uniformly bounded in L2T<(2—17)(B;12\i{p2)—1—n) for
IN 1 7 1 1
0<n<inf|l, — and —+-—< —+ —.
! ( p2 ) N N p p2
(iii) The sequence (0;B™)nen is uniformly bounded in L2T<(2777)(B]()i\{{p2)717") for

2N 1 7 1 1
0<n<inf|1l,— and —+ =< —+ —.
7 < P2> N N p1 p2

From the above lemma, the Cauchy—Schwarz inequality and Hélder’s inequality,
we deduce the following corollary.

COROLLARY 4.6.

(i) The sequence (a™)nen is uniformly bounded in CV/2([0, T}); B;i\f{pl)_l).

(ii) The sequence (@™)nen is uniformly bounded in C"/%([0, T1]; Bz(g{pz)_l_") for
all n belonging to 10,inf(1,2N/p2)[ and
1 9 1 1
— <=t
N N p p
RN ; ; ; n/2 . p(N/p2)—2
(iii) The sequence (B")nen is uniformly bounded in C"=([0,T1]; B,,, ) for all
71 belonging to |0, inf(1,2N/ps)[ and
1 9 1 1

—+Lc— 4=
N N p p

We recall that the injection of BSF in B, |
is compact for all € > 0 (see, for example, [18]).

Therefore, there exists a subsequence (still denoted by (a™, 4", VII", B")) which
converges to (a,u, VII, B). Consequently, (a,u, VII, B) is a solution of the (MHD)

system belonging to

(the inhomogeneous Besov space)

i%ol(BN/Pl) % 'Z/%Ol (B(N/Pz)*l) n L%’l (B(N/P2)+1) « L%I(B(N/m)*l)

p1,1 p2,1 p2,1 p2,1
Foo /(N —1 S(N —+1
x L (BOP =N n Lk, (BT,
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Concerning the continuity of u, we have used the fact that

Ou — pt Au = H(a,u, VI, B),

u|t:O = Uo,

where

H(a,u,VII,B) = f —u-Vu— (14a)(VII + $VB? - B-VB)
+2(1 + a) div{(fi(a) — pH )M} + plaAw.

Since

(a,u,VII,B) € z/%? (BN/pl) % i’%‘i( '(N/pz)*l) HL%I(B(N/MHI) % L’_ll“l (B(N/Pz)*l)

p1,1 p2,1 p2,1 p2,1

Foo(p(N/p2)—1 5(N/p2)+1
x L (B~ n L, (BT,

proposition 2.4, implies that H(a,u, VII, B) € L, (Bp_;j(N/m)). And consequently,
[6, proposition 2.1] ensured the continuity-in-time of , in the same way as for B. To
prove that a is continuous and that the L°°-norm is conserved, we use the fact that

a = apoW¥W !, where ¥ is the flow of u. This completes the proof of theorem 1.3. O
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