Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-02-06T14:13:30.654Z Has data issue: false hasContentIssue false

Existence and conditional energetic stability of solitary gravity–capillary water waves with constant vorticity

Published online by Cambridge University Press:  08 July 2015

M. D. Groves
Affiliation:
FR 6.1 – Mathematik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany, (groves@math.uni-sb.de) and Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
E. Wahlén
Affiliation:
Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden, (erik.wahlen@math.lu.se)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present an existence and stability theory for gravity–capillary solitary waves with constant vorticity on the surface of a body of water of finite depth. Exploiting a rotational version of the classical variational principle, we prove the existence of a minimizer of the wave energy 𝓗 subject to the constraint 𝓘 = 2µ, where 𝓘 is the wave momentum and 0 < µ ≪ 1. Since 𝓗 and 𝓘 are both conserved quantities, a standard argument asserts the stability of the set Dµ of minimizers: solutions starting near Dµ remain close to Dµ in a suitably defined energy space over their interval of existence. In the applied mathematics literature solitary water waves of the present kind are described by solutions of a Korteweg–de Vries equation (for strong surface tension) or a nonlinear Schrödinger equation (for weak surface tension). We show that the waves detected by our variational method converge (after an appropriate rescaling) to solutions of the appropriate model equation as µ ↓ 0.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2015