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KMA-FAV, Západočeská Univerzita v Plzni, Univerzitńı 22,
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We consider a quasilinear elliptic problem of the form

−∆pu = λf(u) in Ω,

u = 0 on ∂Ω,

where λ > 0 is a parameter, 1 < p < 2 and Ω is a strictly convex bounded domain in
R

N , N > p, with C2 boundary ∂Ω. The nonlinearity f : [0, ∞) → R is a continuous
function that is semipositone (f(0) < 0) and p-superlinear at infinity. Using degree
theory, combined with a rescaling argument and uniform L∞ a priori bound, we
establish the existence of a positive solution for λ small. Moreover, we show that
there exists a connected component of positive solutions bifurcating from infinity at
λ = 0. We also extend our study to systems.
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1. Introduction

We consider a quasilinear elliptic problem of the form

−∆pu = λf(u) in Ω,

u = 0 on ∂Ω,

}
(1.1)

where ∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator with 1 < p < 2, and
λ > 0 is a parameter. We assume Ω to be a strictly convex bounded domain in R

N ,
N > p, with C2 boundary ∂Ω.
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The nonlinearity f : [0,∞) → R is a continuous function that satisfies f(0) < 0,
f(s) > 0 for s � 1 and additional growth conditions. Such problems are referred in
the literature as semipositone problems, and it is well documented (see [6,17]) that
the study of positive solutions is mathematically challenging.

System (1.1) has been studied in [9,11,14,18,20] for the case when f is p-sublinear
at infinity, namely, lims→∞ f(s)/sp−1 = 0. Here our focus will be to study (1.1)
when f satisfies a p-superlinear condition at infinity (to be made precise in the
statement of the theorem). The existence of solutions to such nonlinear eigen-
value problems is generally studied via degree theory or the variational method.
However, the semipositone structure poses an additional challenge in establishing
the positivity of solutions. The existence of a positive solution when p = 2 and
lims→∞ f(s)/sq = b for some b > 0 and 1 < q < (N + 2)/(N − 2) was established
for λ small using degree theory in [1, 2]. To the best of our knowledge this has not
been achieved for p �= 2 in non-radial domains. This paper is, we believe, the first
to establish such an existence result in non-radial domains.

The existence of a positive radial solution was established in a ball for p > 1
in [3, theorem 4.6], [16, theorem 2.28] and [10, theorem 1.2(i)].

By a solution of (1.1), we mean a pair (λ, u) that solves (1.1) in the weak sense,
that is, u ∈ W 1,p

0 (Ω) satisfies∫
Ω

|∇u|p−2∇u · ∇ϕ dx = λ

∫
Ω

f(u)ϕ dx

for all ϕ ∈ W 1,p
0 (Ω). Moreover, if u > 0 in Ω, then (λ, u) is called a positive solution.

We say that λ∞ is a bifurcation point from infinity if the solution set S :=
{(λ, u) ∈ R × W 1,p

0 (Ω) : λ and u solves (1.1)} contains a sequence {(λn, un)} such
that

λn → λ∞ and ‖un‖∞ → ∞.

We prove the following result.

Theorem 1.1. Assume 1 < p < 2 and N > p. Let f : [0,∞) → R be a continuous
function satisfying the following conditions:

(1) f(0) < 0; and

(2) there exist b > 0 and q ∈ (p − 1, N(p − 1)/(N − p)] such that

lim
s→∞

f(s)
sq

= b.

Then (1.1) has a positive solution (λ, u) for λ > 0 small.
Moreover, there exists a connected component C(⊂ S), consisting of positive solu-

tions, bifurcating from infinity at λ∞ = 0.

An example satisfying the hypotheses of theorem 1.1 is given by f(s) = bsq − ε,
where b, ε are positive and p − 1 < q � N(p − 1)/(N − p).

We now quote the following observations from [4] that are relevant to our result.
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Remark 1.2 (Azizieh and Clement [4, remark 0.1]). When Ω is an open ball in
R

N , N > p, the a priori bound of positive solutions (for the limiting problem) used
in our analysis holds for p − 1 < q < (N(p − 1) + p)/(N − p) (see proposition 2.3),
and so does our result in theorem 1.1.

Remark 1.3 (Azizieh and Clement [4, remark 0.2]). The restrictions on p ∈ (1, 2),
the growth range for q and the strict convexity requirement on the domain all arise
from the a priori bound result (proposition 2.3) used in our analysis.

In § 2 we recall some useful results for our functional framework, a crucial uniform
a priori bound result for a limiting problem related to (1.1) and a continuation
theorem via degree theory. In § 3, we prove theorem 1.1. In § 4, we state the existence
result for a system and provide an outline of the proof.

2. Preliminaries

The following result (using slightly different notation but without modification to
the content) provides the functional framework for our approach.

Proposition 2.1 (Azizieh and Clement [4, lemma 1.1]). Consider the problem

−∆pu = g(x) in Ω,

u = 0 on ∂Ω.

}
(2.1)

Then

(1) for all g ∈ L∞(Ω), there exists a unique weak solution u of (2.1) in C1
0 (Ω̄),

(2) the solution operator K : L∞(Ω) → C1
0 (Ω̄) defined by Kg = u is continuous,

compact and homogeneous of order 1/(p − 1).

The estimate below turns out to be helpful in computing the degree near the
origin.

Proposition 2.2 (Daners and Drábek [12, theorem 2.5]). Let g ∈ L∞(Ω). Then
there is a constant C > 0 such that the corresponding solution of (2.1) satisfies

‖u‖p−1
∞ � C‖g‖∞. (2.2)

The following uniform a priori bound result will be crucial in computing the
degree in a large ball.

Proposition 2.3 (Azizieh and Clement [4, theorem 0.1, remark 0.1]). Consider

−∆pw = h(w(x) + t) in Ω,

w = 0 on ∂Ω,

t � 0,

⎫⎪⎬
⎪⎭ (2.3)

where 1 < p � 2, and h satisfies the following:

(1) h : R → [0,∞) is continuous on R and is locally Lipschitz continuous on
[0, +∞);
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(2) there exist some constants C0, C1 > 0 such that

C0s
q � h(s) � C1s

q ∀s ∈ [0,∞).

If p − 1 < q � N(p − 1)/(N − p), then there exists a constant R > 0 such that

‖w‖C1 + t � R

for all solutions (t, w) of (2.3) with t � 0.
Moreover, if h(s) = C̃|s|q, for some constant C̃ > 0 and Ω is an open ball in

R
N , then the above result holds true for p − 1 < q < (N(p − 1) + p)/(N − p).

To prove the second part of theorem 1.1, we shall use the following special version
of the result from [13, proposition 2.3] originally stated in [19, lemma 3.4].

Proposition 2.4 (de Figueiredo et al . [13, proposition 2.3]).
Let X be a Banach space, let U be a bounded open subset of X and let M : [a, b] ×
Ū → X be a compact map such that M(t, x) �= x for (t, x) ∈ [a, b] × ∂U . Assume
that deg(I − M(t, ·), U, 0) �= 0 for all t ∈ [a, b]. Then if Σ := {(t, x) ∈ [a, b] ×
U : M(t, x) = x}, there exists a connected component D of Σ such that D∩({a}×U)
and D ∩ ({b} × U) are non-empty.

3. Proof of theorem 1.1

First we extend f as an even function on R by setting f(s) = f(−s) for s ∈ R. Let
F (s) := f(s) − b|s|q for all s ∈ R. Then, for γ > 0, we set λ = γq−p+1 and rescale
the solution variable using w = γu. We see that w formally satisfies

−∆pw = γp−1γq−p+1f(w/γ)
= γqf(w/γ)
= γq[f(w/γ) − b|w/γ|q] + b|w|q

= γqF (w/γ) + b|w|q.

Next, let F̃ (γ, s) := γqF (s/γ) + b|s|q for γ > 0 and s ∈ R. Using theorem 1.1(2),
we see that limγ→0 F̃ (γ, s) = b|s|q, and hence we can continuously extend F̃ (γ, s)
to γ = 0 by setting F̃ (0, s) = b|s|q for all s ∈ R. Then F̃ (·, ·) : [0,∞) × R → R is
continuous.

Let X denote the Banach space C0(Ω̄) equipped with the supremum norm ‖·‖∞.
Then, for fixed γ � 0, we define the map S(γ, ·) : X → X by

S(γ, w) := w − KF̃ (γ, w). (3.1)

For γ � 0 fixed, K ◦ F̃ (γ, ·) : X → X is compact, since the Nemytskii operator
F̃ (γ, ·) : X → L∞(Ω) is continuous and the solution operator K : L∞(Ω) → C1

0 (Ω̄)
is compact (by proposition 2.1). Thus, S(γ, ·) is the compact perturbation of the
identity. Note that S(γ, w) = 0 if and only if w is a solution of

−∆pw = F̃ (γ, w) in Ω,

w = 0 on ∂Ω.

}
(3.2)

https://doi.org/10.1017/S0308210515000220 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000220


Positive solutions for p-Laplacian superlinear semipositone problems 929

In particular, for γ = 0, we have that S(0, w) = 0 if and only if w is a solution of

−∆pw = b|w|q in Ω,

w = 0 on ∂Ω.

}
(3.3)

To prove theorem 1.1, we shall first compute the degree of S(0, ·) as follows.

Lemma 3.1. There exist 0 < r < R such that S(0, w) �= 0 for all w ∈ X with
‖w‖∞ ∈ {r, R} and deg(S(0, ·), BR(0) \ B̄r(0), 0) = −1.

Proof. First, for η ∈ [0, 1], consider

−∆pw = ηp−1b|w|q in Ω,

w = 0 on ∂Ω

}
(3.4)

and assume that (3.4) has a solution with ‖w‖∞ = r. Then, using (2.2), we obtain

rp−1 = ‖w‖p−1
∞ � C‖ηp−1b|w|q‖∞ � Cb‖w‖q

∞ = Cbrq.

Since q > p − 1, we arrive at a contradiction for r � 1. Thus, there exists r > 0
small enough that (3.4) does not have a solution w with ‖w‖∞ = r. Now it is easy
to see, using the operator equation w −ηKF̃ (0, w) = 0 and homotopy invariance of
degree with respect to η ∈ [0, 1], that deg(S(0, ·), Br(0), 0) = deg(I, Br(0), 0) = 1.

Next, letting h(s) = b|s|q in proposition 2.3, there exists R > 0 such that all
solutions of (t, w) of St(0, w) = 0, i.e. of

−∆pw = b|w + t|q in Ω,

w = 0 on ∂Ω,

t � 0,

⎫⎪⎬
⎪⎭ (3.5)

satisfy ‖w‖∞ + t < R. Hence, St(0, w) �= 0 for any w ∈ ∂BR(0) and for any t � 0.
In particular, we can conclude that there are no solutions to (3.5) in BR(0) for
any t � R. Therefore, deg(St(0, ·), BR(0), 0) = 0 for all t � R. Then, using the
homotopy invariance of degree with respect to t ∈ [0, R], we have

deg(S(0, ·), BR(0), 0) = deg(S0(0, ·), BR(0), 0) = deg(SR(0, ·), BR(0), 0) = 0.

Then the excision property of the degree yields

deg(S(0, ·), BR(0) \ B̄r(0), 0) = −1.

Now we compute the degree of S(γ, ·) by connecting S(γ, ·) and S(0, ·) using the
homotopy invariance of degree with respect to γ. In particular, this will imply that
S(γ, w) = 0 has a solution w satisfying r < ‖w‖∞ < R. Then we show that this
solution, that is, the solution of the rescaled problem, (3.2), is positive in Ω for γ
small.

Lemma 3.2. There exists γ0 > 0 such that

(i) deg(S(γ, ·), BR(0) \ B̄r(0), 0) = −1 for all γ ∈ [0, γ0],

(ii) if S(γ, w) = 0 for γ ∈ [0, γ0] with r < ‖w‖∞ < R, then w > 0 in Ω.
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Proof. We shall show that there exists γ0 > 0 such that S(γ, w) �= 0 for all ‖w‖∞ ∈
{r, R} and all γ ∈ [0, γ0]. Suppose to the contrary that there exist γn → 0 with
‖wn‖∞ ∈ {r, R} and S(γn, wn) = 0. Since K is compact and {F̃ ((γn, wn))} are
bounded in L∞(Ω), by proposition 2.1, wn → w in C1

0 (Ω̄) (up to a subsequence)
where ‖w‖∞ = r or R and S(0, w) = 0. This is a contradiction to lemma 3.1. Hence,
due to the homotopy invariance of degree with respect to γ ∈ [0, γ0], we have that
deg(S(γ, ·), BR(0) \ B̄r(0), 0) = deg(S(0, ·), BR(0) \ B̄r(0), 0) = −1. This completes
the proof of part (i).

We proceed to prove part (ii) by contradiction. Suppose there exist γn → 0
and corresponding solution wn of (3.2) such that, for all n, r < ‖wn‖∞ < R,
S(γn, wn) = 0 and Ωn := {x ∈ Ω : wn(x) � 0} �= ∅. Using the same argument as
above, wn → w in C1

0 (Ω̄) (up to a subsequence), where w satisfies (3.3). But one
has w > 0 in Ω and ∂w/∂η < 0 on ∂Ω by [21, theorem 5]. Now let {xn} ∈ Ωn.
Then there exists a subsequence of {xn} (without loss of generality we can call this
subsequence {xn}) that converges to some z ∈ Ω̄. However, w > 0 in Ω, and hence
z ∈ ∂Ω. Now let x̃n be the point on ∂Ω closest to xn. Then µn = (x̃n−xn)/|x̃n−xn|
will be the outward unit normal to ∂Ω at x̃n. Since wn(xn) � 0 and wn(x̃n) = 0,
there exist {yn}, with yn belonging to the line segment joining xn, and x̃n such
that (∇wn · µn)|yn

� 0. Letting n → ∞, we obtain ∂w/∂η(z) � 0, a contradiction.
Hence, for large n, wn(x) > 0 for all x ∈ Ω. This completes the proof of (ii).

Now we complete the proof of the existence part of theorem 1.1. By lemma 3.2,
we have that (3.2) has a positive solution w := w(γ) ∈ BR(0) \ B̄r(0) for all
γ ∈ [0, γ0]. But the rescaling λ = γq−p+1 implies that (1.1) has a positive solution
u := γ−1w = λ1/(p−q−1)w for 0 < λ � λ0 := γq−p+1

0 . Finally, since ‖w‖∞ > r > 0
for all γ ∈ [0, γ0], we have ‖u‖∞ = ‖w‖∞/γ → +∞ as γ → 0. But λ → 0 if and
only if γ → 0, and consequently ‖u‖∞ → +∞ as λ → 0.

Moreover, using (i) and (ii) of lemma 3.2, it follows from proposition 2.4 that there
exists a connected component C (continuum) of positive solutions to S(γ, w) = 0
for γ ∈ [0, γ0] such that C connects the set C ∩ ({0} × (BR(0) \ B̄r(0))) with the
set C ∩ ({γ0} × (BR(0) \ B̄r(0))). This in turn implies that there exists a connected
component of positive solutions of (1.1) bifurcating from infinity at λ∞ = 0. This
completes the proof of the theorem.

4. Systems case

Here we consider a quasilinear system of the form

−∆p1u = λf(v) in Ω,

−∆p2v = λg(u) in Ω,

u = 0 = v on ∂Ω,

⎫⎪⎪⎬
⎪⎪⎭ (4.1)

where Ω ⊂ R
N , N > max{p1, p2}, is as before a strictly convex bounded domain.

The study of this special system is motivated by earlier work in [7, 8], where the
case p1 = p2 = 2 was considered.
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By a solution of (4.1), we mean a (λ, (u, v)) that solves (4.1) in the weak sense,
that is, (u, v) ∈ W 1,p1

0 (Ω) × W 1,p2
0 (Ω) and satisfies∫

Ω

|∇u|p1−2∇u · ∇ϕ dx = λ

∫
Ω

f(v)ϕ dx,

∫
Ω

|∇v|p2−2∇v · ∇ψ dx = λ

∫
Ω

g(u)ψ dx

for all (ϕ, ψ) ∈ W 1,p1
0 (Ω) × W 1,p2

0 (Ω). Furthermore, if u > 0 and v > 0 in Ω, then
(λ, (u, v)) is called a positive solution.

We say that λ∞ is a bifurcation point from infinity if the solution set

S := {(λ, (u, v)) ∈ R × W 1,p1
0 (Ω) × W 1,p2

0 (Ω) : λ and (u, v) solves (4.1)}

contains a sequence (λn, (un, vn)) such that

λn → λ∞ and max{‖un‖∞, ‖vn‖∞} → ∞.

First, we state the following a priori bound result, analogous to proposition 2.3
for the scalar case, which allows us to state our theorem precisely.

Proposition 4.1 (Azizieh et al . [5, theorem 1.1]). Consider

−∆p1w1 = h1(|w2(x)| + t) in Ω,

−∆p2w2 = h2(|w1(x)| + t) in Ω,

w1 = 0 = w2 on ∂Ω,

t � 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.2)

where h1, h2 : [0,∞) → [0,∞) are continuous functions. Assume that one of the
following conditions holds:

(a) p1, p2 ∈ (1, 2) and h1, h2 : [0,∞) → [0,∞) are strictly increasing;

(b) p1 ∈ (1,∞), p2 = 2 and h1, h2 : R → [0,∞) are increasing on [0,∞).

Moreover, suppose that h1, h2 are continuous on [0,∞), locally Lipschitz continuous
on [0,∞) and satisfy

(c) C1s
q1 � h1(s) � C2s

q1 , D1s
q2 � h2(s) � D2s

q2 for all s ∈ [0,∞) for some
constants C1, C2, D1, D2 > 0.

Then if q1q2 > (p1 − 1)(p2 − 1) and

max
{

p2q1 + p1(p2 − 1)
q2q1 − (p1 − 1)(p2 − 1)

− N − p1

p1 − 1
,

p1q2 + p2(p1 − 1)
q2q1 − (p1 − 1)(p2 − 1)

− N − p2

p2 − 1

}
� 0,

(4.3)
then there exists a constant R > 0 such that

‖w1‖C1 + ‖w2‖C1 + t � R

for any solution (t, w1, w2) with t � 0.
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Remark 4.2. Note that condition (4.3) is equivalent to either one of the following
inequalities:

q1 � p1(p2 − 1)
N − p2

+
N(p2 − 1)(p1 − 1)

N − p2

1
q2

,

q2 � p2(p1 − 1)
N − p1

+
N(p1 − 1)(p2 − 1)

N − p1

1
q1

.

⎫⎪⎪⎬
⎪⎪⎭ (4.4)

The range of q1 and q2 given by (4.3) is the region bounded by the (q1, q2)-axes and
the two hyperbolas obtained by setting equalities in (4.4).

Now we state our result.

Theorem 4.3. Let f, g : [0,∞) → R be continuous functions satisfying f(0) < 0
and g(0) < 0. Assume that either (a) or (b) of proposition 4.1 holds. Then if
q1q2 > (p1 − 1)(p2 − 1) and there exist positive numbers b1, b2 satisfying

lim
s→∞

f(s)
sq1

= b1 > 0 and lim
s→∞

g(s)
sq2

= b2 > 0, (4.5)

where p1, p2, q1 and q2 satisfy (4.4), then (4.1) has a positive solution for λ > 0
small.

Moreover, there exists a connected component C(⊂ S), consisting of positive solu-
tions, bifurcating from infinity at λ∞ = 0.

Remark 4.4. In the case of superlinear systems, in particular with semipositone
structure, the only known result is in an annulus (see [15]). See also [5], where
Azizieh et al . prove existence of positive solutions under the assumptions of propo-
sition 4.1 but without semipositone structure on the nonlinearities.

Proof. The proof of this theorem uses the same functional setting and abstract
theorem as the scalar case, except for the uniform a priori bound result (proposi-
tion 4.1). For completeness, we give an outline where the details of the extension to
systems from the scalar case are trivial, and provide more detail where necessary.

First, extend f and g as even functions on R by setting f(s) := f(−s) and
g(s) := g(−s), and define F (s) := f(s)− b1|s|q1 , G(s) := g(s)− b2|s|q2 for all s ∈ R.

The rescaling for the systems case is technically complicated and thus we provide
the details below.

Let

λ = γδ; w1 = γθ1u, w2 = γθ2v, γ > 0,

where δ, θ1 and θ2 are to be determined. We wish to determine these parameters
so that the rescaled problem corresponding to (4.1) approaches

−∆p1w1 = b1|w2|q1 in Ω,

−∆p2w2 = b2|w1|q2 in Ω,

w1 = 0 = w2 on ∂Ω

⎫⎪⎬
⎪⎭ (4.6)
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as γ → 0. With this in mind, we see that w1 formally satisfies

−∆p1w1 = −∆p1(γ
θ1u)

= γθ1(p1−1)(−∆p1u)

= γθ1(p1−1)λf(v)

= γθ1(p1−1)γδf(w2/γθ2)

= γθ1(p1−1)+δf(w2/γθ2)

= γθ1(p1−1)+δ[f(w2/γθ2) − b1|w2/γθ2 |q1γθ2q1−(θ1(p1−1)+δ)] + b1|w2|q1

= γθ1(p1−1)+δF (w2/γθ2) + b1|w2|q1

if
θ2q1 − θ1(p1 − 1) − δ = 0. (4.7)

Similarly, using the other equation, w2 formally satisfies

−∆p2w2 = γθ2(p2−1)+δG(w1/γθ1) + b2|w1|q2

if
θ1q2 − θ2(p2 − 1) − δ = 0. (4.8)

From (4.7) and (4.8), we get

θ2 = θ1
q2 + p1 − 1
q1 + p2 − 1

. (4.9)

Letting θ1 = 1, we have

δ =
q1q2 − (p1 − 1)(p2 − 1)

q1 + p2 − 1
. (4.10)

Define F̃ (γ, s2) := γθq1F (s2/γθ) + b1|s2|q1 and G̃(γ, s1) := γq2G(s1/γ) + b2|s1|q2

for γ > 0 and (s1, s2) ∈ R × R, where θ := θ2 and δ is given by (4.10). Then, using
(4.5), we see that

lim
γ→0

F̃ (γ, s2) = b1|s2|q1 and lim
γ→0

G̃(γ, s1) = b2|s1|q2 .

Therefore, F̃ (γ, s2) and G̃(γ, s1) are continuous on [0,∞)×R. It is then easy to see
that (w1, w2) satisfy

−∆p1w1 = F̃ (γ, w2) in Ω,

−∆p2w2 = G̃(γ, w1) in Ω,

w1 = 0 = w2 on ∂Ω.

⎫⎪⎬
⎪⎭ (4.11)

Let X := C0(Ω̄)×C0(Ω̄) with norm ‖(u, v)‖X := max{‖u‖∞, ‖v‖∞}, where ‖·‖∞
denotes the usual supremum norm in C0(Ω̄). For fixed γ � 0 and w := (w1, w2),
define the map S(γ, ·) : X → X by

S(γ, w) := w − (Kp1 F̃ (γ, w2), Kp2G̃(γ, w1)).

Since Kpi : L∞(Ω) → C1
0 (Ω̄) for i = 1, 2 are compact and the Nemytskii operators

F̃ (γ, ·), G̃(γ, ·) : C0(Ω̄) → L∞(Ω) are continuous, S(γ, ·) is a compact perturbation
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of the identity. We note that, for γ � 0, S(γ, w) = 0 if and only if w is a solution
of (4.11). In particular, S(0, w) = 0 if and only if w is a solution of (4.6).

Due to the abstract functional setting of our problem, we see that the degree
computations of S(γ, ·) for γ = 0 and γ � 0 give same lemmas as in the scalar case.
Proofs of these lemmas require some modifications, which we indicate below.

Lemma 4.5. There exist 0 < r < R such that S(0, w) �= 0 for all w ∈ X with
‖w‖X ∈ {r, R} and deg(S(0, ·), BR(0) \ B̄r(0), 0) = −1.

Proof. First, for η ∈ [0, 1], consider

−∆p1w1 = ηp1−1b1|w2|q1 in Ω,

−∆p2w2 = ηp2−1b2|w1|q2 in Ω,

w1 = 0 = w2 on ∂Ω

⎫⎪⎬
⎪⎭ (4.12)

and assume that (4.12) has a solution with ‖w‖X = r. Without loss of generality,
assume ‖w‖X = ‖w1‖∞ = r. Observe that, by proposition 2.2, for each i = 1, 2,
there exists a constant Ci > 0 such that (2.2) holds true with p = pi and C = Ci.
Then, using both equations of (4.12), we obtain

rp1−1 = ‖w1‖p1−1
∞

� C1‖ηp1−1b1|w2|q1‖∞

� C1b1‖w2‖q1
∞

� C1b1(C2b2)1/(p2−1)(‖w1‖∞)q1q2/(p2−1)

= C1b1(C2b2)1/(p2−1)rq1q2/(p2−1),

which is a contradiction for r � 1 since q1q2 > (p1 − 1)(p2 − 1). Thus, there
exists r > 0 small enough that (4.12) does not have a solution w with ‖w‖X = r.
The rest of the argument is identical except that we take h1(s2) = b1|s2|q1 and
h2(s1) = b2|s1|q2 in proposition 4.1 to prove the existence of large R > 0 such that
deg(S(0, ·), BR(0), 0) = 0.

Lemma 4.6. There exists γ0 > 0 such that

(i) deg(S(γ, ·), BR(0) \ B̄r(0), 0) = −1 for all γ ∈ [0, γ0],

(ii) if S(γ, w) = 0 for γ ∈ [0, γ0] with r < ‖w‖X < R, then w > 0 in Ω.

Proof. Suppose to the contrary that there exists a sequence (γn, (w1n
, w2n

)) with
γn → 0 without loss of generality, with

‖(w1n , w2n)‖X ∈ {r, R} and S(γn, (w1n , w2n)) = 0.

By arguments similar to those in lemma 3.2, win → wi in C1
0 (Ω̄) (up to a subse-

quence), where ‖(w1, w2)‖X = r or R and S(0, (w1, w2)) = 0, which is a contradic-
tion to lemma 4.5.

Hence, due to the homotopy invariance of degree with respect to the parameter
γ ∈ [0, γ0], we have that

deg(S(γ, ·), BR(0) \ B̄r(0), 0) = deg(S(0, ·), BR(0) \ B̄r(0), 0) = −1.

This completes the proof of part (i).
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Part (ii) follows as in the scalar case by noting that wi > 0 in Ω and ∂wi/∂η < 0
on ∂Ω by [21, theorem 5] for i = 1, 2, where w = (w1, w2) ∈ BR(0) \ B̄r(0) is a
solution of the limiting system (4.6).

By lemma 4.6, (4.11) has a positive solution (w1, w2) := (w1(γ), w2(γ)) ∈ BR(0)\
B̄r(0) for γ ∈ [0, γ0]. This in turn implies that (4.1) has a positive solution (u, v)
where u := γ−1w1 and v := γ−δθw2 for 0 < λ � λ0 := γδ

0 . Since ‖(w1, w2)‖X > r >
0, it is easy to see that ‖(u, v)‖X → ∞ as λ → 0.

The last part of the theorem follows, as in the scalar case, from (i) and (ii) of
lemma 4.6 and proposition 2.4. This completes the proof.

Example 4.7. An example satisfying the hypotheses of theorem 4.3 is

−∆p1u = λ(b1v
q1 − ε1) in Ω,

−∆p2v = λ(b2u
q2 − ε2) in Ω,

u = 0 = v on ∂Ω,

where bi, εi are positive, pi satisfy part (a) or (b) of proposition 4.1 and the qi

satisfy (4.4) for each i = 1, 2.

Remark 4.8. When p1 = p2 = 2, (4.4) becomes one of the following:

q1 � 2
N − 2

+
N

N − 2
1
q2

,

q2 � 2
N − 2

+
N

N − 2
1
q1

.

⎫⎪⎪⎬
⎪⎪⎭ (4.13)

The (q1q2)-region given by these inequalities is smaller than that given by the
critical hyperbola condition,

1
q1 + 1

+
1

q2 + 1
>

N − 2
N

, N � 3, (4.14)

for which the existence of a positive solution for λ small was established in [7].
Furthermore, if q1 = q2 = q, the critical hyperbola condition gives a wider growth

range (1 < q < (N + 2)/(N − 2)) than the one given in (4.4) (1 < q � N/(N − 2));
see remark 1.2.

Remark 4.9. For the case p1 = p2 = 2, the rescaling given by (4.10) agrees with
that obtained in [7] with δ = (q1q2 − 1)/(q1 + 1), θ1 = 1 and θ2 = (q2 + 1)/(q1 + 1).
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