Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-02-11T13:18:00.295Z Has data issue: false hasContentIssue false

Existence of positive solutions for a class of p-Laplacian superlinear semipositone problems

Published online by Cambridge University Press:  21 July 2015

M. Chhetri
Affiliation:
Department of Mathematics and Statistics, The University of North Carolina at Greensboro, Greensboro, NC 27402, USA, (maya@uncg.edu)
P. Drábek
Affiliation:
KMA-FAV, Západočeská Univerzita v Plzni, Univerzitní 22, 30614 Plzeň, Czech Republic, (pdrabek@kma.zcu.cz)
R. Shivaji
Affiliation:
Department of Mathematics and Statistics, The University of North Carolina at Greensboro, Greensboro, NC 27402, USA, (shivaji@uncg.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider a quasilinear elliptic problem of the form

where λ > 0 is a parameter, 1 < p < 2 and Ω is a strictly convex bounded domain in ℝN, N > p, with C2 boundary ∂Ω. The nonlinearity f : [0, ∞) → ℝ is a continuous function that is semipositone (f(0) < 0) and p-superlinear at infinity. Using degree theory, combined with a rescaling argument and uniform La priori bound, we establish the existence of a positive solution for λ small. Moreover, we show that there exists a connected component of positive solutions bifurcating from infinity at λ = 0. We also extend our study to systems.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2015