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We present an existence and stability theory for gravity—capillary solitary waves with
constant vorticity on the surface of a body of water of finite depth. Exploiting a
rotational version of the classical variational principle, we prove the existence of a
minimizer of the wave energy H subject to the constraint Z = 2u, where Z is the
wave momentum and 0 < g < 1. Since ‘H and Z are both conserved quantities, a
standard argument asserts the stability of the set D, of minimizers: solutions
starting near D, remain close to D, in a suitably defined energy space over their
interval of existence. In the applied mathematics literature solitary water waves of
the present kind are described by solutions of a Korteweg—de Vries equation (for
strong surface tension) or a nonlinear Schrédinger equation (for weak surface
tension). We show that the waves detected by our variational method converge (after
an appropriate rescaling) to solutions of the appropriate model equation as y | 0.
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1. Introduction

1.1. Variational formulation of the hydrodynamic problem
1.1.1. The water-wave problem

In this paper we consider a two-dimensional perfect fluid bounded below by a
flat rigid bottom {y = 0} and above by a free surface {y = d + n(z,t)}. The
fluid has unit density and flows under the influence of gravity and surface tension
with constant vorticity w so that the velocity field (u(z,y,t),v(x,y,t)) in the fluid
domain ¥, = {0 <y < d+n(z,t)} satisfies v, — u, = w. We study waves that are
perturbations of underlying shear flows given by n = 0 and (u,v) = (w(d — ¥),0)
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(which may be a good description of tidal currents: see Constantin [12, ch. 2.3.2])
and are evanescent as x — +00. In terms of a generalized velocity potential ¢ such
that (u,v) = (¢z+w(d—y), ¢,) and stream function ¢ such that (u,v) = (¢Yy, =),
the governing equations are

A¢ =0, O<y<d+n,
¢y207 y =0,
Nt = Oy — NPz + WNNa, y=d+mn,

Nz
V31+n2

with n(z,t), d(x, y,t), ¥(z,y,t) + %w(d —y)2 = 0 as x — oo, where g and 3
are the acceleration due to gravity and the (positive) coefficient of surface tension,
respectively (see Constantin et al. [14]).

At this point it is convenient to introduce dimensionless variables

¢tﬂV¢Fwwgn+ﬁ{ }, y=d+mn,

1/2
@) =g ¢ =(4)
1 1 1
n/(xlvtl) = gn(%t)v d)/(fl)/,t,) = W¢(xvt)7 ¢,($/,t/) = W¢(Iat)

and parameters W’ = w(d/g)'/?, 3 = 3/gd?; one obtains the equations

Ap =0, O<y<1l+mn, (1.1)

¢y:0, y:07

77t:¢y_77w¢x + wnng, y=1+n,

L R | AR (14)
v3itnils

in which the primes have been dropped for notational simplicity. In particular,
we seek solitary-wave solutions of (1.1)—(1.4), that is, waves of permanent form
that propagate from right to left with constant (dimensionless) speed v, so that
n(z,t) = n(z + vt) (and of course n(x + vt) — 0 as x + vt — +00).

1.1.2. Formulation as a Hamiltonian system

We proceed by reducing the hydrodynamic problem to a pair of non-local coupled
evolutionary equations for the variables 7 and § = ¢|y=14,. For fixed n and &, let
¢ denote the unique solution to the boundary-value problem

Ap=0, 0<y<l+n,
p=¢ y=1+n,
(by:Oa yzoa

and denote the harmonic conjugate of ¢ by @Z We define the Hilbert transform H(n)
and Dirichlet-Neumann operator G(n) for this boundary-value problem by

H(??)S = 7[’|y:1+n7 G(n)& = (¢y - nx¢x)|y:1+m
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so that G(n) = —9, H(n) and note that the boundary conditions (1.3), (1.4) can be
written as

Nt = G(n)é + wnNz,
1

&t = —m(fi — (G(M)&)? — 2m&G(n)€)

+omé, —wHn)E —n+ ﬁ[%

\/]-+7732r;:|x

Wahlén [25] observed that the above equations can be formulated as the Hamil-
tonian system
e\ 0 1 57]7'[
()= (5 wor) () &

H(n, &) = / (AEGME+ wemms + 20Pn* + 4n* + B(V/1+n2 —1))dz  (1.6)

— 00

in which

(note that the well-known formulation of the water-wave problem by Zakharov [26]
is recovered in the irrotational case w = 0). This Hamiltonian system has the
conserved quantities H (7, ) (total energy) and

7.6 = | " (ene + ton?) da (L.7)

— 00

(total horizontal momentum), which satisfies the equation

(Zfﬁ) - (—01 w(;;l) (‘;ﬁ) (1.8)

these quantities are associated with its independence of ¢ and =z, respectively.
According to (1.5) and (1.8), a solution of the form n(z,t) = n(x + vt), &(z,t) =
&(x + vt) is characterized as a critical point of the total energy subject to the con-
straint of fixed momentum (cf. Benjamin [4]). It is therefore a critical point of the
functional H — vZ, where the speed of the wave is given by the Lagrange multiplier
v. This functional depends on the single independent variable = + vt, which we now
abbreviate to x.

A similar variational principle for waves of permanent form with a general distri-
bution of vorticity has been used by Groves and Wahlén [16] in an existence theory
for solitary waves. Groves and Wahlén interpreted their variational functional as
an action functional and derived a formulation of the hydrodynamic problem as an
infinite-dimensional spatial Hamiltonian system; a rich solution set is found using
a centre-manifold reduction technique to convert it into a Hamiltonian system with
a finite number of degrees of freedom.

In this paper we present a direct existence theory for minimizers of H subject to
the constraint Z = 2u for 0 < pu < pg, where g is a fixed positive constant chosen
small enough for the validity of our calculations. We seek constrained minimizers
in a two-step approach.
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(1) Fiz n # 0 and minimize H(n,-) over T), = {{: Z(n,&) = 2u}. This problem (of
minimizing a quadratic functional over a linear manifold) admits a unique global
minimizer &,.

(2) Minimize J,(n) == H(n,&,) over n € U\ {0}. Here U is a fixed ball centred
upon the origin in a suitable function space. Because &, minimizes H(n,-) over T,
there exists a Lagrange multiplier v, such that

G(n)&n + wn' = vy,

and straightforward calculations show that

& =vyG(n) ' = 2wG(n) " (n?),

0o —1 00 0o
1 _ w w .
vy = (2/ n'G(n) 177’dx) (u— Z/ n* dz + Z/ (7*)'G(n) 1n'dm>

so that

Tuln) = Kn) + (19)
where
G(n) = %/_ K (n)ndx — %/_ n? dz, (1.10)
ko= [ (L+oiTrE-1)a
_“’2/0; ZK(n)de—&—%/Zn:;dx, (1.11)
=3 [ ks (1.12)

and K(n) = —9,G(n)"10,. This computation also shows that the dimensionless
speed of a solitary wave corresponding to a constrained minimizer i of H is

p+Gn)

L(n)

This two-step approach to the constrained minimization problem was introduced
in a corresponding theory for irrotational solitary waves by Buffoni [5] who used a
conformal mapping due to Babenko [1,2] to transform 7, into another functional ju
depending only upon H(0), and hence simplified the necessary variational analysis.
Buffoni established the existence of a (non-zero) minimizer of 7, for strong surface
tension (see Buffoni [5]) and obtained partial results in this direction for weak
surface tension (see Buffoni [6,7]). A method for completing his results for weak
surface tension was sketched in a short note by Groves and Wahlén [17]; in the
present paper we give complete details, including non-zero vorticity in our treatment
and working directly with the original physical variables. Although versions of the
Babenko transformation for non-zero constant vorticity have been published (see
Constantin and Varvaruca [13] and Martin [23]), finding minimizers of 7, over
U \ {0} has the advantage of immediately yielding precise information on solutions
to the original water-wave equations (1.1)—(1.4).
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1.1.3. Functional-analytic framework

An appropriate functional-analytic framework for the above variational problem
is introduced in §2. We work with the function spaces

H'(R) = (SR), [ [I),  Inli? := /Oo (1+ k)77 dk,

— 00

for r € R (the standard Sobolev spaces) and

1/2 > - .
H*/ (R) = (S(R), || - HHi/z(R))a ||77||i1*1/2(R) = / (1+k?) 1/2k2|77‘2dk7
—1/2 = > —9).
HV2(R) = @[y g = [ (14 B2
here (S(R), || - |) denotes the completion of the inner product space constructed by
equipping the Schwartz class S(R) (or the subclass S(R) of Schwartz-class functions
with zero mean) with the norm || - ||, and ) = F[n] is the Fourier transform of 7.

The mathematical analysis of G(n) and K(n) is complicated by the fact that
they are defined in terms of boundary-value problems in the variable domain X,,.
Lannes [20, ch. 2 and 3] has presented a comprehensive theory for handling such
boundary-value problems by transforming them into serviceable nonlinear elliptic
problems in the fixed domain Y, and here we adapt Lannes’s methods to our spe-
cific requirements. Our main results are stated in the following theorem, according
to which equations (1.10)-(1.12) define analytic functionals G,kC, £: W*+3/2 5 R
for s > 0. In accordance with this theorem we take U = By(0) C H?(R), where
M > 0 is chosen small enough so that Bys(0) € H?(R) lies in W*+3/2 and for the
validity of our calculations.

THEOREM 1.1. Choose hg € (0,1) and define W = {n € WH*(R): 1 +infn > ho}
and W™ =H"OW forr > 0.

(i) The Dirichlet-Neumann operator G(n) is an isomorphism
HYR) - HYA(R)
for eachn e W.

(ii) The Dirichlet-Neumann operator G: W — ﬁ(Hi/Q(R),H*_l/Q(]R)) and Neu-
mann—Dirichlet operator G=1: W — £(H:1/2 (R), i/Z(R)) are analytic.

(iii) The operator K: Wst3/2 — L(H*T3/2(R), H*1/2(R)) is analytic for each
5> 0.

1.2. Heuristics

The existence of small-amplitude solitary waves is predicted by studying the
dispersion relation for the linearized version of (1.1)—(1.4). Linear waves of the
form n(z,t) = cos k(xz + vt) exist whenever

14+ Bk? —wv —v2f(k) =0, f(k)=|k|coth K|,
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Figure 1. Dispersion relation for linear water waves.

that is, whenever

w 1/ w? 4(1 4 BK?) 1/2
2<f > '

YT o e \gmr T T W)

The function k — v(k), k > 0, has a unique global minimum vg = v(kg), and one
finds that ko > 0 for 3 < ; and ko = 0 (with vy = v(0) = 3(—w + Vw? +4)) for

B > B, where
Be = t(w® +2—wyVw?+4)

(see figure 1). For later use let us also note that
g(k) =14 Bk* —wvo — 15 f(k) =20, kER,

with equality precisely when k = +kq.

Bifurcations of nonlinear solitary waves are expected whenever the linear group
and phase speeds are equal, so that v/(k) = 0 (see Dias and Kharif [15, §3]). We
therefore expect the existence of small-amplitude solitary waves with speed near
vg; the waves bifurcate from laminar flow when 3 > 3. and from a linear periodic
wave train with frequency kov (ko) when 8 < .. Model equations for both types of
solution have been derived by Johnson [19, §§4 and 5].

CASE 1 (8 > f.). The appropriate model equation is the Korteweg—de Vries equa-
tion

2
—2up — (ﬁ - l;)O)UXXX + (w? + 3)uux = 0, (1.13)
in which
n = p*3u(X,T) 4+ O(u*?), X =pBx+uwot), T=2w?+4)"Y2u%3.

At this level of approximation, a solution to (1.13) of the form u(X,T) = ¢(X +
vkavT) with ¢(X) — 0 as X — foo corresponds to a solitary water wave with
speed

v =1+ 2w+ 4)_1/2u2/3yKdv = —%w + %(u}2 + 4)1/2 +2(w? + 4)_1/2u2/3VKdV.

The following lemma gives a variational description of the set of such solutions; the
corresponding solitary waves are sketched in figure 2.
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<

Figure 2. Korteweg—de Vries theory predicts the existence of small-amplitude
solitary waves of depression for strong surface tension.
LEMMA 1.2.
(i) The set of solutions to the ordinary differential equation
—(B—3v8)¢" — 2ukavo + 3(30° +1)¢° = 0
satisfying ¢(X) — 0 as X — 00 is Dkav = {¢kav(- +y): y € R}, where
2(1%)2/3(%002 4 1)4/3

VKdV:_(ﬁ—%yg)l/?’(wz—i—ll)l/?”

V) S GWE £ D () G )
(8= 3By 4) 7 (B = Ty + 978)°

Prav(r) = —

These functions are precisely the minimizers of the functional Exay: H'(R) —
R given by
1 o0
Saav(@) =5 [ (0= 30 + (b + 1)6%) da
over the set Nxay = {¢ € H*(R): ||¢||3 = 2axav}; the constant 2vkay is the
Lagrange multiplier in this constrained variational principle and
9(2)1/3(%(.02 + 1)4/3

cxav = inffEav(9): ¢ € Neavh = =75 ayiia e ayore

Here the numerical value axgy = 2(w? + 4)*1/2 is chosen for compatibility
with an estimate (see proposition 5.4) in the following water-wave theory.

(i1) Suppose that {¢;,} C Ngav is a minimizing sequence for Exqy. There exists a
sequence {Tm } of real numbers with the property that a subsequence of {pm (-+
xm)} converges in H'(R) to an element of Dxay -

CASE 2 (8 < ). The appropriate model equation is the cubic nonlinear Schro-
dinger equation
247 — 29" (ko) Axx + 3(3 A5 + Ay)|APA =0, (1.14)
in which
0= Lu(A(X, T)elo @00 4 6.0+ O(s2),
X = p(x + vot), T = 4ko(w + 2uvo f (ko)) pt
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and Az, A4 are functions of § and w that are given in corollary 4.25 and propo-
sition 4.28; the abbreviation ‘c.c.” denotes the complex conjugate of the preceding
quantity. (It is demonstrated in Appendix B that As + 2A, is negative.) At this
level of approximation, a solution to (1.14) of the form A(X,T) = e"tsT¢(X) with
?(X) — 0 as X — +o0 corresponds to a solitary water wave with speed

v =1+ 4w+ 2 f (ko)) p*vnLs.

The following lemma gives a variational description of the set of such solutions (see
Cazenave [10, §8]); the corresponding solitary waves are sketched in figure 3.

LEMMA 1.3.
(i) The set of complex-valued solutions to the ordinary differential equation
—39"(ko)¢" — 2unLse + 5 (345 + Aa)|6[*¢ = 0
satisfying ¢(X) — 0 as X — oo is
Dnis = {€“onis(- +y): w € [0,27), y € R},

where

9a2NLS A3 2
= - — 4+ A
UNLS 8" (ko) \ 2 + Ay,

— 3 A3 1/2 SaNLS A3
st~y () o (255441

These functions are precisely the minimizers of the functional Exps: H'(R) —
R given by

Exis(6) = / (1" (k)¢ 2 + B(L A5 + Ag)|pf*) do

—0o0

over the set Nnrs = {¢ € HY(R): ||§||2 = 2anrs}; the constant 2uxys is the
Lagrange multiplier in this constrained variational principle and

. 3a3NLS A3 2
enws i= inf{&nws(4): ¢ € NnLs} = — Al

49" (ko) \ 2
Here the numerical value anxrs = 3(5vo0f(ko) + tw) ™! is chosen for com-
patibility with an estimate (see proposition 5.10) in the following water-wave
theory.

(ii) Suppose that {¢,} C NNis is a minimizing sequence for Exvs. There exists a
sequence {xm} of real numbers with the property that a subsequence of {¢p, (-+
xm)} converges in H(R) to an element of DyLs.-
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Figure 3. Nonlinear Schrédinger theory predicts the existence of
small-amplitude envelope solitary waves for weak surface tension.

1.3. The main results

In this paper we establish the existence of minimizers of the functional J,, over
U\ {0} and confirm that the corresponding solitary water waves are approximated
by suitable scalings of the functions ¢xqy (for 5 > G.) and ¢nis (for 8 < (.). The
following theorem states these results more precisely.

THEOREM 1.4.
(i) The set B, of minimizers of J,, over U\ {0} is non-empty.
(i) Suppose that {nm} is a minimizing sequence for J,, on U \ {0} that satisfies

sup [|nm |2 < M.
meN

There exists a sequence {x,,} C R with the property that a subsequence of
{Nm(zm + )} converges in H"(R), r € [0,2), to a function n € B,,.

(ili) Suppose that 3> B.. The set B,, of minimizers of J, over U \ {0} satisfies
sup inf [[¢; — dxav (- +2)[1 — 0
nEB, zeR

as p | 0, where we write
m(@) = p*3¢,(p! )

and 11 1s obtained from n by multiplying its Fourier transform by the charac-
teristic function of the interval [—dg, o] with 69 > 0. Furthermore, the speed
v, of the corresponding solitary water waves satisfies

Vp = 1o+ 2(w? +4) " 2ugavp®’® + o(p?/?)
uniformly over n € B,.
(iv) Suppose that 3 < B.. The set B, of minimizers of J,, over U \ {0} satisfies

sup inf ||¢, — €“énrs(- + @)1 — 0
neB, we[%ﬂ%ﬂ']’
xr
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as i1 0, where we write
i () = by (pa)eo”

and 0y is obtained from n by multiplying its Fourier transform by the char-
acteristic function of the interval [ko — o, ko + do] with §g € (0,ko/3). Fur-
thermore, the speed v,, of the corresponding solitary water waves satisfies

vy =vo + 4w + 200 f (ko)) ' wnwsp® + o(p?)
uniformly over n € B,.

The first part of theorem 1.4 is proved by reducing it to a special case of the sec-
ond. We proceed by introducing the coercive penalized functional 7, ,: H*(R) —
R U {0} defined by

) + I o), e v ok

where p: [0, M?) — R is a smooth increasing ‘penalization’ function that explodes
to infinity as ¢ 1 M? and vanishes for 0 < t < M2; the number M is cho-
sen very close to M. Minimizing sequences {n,,} for 7, ,, which clearly satisfy
SUPen |7mll2 < M, are studied in detail in § 3 with the help of the concentration-
compactness principle (see Lions [21,22]). The main difficulty here lies in discussing
the consequences of ‘dichotomy’.

On the one hand the functionals G, K and £ are non-local and therefore do not
act linearly when applied to the sum of two functions with disjoint supports. They
are, however, ‘pseudo-local’ in the sense that

Tou (n) =

g g g
Kol +0) =Ko () = (K p (0R)) =0
c c c

as m — 0o, where {177(71)}7 {77,(7%)} have the properties that

Supp??r(é) - [_Rﬂ"mRmL Suppm(s) - R\ (_Sﬂ"usm)

for sequences { R, }, {Sm } of positive real numbers with R,,, Sy, — 00, Ry /Sm — 0
as m — oo (see lemma 3.9(iii)). This result is established in § 2.2.2 by a new method
that involves studying the weak formulation of the boundary-value problems defin-
ing the terms in the power-series expansion of K about 79 € W*t3/2. On the
other hand, no a priori estimate is available to rule out ‘dichotomy’ at this stage;
proceeding iteratively, we find that minimizing sequences can theoretically have
profiles with infinitely many ‘bumps’. In particular, we show that {n,,} asymp-
totically lies in the region unaffected by the penalization and construct a special
minimizing sequence {7,,} for 7, , that lies in a neighbourhood of the origin with
radius O(p'/?) in H?(R) and satisfies |7, (fim)llo = 0 as n — oo. The fact that the
construction is independent of the choice of M allows us to conclude that {7, } is
also a minimizing sequence for J,, over U \ {0}.
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The special minimizing sequence {7, } is used in §4 to establish the strict sub-
additivity of the infimum ¢, of J, over U \ {0}, that is, the inequality

Cpytps < Cuy F Cuyy 0 < ia, pi2, 11 + pro < po.

The strict subadditivity of ¢, follows from the fact that the function
arra "Mg2,(afnm), ac€ [l ag), (1.15)
is decreasing and strictly negative for some ¢ > 2 and ag € (1, 2], where

(14 Ga(n))?
La(n)

is the ‘nonlinear’ part of J,(n) (see §4.4). We proceed by approximating M, (7, )
with its dominant term and showing that this term has the required property.

The heuristic arguments given above suggest firstly that the spectrum of minimiz-
ers of 7, over U\{0} (that is, the support of their Fourier transform) is concentrated
near wavenumbers k = kg, and secondly that they have the Korteweg-de Vries or
nonlinear Schréodinger length-scales; the same should be true of the functions #,,,
which approximate minimizers. We therefore decompose 7,,, into the sum of a func-
tion 7,1, whose spectrum is compactly supported near k = £ko, and a function
Tm,2, Whose spectrum is bounded away from these points, and study 7,1 using the
weighted norm

M () == Tu(n) — Ka(n) —

llnll2, = / (1 + p= (k] = ko)) (k)| dk.
A careful analysis of the equation J, (7jm) = O(u™) in L?(R) shows that [|7m,1][|2 =
O(p) and [|m 2ll2 = O(u*™*) for @ < & when 3 > 3, and for o < 1 when 8 < f.
Using these estimates on the size of 7,,, we find that

(o)
c/ 172%1 dx —1—0(115/3)7 8> B,
~ — 00
Mu(ﬁm) = 00
—o [ dfadat o) <
—o0
That the function (1.15) is decreasing and strictly negative follows from the above
estimate and the fact that M, (n,,) is negative for any minimizing sequence {n,,}
for 7, over U \ {0}.

Knowledge of the strict subadditivity property of ¢, (and general estimates for
general minimizing sequences) reduces the proof of theorem 1.4(ii) to a straight-
forward application of the concentration-compactness principle (see §5.1). Parts
(iii) and (iv) are derived from lemmas 1.2(ii) and 1.3(ii) by means of a scaling and
contradiction argument from the estimates

ol =2 {2 o, {E o) = {%h o), yes,,

ONLS EnLs CNLS

which emerge as part of the proof of theorem 1.4(i) (see §5.2).
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Some of the techniques used in the present paper were developed by Buffoni
et al. [9] in an existence theory for three-dimensional irrotational solitary waves.
While we make reference to relevant parts of that paper, many aspects of our con-
struction differ significantly from theirs. In particular, our treatment of non-local
analytic operators is more comprehensive. Their version of theorem 1.1 (see Buf-
foni et al. [9, lemmas 1.1 and 1.4]) is obtained using a less sophisticated ‘flattening’
transformation and shows only that the operators are analytic at the origin. Corre-
spondingly, ‘pseudo-localness’ in the sense described above is established there only
for constant-coefficient boundary-value problems (using an explicit representation
of the solution by means of Green functions). Our treatment of the consequences
of ‘dichotomy’ in the concentration-compactness principle (see §3) is on the other
hand similar to that given by Buffoni et al. [9] and we omit proofs that are straight-
forward modifications of theirs; the main difference here is that negative values of
the parameter p emerge in our iterative construction of the special minimizing
sequence (see the remarks below lemma 3.8).

1.4. Conditional energetic stability

Our original problem of finding minimizers of H(n, &) subject to the constraint
Z(n,&) = 2u is also solved as a corollary to theorem 1.4(ii); one follows the two-step
minimization procedure described in §1.1 (see §5.1).

THEOREM 1.5.
(i) The set D,, of minimizers of H on the set

S =1{(n.€) € U x Hy*(R): I(n, &) = 2u}
s non-empty.

(ii) Suppose that {(Nm,&m)} C Su is a minimizing sequence for H with the
property that sup,,cy |1Mmll2 < M. There exists a sequence {z,,} C R with
the property that a subsequence of {(Mm(Tm + ), Em(Tm + *))} converges in
H"(R) x Hi/z(R), r €10,2), to a function in D,,.

It is a general principle that the solution set of a constrained minimization prob-
lem constitutes a stable set of solutions of the corresponding initial-value problem
(see, for example, Cazenave and Lions [11]). The usual informal interpretation of
the statement that a set X of solutions to an initial-value problem is ‘stable’ is
that a solution that begins close to a solution in X remains close to a solution in
X at all subsequent times. Implicit in this statement is the assumption that the
initial-value problem is globally well posed, that is, every pair (19, Pp) in an appro-
priately chosen set is indeed the initial datum of a unique solution ¢ — (n(t), (t)),
t € [0,00). At present there is no global well-posedness theory for gravity—capillary
water waves with constant vorticity (although there is a large and growing body
of literature concerning well-posedness issues for water-wave problems in general).
Assuming the existence of solutions, we obtain the following stability result as a
corollary of theorem 1.5 using the argument given by Buffoni et al. [9, theorem 5.5].
(The only property of a solution (7,£) to the initial-value problem that is relevant
to stability theory is that H(n(t),&(t)) and Z(n(t),£(t)) are constant; we therefore
adopt this property as the definition of a solution.)
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THEOREM 1.6. Suppose that (n,£): [0,T] — U x Hi/2(R) has the properties that

H(n(t),£(t)) = H(n(0),£(0)),  Z(n(t),£(t)) = Z(n(0),£(0)), te[0,T],

sup |[|In(t)[2 < M.
te[0,T]

Choose r € [0,2) and let ‘dist’ denote the distance in H"(R) X Hi/Q(R). For each
€ > 0 there exists 6 > 0 such that

dist(((0),£(0)), D) <8 = dist((n(t), (1)), Dy) < ¢
fort e [0,T).

This result is a statement of the conditional energetic stability of the set D,,.
Here energetic refers to the fact that the distance in the statement of stability
is measured in the ‘energy space’ H"(R) x Hi/Q(R), while conditional alludes to
the well-posedness issue. Note that the solution t — (1(t),£(t)) may exist in a
smaller space over the interval [0, T}, at each instant of which it remains close (in
energy space) to a solution in D,,. Furthermore, theorem 1.6 is a statement of the
stability of the set of constrained minimizers D,,; establishing the uniqueness of
the constrained minimizer would imply that D, consists of translations of a single
solution, so that the statement that D,, is stable is equivalent to classical orbital
stability of this unique solution (see Benjamin [3]). The phrase ‘conditional energetic
stability’ was introduced by Mielke [24] in his study of the stability of irrotational
solitary water waves with strong surface tension using dynamical-systems methods.

2. The functional-analytic setting

2.1. Non-local operators

The goal of this section is to introduce rigorous definitions of the Dirichlet—Neumann
operator G(n), its inverse N(n) and the operator K(n) := —0,(N(n)0,).

2.1.1. Function spaces
Choose hg € (0,1). We consider the class
W ={neW"®([R): 1 +infn > ho}
of surface profiles and denote the fluid domain by
Z,={(z,y) eR*: 0<y<1+n(z)}, neW

The observation that velocity potentials are unique only up to additive constants
leads us to introduce the completion H} (X)) of

S(Xy) ={9 € C™(Xy): [2["07"0,?¢| is bounded for all m, a1, a2 € No}

with respect to the Dirichlet norm as an appropriate function space for ¢. The
corresponding space for the trace ¢|y=14y is the space ol? (R) defined in §1.1.3.
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PROPOSITION 2.1. Fiz n € W. The trace map ¢ — ¢|y—14, defines a continuous
operator H}(X,) — H*l/Q(R) with a continuous right inverse H*l/Z(R) — HN(X,).

We also use anisotropic function spaces for functions defined in the strip Xy =
R x (0,1).

DEFINITION 2.2. Suppose that » € R and n € Nj.
(i) The Banach space (L°H", || - ||rc0) is defined by

L¥H" = L>*((0,1), H"(R)),  [[ullrco = ess sup [Ju(, y)[| - w)-

y€(0,1)

(ii) The Banach space (H™™, || - ||,m) is defined by
H™" = (YH((0,1), H(R),  ullran = Y 4" 0ull 2(5),
Jj=0 j=0
where Af = F~1(1 + k)2 f (k).

The following propositions state some properties of these function spaces that
are used in the subsequent analysis; they are deduced from results for standard
Sobolev spaces (see Hérmander [18, theorem 8.3.1] for proposition 2.4).

PROPOSITION 2.3.

i) The space C5°(X) is dense in H™ for each r € R.
0

(ii) For each r € R the mapping u — ul,—1, u € C§°(X), extends continuously to
an operator H'tH1 — HTT1/2(R).

(iii) The space H™t11 is continuously embedded in L™ H" /2 for each r € R.
(iv) The space H™1! is a Banach algebra for each r > 0.

PROPOSITION 2.4. Suppose that ro, 1 and ro satisfy ro <11, 70 <72, 71 +72 20
and rg < ry+ro — % The product uius of each w1 € L°H™ and ug € H™ lies
in H™0 and satisfies

luruzllr,0 < eflu|lr oo lluzllry 0-

PROPOSITION 2.5. For each bounded linear function L: L*(R) — L®HY the for-
mula (n,w) — L(n)w defines a bounded bilinear function L?(R) x H'(X) — L?(X)
that satisfies the estimate

1/2 1/2
IL(mywllo < el Lillwlls” w1’ n]lo-

The assertion remains valid when X is replaced by {|x| < M} or {|z| > M} and
the estimate holds uniformly over all values of M greater than unity.
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2.1.2. The Dirichlet-Neumann operator
The Dirichlet-Neumann operator G(n) for the boundary-value problem

Ap=0, 0<y<l+n, (2.1)
¢:€7 y:1+777
¢y =0, y=0,

is defined formally as follows: fix £ = £(x), solve (2.1)—(2.3) and set
GmE = (8y — ' ¢a)ly=1+-

Our rigorous definition of G(n) is given in terms of weak solutions to (2.1)—(2.3)
(see Lannes [20, proposition 2.9] for the proof of lemma 2.7).

DEFINITION 2.6. Suppose that £ € H*l/Q(]R) and n € W. A weak solution of (2.1)-
(2.3) is a function ¢ € H}(X,) with ¢|y—11, = £ that satisfies

/ Vo -Vipdedy =0
Eﬂ

for all ¢ € H(X,) with ¢],—14, = 0.

LEMMA 2.7. For each & € Hi/2(]R) and n € W there exists a unique weak solution
¢ of (2.1)-(2.83). The solution satisfies the estimate

||¢||H*1(En) < CH&”Hi/z(R)’
where C' = C(||n

1,00)'
DEFINITION 2.8. Suppose that n € W and £ € Hi/Q(R). The Dirichlet—-Neumann
operator is the bounded linear operator G(7): H*l/Z(R) — H*_l/Z(R) defined by

/ (G()é1)&adx = /2 Vo, - Voo dx dy,

— 00

where ¢; € H}(X,) is the unique weak solution of (2.1)(2.3) with £ = ¢&;, j = 1,2.

2.1.3. The Neumann—Dirichlet operator
The Neumann-Dirichlet operator N(n) for the boundary-value problem

Ap=0, 0<y<l+n, (2.4)
¢y_n/¢m:f» y=1+mn,
¢y:03 y:(]a

is defined formally as follows: fix £ = £(x), solve (2.4)—(2.6) and set

N(n)¢ = ¢|y:1+n'

Our rigorous definition of N(7) is also given in terms of weak solutions; lemma 2.10
is proved in the same fashion as lemma 2.7.
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DEFINITION 2.9. Suppose that & € H:l/z(R) and n € W. A weak solution of (2.4)—
(2.6) is a function ¢ € H}(X,) that satisfies

[ vo-udedy= [ €tlyriydo
=, oo

for all ¢ € H}(X)).

LEMMA 2.10. For each & € HIUZ(R) and n € W there exists a unique weak solu-
tion ¢ of (2.4)-(2.6). The solution satisfies the estimate

10l m1(2,) < ClElgo1r2 ),

where C' = C(||n|

1,00)'

DEFINITION 2.11. Suppose thatn € W and £ € 2 (R). The Neumann—Dirichlet
operator is the bounded linear operator N(7): H*_l/Z(R) — H*l/Z(]R) defined by

Nn)§ = dly=14n,
where ¢ € H}(X,) is the unique weak solution of (2.4)-(2.6).

The relationship between G(n) and N (n) is clarified by the following result, which
follows from the definitions of these operators.

LEMMA 2.12. Suppose that n € W. The operator G(n) € E(H*l/Q(R), H:1/2(R)) is
invertible with G(n)~' = N(n).

2.1.4. Analyticity of the operators

Let us begin by recalling the definition of analyticity given by Buffoni and
Toland [8, definition 4.3.1] together with a precise formulation of our result in
their terminology.

DEFINITION 2.13. Let X and Y be Banach spaces, let U be a non-empty open
subset of X and let £F(X,Y) be the space of bounded k-linear symmetric operators
X* Y with norm

llmlll := inf{e: [m({f} )y < eIl for all f € X}.

A function F: U — Y is analytic at a point ¢y € U if there exist real numbers
8,7 > 0 and a sequence {my}, where m;, € LK(X,Y), k € Ny, with the properties

that
F(z) =Y mp({z —2}®)), € Bs(x),
k=0
and

sup [y < oc.

=

The function is analytic if it is analytic at each point xg € U.
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THEOREM 2.14.

(i) The Dirichlet-Neumann operator G: W — E(Hi/Q(R),H*_l/Q(]R)) is ana-

lytic.

(ii) The Neumann—Dirichlet operator N: W — E(H*_l/Q(RLHi/z(R)) is ana-

lytic.

To prove this theorem we study the dependence of solutions to the boundary-
value problems (2.1)—(2.3) and (2.4)—(2.6) on 1 by transforming them into equiva-
lent problems in the fixed domain X' := Y. For this purpose we define a change of
variable (x,y) = F°(x,y’) in the following way. Choose § > 0 and an even function
x € C°(R) with x(k) € [0,1] for k € R, supp x € [-2,2] and x(z) =1 for |z| < 1,
write

0 (z.y') = F (61 =y )k)i(k)](2)
and define
Fo(a,y) = (2,9 (L +1°(2,4)) = (@5 + [ (x,9),
in which f°(z,') = y'n’(z,y').
LEMMA 2.15. Suppose that n € W. The mapping F9 is a bijection ¥ — Xy and
Y= X, withy € CL(X), y € CL(X,) and

inf H(xy) = inf (14 O (z,y)) >0
il () = i (0 £ ()

for each § € (0, Omax), where dmax = Smax (|7 )-
Proof. Writing
W)= [ K- 51y ds
where K = (27)"Y/2F~1[x] € S(R), one finds that 7’ € C=(X) N CL(X) with

17 lloe < ellnllocs 12 lloo < €l [loos 1) [loo < ¢8| [|oo- It follows that F° € C(X)
and y € CL(X). Furthermore, y(z,0) =0, y(z,1) = 1 4+ n(x) and

Oyy =1+yn, +n’°
1

:1+y’nf,f+n*/ 1y
y/

for sufficiently small 0 (depending only upon [7/[|3}), so that F° is a bijection
Y — %, and ¥ — %,. It follows from the inverse function theorem that (F°)~1 €
C>*(X,); the estimate

det dF?[z,y'] = Oyy(x,y') = 1ho

and the fact that dF° is bounded on X imply that d(F°)~! € Cy,(%,), whereby
y € CL(Xy). O
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The change of variable (x,%) = F?(x,7’) transforms the boundary-value problem
(2.4)-(2.6) into

V- (I+Q)Vu)=0, 0<y<l, (2.7)
(I + Q)VU : (07 1) =¢§, y=1, (28)
(I+Q)Vu-(0,-1)=0, y=0, (2.9)
where
£ ~f2
Q: _fé _f§+(ff)2
v 1+ f)

and the primes have been dropped for notational simplicity.
LEMMA 2.16. The mapping W — (L>(X))?*2 given by n +— Q(n) is analytic.

It is helpful to consider the more general boundary-value problem

V- (I+Q)Vu)=V-G, O<y<1, (2.10)
I+Q)Vu-(0,1)=¢(+G-(0,1), y=1, (2.11)
(I+Q)Vu-(0,-1)=G-(0,-1), y=0, (2.12)

where I + Q € (L>®(X))?*? is uniformly positive definite, that is, there exists a
constant py > 0 such that

(I +Q)(z,y)v - v = polv|”
for all (z,y) € ¥ and all v € R2.

DEFINITION 2.17. Suppose that £ € H*_l/Q(R) and G € (L3(X))2. A weak solution
of (2.10)—(2.12) is a function u € H}(X) that satisfies

/(I—i—Q)Vu-dea?dy:/ G-dexdy+/ Ew|y—1 dz
) X —o00

for all w € H}(X).

LEMMA 2.18. For each & € HI1/2(R) and G € (L*(X))? the boundary-value prob-
lem (2.10)—(2.12) has a unique weak solution u € H}(X). The solution satisfies the
estimate

lullzy 2y < CUEN 272y + G2 ()
where C = C(py ).

Lemma 2.18 applies in particular to (2.7)—(2.9) for each fixed n € W (the matrix
I + @ is uniformly positive definite since it is uniformly bounded above, its deter-
minant is unity and its upper left entry is positive). The next theorem shows that
its unique weak solution depends analytically upon 7.
THEOREM 2.19. The mapping W — E(H*_l/z(R),H*l(E)) given by n — (£ — u),
where u € HY (X)) is the unique weak solution of (2.7)-(2.9), is analytic.
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Proof. Choose g € W and write 17 =1 — 19 and
Qz,y) =Y Q"(x,y), Q" =mn(i™}h),
n=0

where 1, (7{}) € LWL (R), (L>®(X))?*?) satisfies
[l < Cor™"[|7]]T o

(see lemma 2.16). We proceed by seeking a solution of (2.7)-(2.9) of the form
u(a,y) =Y u(x,y), u"=mi{H"), (2.13)
n=0

where m7 € L2(W1H*(R), HL (X)) is linear in ¢ and satisfies

Hlm?l” < CanHf”H:Uz(R)

for some constant B > 0.
Substituting the ansatz (2.13) into the equations, one finds that

V- A(IT+Q")Vu°) =0, 0<y<l, (2.14)
(I+QVul-(0,1)=¢, y=1, (2.15)
(I+Q°Vu'-(0,-1)=0, y=0, (2.16)

and
V-A(I+Q")Vu")=V-G", 0<y<l, (2.17)
(I+Q°)Vu™-(0,1)=G"-(0,1), y=1, (2.18)
(I+Q%Vu™-(0,-1)=G"-(0,-1), y=0, (2.19)

for n € N, where
G == QFVur*.
k=1

The estimate for m® follows directly from lemma 2.18. Proceeding inductively, sup-
pose that the result for m™ is true for all k¥ < n. Estimating

1G™ o < D 1Q ooV *[lo (2.20)
k=1
< CLCLB el s/ I S (Br)
k=1
and using lemma 2.18 again, we find that
Il ) < CrCaCaB el vy il S (Br)
k=1

< CanHgHH:l/z(R)Hﬁ

n
1,00

for sufficiently large values of B (independently of n).

https://doi.org/10.1017/50308210515000116 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000116

810 M. D. Groves and E. Wahlén

A straightforward supplementary argument shows that (2.13) defines a weak
solution u of (2.17)-(2.19). O

Theorem 2.14(ii) follows from theorem 2.19, the equation N(n)¢ = u|y—; and the
continuity of the trace operator H!(X) — Hi/2(R), while theorem 2.14(i) follows
from the inverse function theorem for analytic functions.

Finally, we record another useful result.

THEOREM 2.20. For each n € W the norms

£ (/Z §G(n)§dz>l/2, K </O; HN(n)ndx)l/Z

are equivalent to the usual norms for H./> (R) and H;1/2(R), respectively.

Proof. Let T: Hy “*(R) — HY*(R) be the isometric isomorphism n — F~1[(1 +
k2)1/2k=25], which has the property that

| vt = g iy, Ve HT®), Ce HPR)
It follows from definition 2.8, lemma 2.12 and the calculation

(TG € e, /°°<G<n>§>§dm= / Vo dzdy > 0

—o0 P

where ¢ is the unique weak solution of (2.1)—(2.3), that T'G(n) is a self-adjoint
positive isomorphism H,/> (R) — ol? (R). The spectral theory for bounded self-
adjoint operators shows that

£ (TG(n)E, &)} £ (N(T 1, 6)2

1/2(R 1/2(R)

are both equivalent to the usual norm for H,/? (R), so that
1/2

ko (N, TR) 1

is equivalent to the usual norm for H, 1/2 (R). The assertion now follows from the
first equality in the previous equation and the calculation

o0

(N TR) sy = [ (N

— 00

2.1.5. The operator K(n) = —0,(N(n)0,)

Our first result for this operator is obtained from the material presented above
for N.

THEOREM 2.21.

(i) The operator K: W — L(H'/?(R), H-'/2(R)) is analytic.
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(ii) For eachn € W the operator K (n): H'/?(R) — H~'/2(R) is an isomorphism

and the norm
00 1/2
= < / cK(mgdx)

is equivalent to the usual norm for HY/?(R).

Proof. (i) This result follows from the definition of K and the continuity of the
operators 0, : H'/?(R) — H*_l/Q(R) and 0y : H*l/Q(R) — H™Y2(R).

(ii) This result is obtained by writing

| ckmcan= [ N as
1112
2 C”C ||H:1/2(R)
= cl<l3 2,
in which theorem 2.20 has been used. O

In the remainder of this section we establish the following result concerning the
analyticity of K in higher-order Sobolev spaces, using the symbol W" as an abbre-
viation for W N H™(R).

THEOREM 2.22. The operator K : W5+3/2 — L(H*+t3/2(R), H*TV/2(R)) is analytic
for each s > 0.

To prove theorem 2.22 it is necessary to establish additional regularity of the
weak solutions u™, n € Ny, of the boundary-value problems given by (2.14)—(2.16)
and (2.17)—(2.19). We proceed by examining the general boundary-value problem
(2.10)—(2.12) under additional regularity assumptions on ¢ and G. Our result is
stated in lemma 2.25, the proof of which requires an a priori estimate and a com-
mutator estimate (see Lannes [20, Proposition B.10(2)] for a derivation of the lat-
ter).

LEMMA 2.23. Suppose that Q € (H*T12)2%2 qnd G € (H"')? for some t € (3 —
s, s+ 1]. The weak solution u to (2.10)-(2.12) satisfies the a priori estimate

[Vull¢ < C(|G
where C' = C(pal’ Q] s+1,2)-
Proof. Note that

.1+ [Vullt,o),

[Vaulleq = lluellen + lluy
= |Juzlle,0 + lluzylli—1,0 + luylle.o + lJugylli-1.0

< C([|[Vullo0 + Huyy||t—1,o)

t,1

because ||ugy|lt—1,0 < [|tyllt,0, and to estimate ||uyy||¢+—1,0 we use (2.10), which we
write in the form

(14 g22)uyy = V- G — 0 [(1 4 qu1)uz + qrauy] — Oy(qr2us) — qaoyty.
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Denoting the right-hand side of this equation by H, one finds that

lwyylle—1,0 = [[(1 + q22) " H|i—1,0
<N Hlle=1,0 + |G22H [[e=1,0
< (14 (1G22l s41/2,00) 1 H [ t-1,0
< ClH|lt=1,0,

where Gao = —qaa(1 + qa22)~ I and we have used the interpolation estimate

Ci(pg ' Iplse) 2l < Calpg ™, lIpllr)

H1+p

for p € H"(R), r > 3, with 1+ p(z) > po for all z € R.
It remains to estimate || H||¢—1,0. Observe that ||V-G||t—1,0 < ||Gllt,1, |uzalli=1,0 <
|Vullt,o and

CllQls+1/2,00[[Vua|lt-1,0

l9i5Vualle-1.0 <
< C1Qls+1,1[[Vaul|¢0- (2.21)

The terms in H involving derivatives of @) are treated differently.
Suppose first that ¢t < s+ % Combining the estimate
IVulleo

830} Op
ol
H {ay ! t—1,0 ay ! s—1/2,00

< OlQlg+12[[Vullio

(see proposition 2.4) and the estimate (2.21), one obtains the required result

luyylli—1.0 < [ H|lt=1.0 < CUIG e + [[Vullt,0)-

For t € (s + 3, s+ 1] we instead estimate
||Vu||t71/275,oo

835} o
4 Vu <CH{ }qz“
H {ay R P 9y g0

< Cll@Qls+1lIVulls—e 1
with 0 < ¢ < min{%, s} by proposition 2.4 to find that

[wyylle—1,0 < C( 1)
< (HGllt,l + ||VUHt,o + ||Uyy||t717s,0)~

The result follows by repeating this argument a finite number of times and using
the already established result for t = s + % O

LEMMA 2.24. Suppose that ro > %, A € [0,1] and r € (1,70 + A] and define

AL = A"x(eA) for e € [0,e0). The estimate

1142, ulvllo < ellullrgrallvllr—a

holds for eachu € H™ 2 and each v € H"=, where the constant ¢ does not depend
Upon €.
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LEMMA 2.25. Suppose that Q € (H*t12)2%2 aqnd ¢ € H'3/2(R), G € (H!H!)?
for some t € [0,s]. The weak solution u of (2.10)-(2.12) with £ = (' satisfies
Vu € HTH with

IVuller11 < CUG 11 + 1CNi43/2),
where C = C(py ', |Qlsx1.2)-
Proof. Choose r € (0,t + 1], € > 0 and note that A~ is well defined as an operator
on H}(X). Writing w = (A”)?u in definition 2.17, we find that

oo

/ AL(PVu) - VAludxdy = / ALG - VALudx dy + / AZEALuly—1 dz
P X o)

because AL commutes with partial derivatives and is symmetric with respect to the
L? inner product. This equation can be rewritten as

/ PVALu-VAIudzrdy = —/ (AL, Q|Vu - VALudz dy + / ALG -V ALudz dy
b>j b>j b

- / ATC(A ]y,

and it follows from the coercivity of P and the continuity of the trace map H}(X) —
1/2(R) that
ALVl 205y < CI[AL QIVul| L2y + [ ALG L2y + |AZAY2C 2 w))
CIAZ QIVullz(z) + [1Gllerra + [€lera/2)-
_ The next step is to estimate the commutator [AZ,Q]. For r < s + 3 we choose
A € (0,min(s, 1)) and estimate

1[AZ, Q]VUHL2(Z)

NN

< CHQ||s+1/2,oo||vu||r—A,o
< Cll@Qls+1allVull, 5 o
using lemma 2.24 (with ro = s+ % —A A= A) For r € (s+ %, s+ 1], on the other
hand, we choose A € (0,min(s, 1)) and estimate
1AL, QI Vullr2(5) < CllQs+10lVull,_x_1 /2
< Cl@Qls+10lVull, 5 4

using lemma 2.24 (with ro = s + % —Aand A=A+ %) and

IVull,—a 1 < CUG 10 + [Vl 0)

using lemma 2.23.
Combining the above estimates yields

ALVl 25y < C(HVUHT_A,O G lev1,1 + 1Cle43/2),

1

where A € (0, min(s, 5

tively, we find that

IVaullt+1,0 < CUIG 1,1 + [[Cller3/2 + ull (),
from which the result follows by lemmas 2.18 and 2.23. O

)), and letting ¢ — 0 and using the resulting estimate itera-
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The following result shows that lemma 2.25 is applicable to the boundary-value
problems (2.14)-(2.16) and (2.17)—(2.19).

LEMMA 2.26. The mapping W*T3/2 — (H*t12)2%2 given by n — Q(n) is analytic.
REMARK 2.27. Observe that
Qx(n) = So(n) + Ro(n)Lin" + Ri(n)L3n",
Qy(n) = To(n) + Ro(n) L3y + Ra(n)Lyn",
where L3(-) = F[(i6)’x((1 — y)dk)F[-]], j = 0,1,2, are bounded bilinear func-
tions L?(R) — L>*H° and
5

e 0
Sorn— |y _m Ch U,
1+ f9 (1+ f3)?
2L —n)
Torn— | 5 2Ly 2fingd  2=f) + (fD*)LIN |,
7 ) 1+ f2)2
0~y
RO: n— —y 2yf£ 5
1+ f§
Y 0
Ri:n— oy YR+
L+ f3 1+ £3)?

are analytic functions W — (L>°(X))?*2.

The regularity assertion in theorem 2.22 now follows from the next result and
the continuity of the trace operator H5+11 — Hs+1/2(R).

THEOREM 2.28. The mapping W*t3/2 — L(H*T3/2(R), (H*T1Y)?) given by n —
(¢ = Vu), where u € H}(X) is the unique weak solution of (2.7)—(2.9) with & = (',
s analytic.

Proof. Repeating the proof of theorem 2.19, replacing lemma 2.18 by lemma 2.25,
lemma 2.16 by lemma 2.26 and inequality (2.20) by

n

G o411 < D NQ o1V F[lss1a
k=1

(H**t11 is a Banach algebra), we obtain the representation
o
Vule,y) = Y V(). Vu" = my({a}™),
n=0

where m§ € L£(H*3/2(R), (H*F1)?) is linear in ¢ and satisfies
Imzlll < C1B™[[Clls43/2

for some constant B > 0. O
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We conclude this section with a useful supplementary estimate for ||K™(7)]||.
PROPOSITION 2.29. There exists a constant B > 0 such that
1K™ (@)¢llo < CLB™(ill1,00 + 17" + Kgillo)"[ICll3/2.  m € No.
Proof. Tt suffices to establish the estimate
Va1 < CiB™(|[7ill1,00 + 17" + koillo)"lICll3 /25 7 € No;

for n = 0 this result follows from lemma 2.25 (with ¢t =0 and s = 1).
Proceeding inductively, suppose that the estimate for || Vu*||; is true for all k < n
and recall from the proof of theorem 2.19 that

n

1Q oo < Cor™lillf sor  1G™llo < C1C2B™ [Cll32llfllF o D (Br) .
k=1

Writing
Q=S¢ + RoLong + Ro ™' Loi" + RiLyng + Ry~ Loii"
=S+ i(—k@Rf*lLﬁﬁ + Ry Ling + RETVLY(" + k§i)),
j=0
where
1551100 < Cor™* Il oes IR}l < Cor™*[Ii1ll} e, 5= 0,1

(see remark 2.27), we find that

> (QEvurTF 4 QFVur )

Gr =
k=1
1
=> (s{;w"—’“ + > (—kgRY LY+ R Ling + Ry LY(" + ko)) Vu" ="
k=1 j=0

+Q* Vu;b_k) .
It follows that

1€ < D2 (01K o + FRORE e + RS o)) 190" o
B I3+ RSNl D ol T
+ (RS oo I LI+ 1R oI LS 17" + K377 llo| Ve~
+ Q" ool Vuz " llo)
< C1C2B™ (1 + 2kgr + (1Ll + ILS D (g llo + ) +1)

n

x [ICll2(17ill 1,00 + 17" + K3iillo)™ > _(Br)~*,
k=1
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in which proposition 2.5 has been used. A similar calculation yields the same esti-
mate for |G} |lo-
Combining the estimates for [|G"[|o, [|G7|lo and ||G}|lo and applying lemma 2.25

(with ¢ = 0 and s = 1), one finds that

IV |[1 < VBC1C2C3 B™ (1 + 2kgr + (LG + L3 (16 llo +7) + 1)

n

< ICllsy2(Iill1oe + 17" + K3itllo)™ > (Br) =",
k=1

so that
IVur|ly < CLB™(17ll1,00 + 17”7 + K71ll0) 1< 1l52

for sufficiently large values of B (independently of n). O

2.2. Variational functionals

In this section we study the functional

7o) = | " AWK M) faln) de, (2.22)

where f1, fo: R — R are polynomials with f;(0) = f2(0) = 0, and apply our results
to the functionals G, K and L.

2.2.1. Analyticity of the functionals

In this section we again suppose that s > 0. The first result follows from theo-
rem 2.21(i).

LEMMA 2.30. Equation (2.22) defines a functional T: W*+3/2 — R that is analytic
and satisfies T(0) = 0.

We now turn to the construction of the gradient 77(n) in L*(R), the main step
of which is accomplished by the following lemma.

LEMMA 2.31. Define H: WT3/2 — L2(H+3/2(R),R) by the formula

H(n)(gla CQ) = <Cla K(U)CZ>0

The gradient H'(n)(C1,C2) in L2(R) exists for each n € W*t3/2 and (,¢ €
H*t3/2(R) and is given by the formula

L+ Uty U

T p Uiy U2 )

L+m2

where w; is the weak solution of (2.7)-(2.9) with § = (}, j = 1,2. This formula
defines an analytic function H': Ws+3/2 — L2(H5T3/2(R), H*+1/2(R)).

H/(W)(Ch (2) = —UizU2z +

Proof. Tt follows from the formula

Hn) = /2 (I + Q) Vur - Vg da dy
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that

MMM=A¢MWWMVWM@

/ (I+Q(n))Vws - Vugda dy —|—/ (I +Q(n))Vuy - Vws dz dy,
b b

(2.23)
where w; = du;(n)[w], j = 1,2. Recall that

/(I+Q(77))Vuj-Vvdxdy:/ Gly=1dz, j=1,2
P —

for every v € H}(X) (see definition 2.17 with ¢ = ¢/ and G = 0), so that

/E(dQ[n](w)Vuj Vo+ ([ +Q(n)Vw; - Vu)dedy =0, j=1,2

(2.24)
for every v € HL(X). Subtracting (2.24) with j =1, v = up and j = 2, v = u; from
(2.23) yields

/ dQn)(w)Vuy - Vug dz dy.

Finally, write h°(z,y) = yw’(x,y), where

W (2,y) = Fx(8(y — 1)|k))o (k)] (z),

df?[n](w), and observe that

> flyuy flyus ROy, us
7h6 _Jx Y _Jx Y YTy
/ - < <"1’” L+ )\ "

- L+ f) (1+f§)2) y=1

1 / d(—h‘s (ulm _ f:gy“ly) <U2x _ fgyu2y> + houiyus,
2 /s dy 1+ fz(;s

T ﬂ+ﬁF»ﬂ®

so that h% =

dx

) ) )
= / (_hzuleZz + hzulwu2y +h Uy U2y
X

n hiulyllqy 2(f£)2h‘;u1yu2y

Qf hmul (5
A2 0+ 1+fzé y)d d

)
( +f3)u21‘_f£u2y)w+ (—fgum-i-l_'_(fg”)? ) )dxdy
Y

Lt 2 2

5y2
/ T+ f ( 1+ f)urs — ffmy)z+(fﬁu1m+1+(f)

1+ f2 u“’)) St
/ f‘%y  fayuay n h? fRusy u
1+fy 2 1z

_ foyuay
1+ fS L+ f2 1+ f)

dx

y=1
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LQ@M@memz

héuly h6u2 )
+ V- (I+ YVui)+ Y (I + Vus) | dzd
1 gy LA Q)+ V(T Q) V) e
o héféuly < féyu2y> h6f6u2y ( f(syuly >>
+ - Upp — =F + s (w1 — =F dz,
/_oo(1+f;f o) e\t 1w i) )

in which the third line follows from the second by differentiating the term in braces
with respect to y (note that h°|,—o = 0) and integrating by parts. One concludes

that X i
dH[n](w) = / <_u17;u2x + mem) h?
oo 2

and the stated formula follows from this result and the facts that f5|y=1 =7 and
h6|y:1 = Ww.

The hypotheses of the lemma imply that Vu; € H5T5! and V|, € H*H/2(R),
j = 1,2. This observation ensures that the above algebraic manipulations are valid
and that dH[n] belongs to H*1/2(R) because H*t1! and H*+'/2(R) are Banach
algebras. O

o0

dz,
y=1

COROLLARY 2.32. The gradient T'(n) in L*(R) ewists for each n € W*+3/2 and is
given by the formula

T'(n) =H () (fr(n), f2(0)) + FL) K (1) fa(n) + fo(n) K (1) fr(n).

This formula defines an analytic function T': W*+3/2 — HsTV2(R) that satisfies
T'(0) = 0.

THEOREM 2.33.

(i) Equations (1.10)-(1.12) define analytic functionals G, K, L: W+3/2 5 R that
satisfy G(0), K(0), £L(0) = 0.

(ii) Equation (1.9) defines an analytic functional J,: W*+3/2\ {0} — R.

(iii) The gradients G'(n) and L£'(n) in L*(R) exist for each n € W*T3/2 and are
given by the equations

G'(n) = JwH (n)(n*,n) + JwK(n)n* + swnK (n)n — swn, (2.25)
L'(n) = $H' (n)(n,n) + K (n)n. (2.26)

These equations define analytic functions G', L': W5+3/2 — Hs+1/2(R) that
satisfy G'(0) =0 and L£'(0) = 0.

(iv) The gradient K'(n) in L?(R) exists for each n € W? and is given by

,]7/ / w? w2 w2
K == 6 s ) = S0P ) - PR+ P (221)

ﬁ/1+77/2 8 3

This equation defines an analytic function K': W2 — L?*(R) that satisfies
K'(0) =0.
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(v) The gradient J),(n) in L*(R) ezists for each n € W?*\ {0} and defines an
analytic functzon T W2\ {0} = L*(R).

COROLLARY 2.34. Choose M > 0 so that Bpr(0) € H?(R) lies in W*+3/2. Equa-
tions (1.10)-(1.12) define analytic functionals G, K, L: U — R, while (2.25)-(2.27)
define analytic functions G',K', L' : U — L*(R), where U = Bj;(0).

Finally, we state some further useful estimates for the operators G, K and L. Here
and in the remainder of this paper, the constant M is chosen small enough for the
validity of our calculations.

PROPOSITION 2.35. The estimates

G <clnllf e, Km) = clnlli, clnll? 5 < L(n) <clnlli,
hold for each n € U.
Proof. The estimate for G follows from the calculation

G| < e(llnlBIIE m)nllo + InlId) < cllnll?a,

while that for £ is a direct consequence of theorem 2.21(ii). Turning to the estimate
for IC, observe that

o0 577/2 } / 2 /oo 3
K de —— dz + — d
) = / {1+\/1+n'2 ) W da 6 )"

>c||n||?
an
| / i da| < ellnl, ] / i da| < P25 < ellll
for each n € U, so that K(n) > c||n|3. O

2.2.2. Pseudo-local properties of the operator T
In this section we consider sequences {nm 1, {17(2)} C U with the properties that
supp 1y’ C [~ Ry R}y supp ) C R\ (=Sim, Sim)
and

sup 19 + 0]l < M,

where {R,,}, {Sm} are sequences of positive real numbers with R,,, S, — oo,
R,,/Sm — 0 as m — oo. We establish the following ‘pseudo-local’ property of the
operator T .

THEOREM 2.36. The operator T satisfies
lim (T(ny,) +0%)) = T(i)) = TS =0,

m—r

lim IIT’(n(” ) =T ) = T' 0)lo = 0,
lim (77 (n{2),n{)o = 0.

m—r oo

In particular, this result applies to G, K and L.
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We begin the proof of theorem 2.36 by re-examining the general boundary-value
problem (2.10)—(2.12).

LEMMA 2.37. Suppose that {Rn}, {Sm} and {U,} are sequences of positive real
numbers and

{Qun) € (LX), {GIIAGRY S LA(Z),  {(WH AR C HYA(R)
are bounded sequences with the properties that

(i) Sy — Uy Uy — Ry — 00 as m — 00;

(ii) supp Q(,P C [-Rm, Rn] and supp Q(,f) C R\ (=Sm, Sm);
(i) G 1122 (1al> Ry 1G5 N2 (1<) = O @5 = 007
(iv) there exists a constant pg > 0 such that

(I +Qu)(z,y)v-v = polv|?
for all (z,y) € ¥, allm € N and all v € R2.

The unique weak solutions u%) € HX(X) of the boundary-value problems

V- ((I+Qm)Vud)) =v.GW, 0<y<l, (2.28)
(I +Qn)Vud) - (0,1) = g},{}x +GY . (0,1), y=1, (2.29)
(I + Qm)Vuld) - (0,-1) = G - (0,-1), y =0, (2.30)
j =1,2, satisfy the estimates
lim ||Vu$,1L)||L2 (|z|>Um) = 0, mlgnoo ||vu1(72L)||L2(|37|<Um) =0.

Proof. Write §(2 —C + +C(2) where

supp Cfn,)+ C [Sm,00),  supp Cff,)_ C (=00, =Sl

and let u(z) u(2) be the weak solutions of the boundary-value problem (2.28)—

(2.29) with gm "G@ Leplaced by
Cm+7 0(2 = G2 X (20 4(277 nfl =GP (oo

respectively, so that u(z) = 53)4_ + ug)_

Choose T' > 0 and take m large enough so that 7'+ 1 < S,,. Define ¢ € C*(R)

by
1, z < T,
or(e) = {X(Z(x ~T), z>T,
and set )
win(2,y) = ¢3(2) (ule, (2, y) — Mr),
where

Myp = / w2, (2,y) dz dy,
T<a<T+1
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so that supp w,, C (—o0,T+1] x [0, 1] and the mean value of u,ﬁf?+(x, y) — M over

(T, T +1) x (0,1) is zero. Using definition 2.17, we find that

/(I+Qm)w£§?+.v1ymdxdy:/ G§?+-Vwmdxdy+/ 02C2) |y da,
X X — 00

=0

from which it follows that

[0+ Qv - vull, drdy

1/2 1/2
<<( / ¢%|w£3?+|2dzdy> ( / uii?+MT|2dxdy)
X T<xz<T+1
1/2 1/2
+ </ |Gf,3?+|2 dxdy) (/ |u£,2l)+ — MT2dmdy>
e<T+1 T<e<T+1

1/2 1/2
+( / |G£3?+|2dxdy) ( / ¢%Vufﬁ?+|2dmdy) )
2<T+1 b

and hence that

[amipavay<e( [ wuPavays [ 168 Paray).
by T<e<T+1 r<T+1

where the Poincaré inequality

/ \ufi?+—MT|2dxdy<C/ |Vug?+|2dxdy
T<z<T+1 T<z<T+1

has been used.
The above inequality implies that

P(T) < (DT +1)—D(T)+¥(T+1))

for some ¢, > 0, where

o(T) = / Vul), Pdedy,  W(T) = / G2, |? dz dy,
z<T o<T
so that
O(T) < du(B(T + 1) + (T + 1)),

where d, = ¢, /(e +1) € (0,1), and using this inequality recursively, one finds that

&(T) < dd(T + 1) + : f*d W(T+r), r>1.

In particular, this result asserts that

dy
1—d,

P(Up) < dZmUm=19(S,,) + T(S,)
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and, because

B(S,n) = / Vu P dady < /2 Vu®, P dedy < €212 = O(1)
< 3

m

and

LP(Sm):/ ; |G$?+|2dxdy</ IGP)2dzdy = o(1)

|z|<Sm
as m — oo, we conclude that

o) = [ (VU Paedy = o)
<

as m — 00.
A similar argument shows that

/ |Vu$,21?7|2dm dy = o(1)
x>—Up

as m — 00, so that

/ |Vu?)|? </ \Vug?+|2dxdy+/ |Vu£3?7|2dxdy
|z| <Upn, |z| <Up, |z|<Um

< / |Vu£2)+\2dxdy+/ |Vu§,2l)_|2dzdy
z<Un, 7 z>—Unm ’

=o(1)

as m — 00.
The complementary estimate

/ T =)
z|>Um

as m — oo is obtained in a similar fashion. O
The next step is to apply lemma 2.37 to the boundary-value problem (2.7)-(2.9).

LEMMA 2.38. Let u(n) be the solution to (2.7)-(2.9) with & = 0, f(n), n € U, where
f is a real polynomial. The estimates

VU 1w 1) = O, VU 1 ()< ) = O

lim lim
m—r 00 m—r 00
hold for each sequence {T,,} of positive real numbers with Sy, — Ty T — Ry — 00
as m — oo.

Proof. Choose sequences ~{Rm}, {S,n} of positive real numbers with S, —S,,, S'{m)f
T — oo and T}, — Ry, Ry — Ry — 00 as m — oo. The quantities unjl) = u(n,,jL ),

j = 1,2, satisfy the boundary-value problems

V- ((I+QU)vul)y =0, 0<y<l1,
(I+Q)Vul) - (0,1) = f(i))es y=1,
(I +QU)vuld) . (0,-1) =0, y =0,
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where Q%) =Q(n (J)) and lemma 2.37 asserts that

im VU N L2 o> 2,0y = O Jim IV L2 (0] <,y = O-
The derivatives u%g, j = 1,2 are weak solutions of the boundary-value problems
V(I +QW)WVul)) =V -G, 0<y<l,
(I +QR)Vuiy - (0,1) = f())ae + G- (0,1), y=1,
(I +QE)Vuiy, - (0,-1) = G - (0,-1), y=0,

Where‘G(J = Q(]) Vurﬂb). Using remark 2.27 and writing S(()fr)l = 50(777(7{)), R((JJ'W)L -
Ro(n%)L R(j) Ry (775,7,)) one finds that

1
||Q(1)VU(1)HL2(|;E\>Rm) ||S( ||oo||VU(1)HL2(|a:\>Rm)
1
+ (1RSI 1L + RO e LS
1/2 1/2
<Y ol Vel 1t o I VU it g

= o(1) (2.31)

as m — oo. (Lemma 2.25 asserts that {Vu J)} C H**! and hence {Vum } C
H'(X) is bounded; it follows that ||Vum e = 0O(1) as m — 00.) A similar
calculation shows that

(Iz]>Rm) =

1Q2) V“(2)||Lz(|a:\<s y =o(1) asm — oo,
and lemma 2.37 yields the estimates
i IV ey =0, lim IV ey = 0.
The calculation

1 .
5}77,3,/3/ = W(Gz[(l—i—qfﬁl) uld) +q7(r]z)2u7(q%] +0 (qm12u7(n?r) qg%zyu%é)
dm22

and estimates

1
la'n Va2 (o>t < laats oo VUl L2 (a5 1) = 0(1),

1) 1
{5} st

as m — oo (cf. (2.31)) show that

=o(1)

LZ(‘$|>Tm)

dim )y llz2(jeg >, = 0
(recall that [|(1 + ¢Y),)"1[|s is bounded); the complementary limit
dim ) llz2(jel <1, = 0

is obtained in a similar fashion. O
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Lemma 2.40 states another useful application of lemma 2.37 to the boundary-
value problem (2.7)—(2.9); the following proposition is used in its proof.

PROPOSITION 2.39. Choose N € N. The estimates

QY + 1) — Q) (@, y)| < cdist(x, [~ Ry, Rn]) ™Y
and

QMY + 1) — Qi) (@, y)| < edist(z, R\ (=S, Sm)) ™Y

hold for all (z,y) € X, where | - | denotes the 2 x 2 matriz mazimum norm, and
remain valid when Q is replaced by Q. or Q.

Proof. Observe that

1 T —s

9 /

n(z,y) = —— K( >nsds,
(z,9') TRl L S gy (s)

where K = (2m)7'/267'F~![y] € S(R). The above equation shows that 7° €
C>(X\ suppn x {1}) with
j gk, 8 . -N
103.0yn° (z,y)| < cdist(z,suppn) ™" [[7]|o

for each N € N.
Note that

2y — 11

g —fy + (F)? £, + (f5)7 | ()
v 1+ f3, 1+ /3,

< d(fie £7,) (@, 9))|

for all 1, ne and n3 :=ny +n2 € U. It follows that

Q&Y +02) = Qi) (@, )| < () (=), (1GL)° (=, ), (05’ (. )]
< cdist(z, [~ R, Rin]) V.

[(Q(m +1m2) — Q(n2)) (2, y)| =

The same argument yields the estimate for Q(nfﬁ) + 77,(,%)) - Q(ng)) and the corre-
sponding results for @, and Q. O

LEMMA 2.40. Let u(n) be the solution to (2.7)-(2.9) with € = 0, f(n), n € U, where
f is a real polynomial. The estimates

lim (|Vu(nl) +n2) = Vumi) | i1 (jaj<1,) = 0,
m—00

Tim [T +12) — Vu@) g ol = 0

hold for each sequence {T,,} of positive real numbers with Sy, — Ty T — Ry — 00
as m — o0o.

Proof. Choose sequences {Rjn}, {Sm} of positive real numbers with S,,, — Sy, Sy —
Twm — o and T, — R, Ry, — Ry — o0 as m — oo. The quantities wg) =
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(Uv(n) + 77(2)) (7753)) and w'?) = w(Mn W4 77(2)) - u(m(,p) satisfy the boundary-
value problems

V- ((I+Qm)Vud)) =V -GV, 0<y<1,
(I +Qm)Vw) - (0,1) = (). + GY - (0,1), y=1,
(I 4+ Qm)Vw) - (0,-1) =GP - (0, 1), y =0,

where Q,, = Q(ng) + 777(,%)) and
G = (QF — Qu)Vu), G = (QF) — Qum)Vuly).
Using the estimate
|(Q55) = Q) (z,y)| < cdist(z, [~ Ry, Rm])iN
(see proposition 2.39), one finds that
G113, < (R = Ron) N[ VulD 1§ < e(Bn = Ron) N[ F05IF 2 = 0(1)
(2) )2 H

(lz|>Rm)

as m — oo and a similar argument shows that |G, =o(1) as m — oo.

It follows from lemma 2.37 that L3 (el <8)
Jim (o llze o>z, =0, T [lwfze() <z, = 0.
The derivatives w%?,;, j =1,2, are weak solutions of the boundary-value problems
V(I +QV)\WVuwl)) =v-HY), 0<y<1,
(I + QYY) - (0,1) = 82f () + HY - (0,1), y=1,
(I +QP)Vw), - (0,-1) = HY - (0, 1), y=0,

where
HG) = —QunaVul) + (QF) = Qum)Vuld), + (Q2), — Qma)Vul?,

Treating HQme,(,P ||L2(\.T,|>Rm) using the method given in the proof of lemma 2.38
(see estimate (2.31)) and treating

QS = Qu) VUil |l 21> ) QS = Q) VUS| L2 a1 )

using the method given above one finds that ||H ||L2(M>R )y =o(1) as m — oo.
A similar argument yields ||H ||L2(‘$|<S y =0(1) as m — oo and it follows from
lemma 2.37 that

m—00 m—00

Finally, observe that

1
Wity = = @1+ gl wlal + aulawli)] + 0,(aizwiil)
1)
L+ Gmao

— ¢yl +V(QP — Q) - Vul) + (QP) — Q) Aul).
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The argument given in the proof of lemma 2.38 shows that

102101+ gt bl + aipwi)] + 0y (Gdawi) = Gday i) |2 ai,,) = o(1),
and the method given above shows that

V(@Y = Q) - Vul || L2 (a5 7,0, QS = Q) Aull) || L2 (1ay>1,,.) = 0(1)
as m — 0o0. One concludes that
Jim () llzgal> 7,0 =0,
and the complementary limit
Jim (i, | z2al <, =0
is obtained in a similar fashion. O
COROLLARY 2.41. The estimate
im [ Vu(ng) +07) = Vunl)) = Vum)lh =0

holds under the hypotheses of lemmas 2.38 and 2.40.

The proof of theorem 2.36 is completed by applying the next lemma to the
equation for 7’ given in corollary 2.32.

LEMMA 2.42.

(i) The estimates
im0 + @)K + D) o) + 1)
— L)V K ) 2050)) = L) E (D) f2 (00 lo = 0
and
Tim | A% + S E @G +0i) a0l +0)

— fulnSE ) f200)) = F VK 30) fa (0 oy = O
hold for all real polynomials f1, fo.

(ii) The estimate
ggnoon?f’( ) + i) (F1 (0 + D), fa (0 +0i2))
H (05 (F1 (), F2(0)) = H 05) (A1), f2(13)) o = 0
holds for all real polynomials f1, fo.
(iii) The estimate

m—» 00

holds for all real polynomials f1, fa.
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Proof. (i) Observe that

A0Y + n(2))K(n(” 1) fa(nY) + )
— LG K@) >f2( N = A)YE0P) f2(n?)
= finS) (e (S +0) = ue () + L2083 (ua (S +02) = ua(n?)).

e - an -norms of this quantity can both be estimated by
The L'(R d LR f thi i both b i d b
£ ) il (05 +050) = e (0 ly=1ll 22 (1< )

+ oSN 1l (15 + 0$2) — e () ly=1ll 212> 5,m)
< 1AL V@Y + 0 = VumS) | (21 <)

o(1) 0(1)
+ [ 21 (1Vu(n$y +082) = VumS) | (o)1)
o(1) o(1)
=o(1)

(use the Cauchy—Schwarz inequality or the maximum norm for the polynomials).

(ii) Observe that

H (0 + 08 (A0S + 02, 208 +nl))
H'(n (1))(f1( S0, 2050) = H S (F1(n$2), F2(02))
= —u (0% + el +18) + e (M) 02 (0$)) + ue (052 v (n2))
+uy (05 4 05 oy (05 +05) = uy (050, (0)) = uy (0 vy (05
+hmS + 02 uy (05 + 08 oy (0l +niP)
= By (N30, (0D = B2 )y (52 )0y (N2 =1,

where
n?—n*—2n
h(n) = +—"1 =1
() e

and wu(n), v(n) are the solutions to (2.7)—(2.9) with & = 0, fi1(n), n € U, and
& =0,f2(n), n € U, respectively.
The estimates

() +n(2)) ( W 1)) = (e () + wae(0)) (e () + v (02 ly=1lo

< v (1) + 05 ly=1ll1 [[ua () +02)) = wa () = we (157 |y=1l0
—0(1) =o(1)
+ lua(n)) + we (S ly=1111 02 (n%) +157) = v () = 02 () [y=1lo
=0(1) =o(1)
=o(1)
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and
(e (n)) + wa(ne) (02 (05)) + v2(n2)))
— e (M) e (03)) = e (052 )02 (05 ly=1llo
< e (0502 (0 [y=1llo + [l (0202 (05 [y=11l0
< |z () ly=1ll 2212|570 102 () y=11l1
—o(1) —o(1)
+ JJue S ly=1 11 1oz (D) ly=1 | L2 (2 < 7o)
—o(1) =o(1)
+ e (D) ly=1 1l L2 (1 <3) [0 (D) |y=1 11
=o(1) =0(1)
+ JJe () =111 1w (05 =1l L2125 730))
—o) o)
=o(1)
imply that

(e () + wa(ne)) (02 (05)) + 02 (n2)))
- uw(nﬁ))vx(nﬁ)) - ux(nﬁz))vx(nﬁf)ﬂy:lllo =o(1)

as m — 00; here we have used the estimate

[ua(Mly=1l1 < €l Vullsjzn < el fr(mll2, n €U,

and its counterpart for v. The same argument shows that
1ty (1)) + vy (M) (0 () + 0y (0))
=y (1) )0y (1)) = 1y (03 )0y (15D |y=1ll0 = o(1)

as m — 0o.
Because h(ny(rp + 777(7%)) = h(ﬁ%)) + h(nﬁf)) and

Iy (na)) + 1y (05 (vy (0D)) + vy (n3))
- Uy(nr(i))vy(nfﬁ)) - uy(nr(r%))vy(m(r%)”y:lno =o(1)

as m — oo (see above), repeating the proof of part (i) yields the estimate

RS + 1) uy (0L + n{2 Yo, (0 +n2)

— R uy (00, (n5)) — (05 Yuy (052 Yoy (08 y=11l0 = o(1)

as m — o0.

(iii) The methods used in part (ii) show that

IH () Sr(0)), P2 D 2 (1ep> 7,0y = (1),
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so that
|< (nm )(fl(nm )7 2( )), 2)>0‘
< IH ) F1))s (i D a5, (15 llo
~——
=0(1) =o(1)
—0
as m — oo. .

3. Minimizing sequences

The goal of this section is the proof of the following theorem, the existence of the
sequence advertised in which is a key ingredient in the proof that the infimum of 7,
over U\ {0} is a strictly subadditive function of x. The subadditivity property of ¢,
is in turn used to establish the convergence (up to subsequences and translations) of
any minimizing sequence for J,, over U \ {0} that does not approach the boundary
of U.

THEOREM 3.1. There exists a minimizing sequence {7, } for J, over U\ {0} with

the properties that ||7jm |3 < cp for each m € N and limy, o0 | T}, (7im)]lo = 0.

3.1. The penalized minimization problem
We begin by studying the functional 7, ,: H?(R) — R U {co} defined by

i + L2 i), ne U (o)

in which p: [0, M?) — R is a smooth increasing ‘penalization’ function such that
p(t) =0 for 0 <t < M? and p(t) — oo as t T M?. We allow negative values of the
small parameter, so that 0 < |u| < po (see the comments below lemma 3.8) and
the number M € (0, M) is chosen so that

M? > (¢* + Dy + Dy )|ul;

jp,u (77) =

the following analysis is valid for every such choice of M, which, in particular, may
be chosen arbitrarily close to M. In this inequality vy and v are the speeds of linear
waves with frequency kg riding shear flows with vorticities w and —w and ¢*, D are
constants identified in lemmas 3.2(i) and 3.3. In § 3.2 we give a detailed description
of the qualitative properties of an arbitrary minimizing sequence {n,,} for 7, ,; the
penalization function ensures that {7,,} does not approach the boundary of the set
U \ {0}, in which J, is defined.

We first give some useful a priori estimates. Lemma 3.2(i) shows in particular
that

Cop i=1nf T, 0 < 208 |p| — c|p|™, ey = 7]ebn\f{o} Tu(n) < 2v|p| —clp|™,

where 1] is the speed of linear waves with frequency ko riding a shear flow with
vorticity (sgn p)w (which depends only upon the sign of p), while lemma 3.3, whose

https://doi.org/10.1017/50308210515000116 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000116

830 M. D. Groves and E. Wahlén

proof is a straightforward modification of the argument presented by Buffoni et
al. 9, propositions 2.34 and 3.2], gives estimates on the size of critical points of J,
and a class of related functionals.

LEMMA 3.2.

(i) There exists n;, € U \ {0} with compact support and a positive constant c*
such that | < ¢*[ul 2, p((lngl13) = 0 and

. 2, B>p
J, N =Tu(nf) <2vf|pl —clp”, rr=<3 .
o () = Tu) < 276l = el {3, B < fe.

(ii) The inequality
(1 + G2(n)”

Ka(m) + Ls(n)

> 205 |l
holds for each n € H?(R) \ {0}.

Proof. First suppose that p > 0. The proof of part (i) is recorded in Appendix A,
while part (ii) follows from the calculation

2
Kol + L2
= Ka(n) + 200G2(n) — v3La(n) + (u+ Ga(n) — voLa(n)® + 2uop
L(n)
= 2vop.

For 1 < 0 we observe that 7,,(n), J,.(n) and Ka(n) + (1 + G2(n))?/L2(n) are
invariant under the transformation (p,w) +— (—p, —w). O

LEMMA 3.3. Suppose that 1 and 2 belong to a bounded set of real numbers. Any
critical point 0 of the functional J,: U — R defined by

Ty () = K(n) = 11G(m) — L) +slnll3, s =0,

satisfies the estimate
Il < DK(n),

where D 1is a positive constant that does not depend upon 71, y2 or 7s.
COROLLARY 3.4. Any critical point n of J, . with J, ,.(n) < 2v{|u| satisfies

Inll3 < 2Dvf|ul,  p(lInl3) = 0.

Proof. Notice that any critical point n of 7, ,, is also a critical point of the functional
J ~, where

2
I IR R+ L I )
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Furthermore, any function n € U such that

(1 +Gn)?
Lk
E(n) 0 |H’|
satisfies
2 2
W u 2uG(n)  G(n) " 2|pllg ()]
— < 2y, — — < 2y, + —<c¢
2o SO Ty T ey SPOME Ty S
(see proposition 2.35), so that
|1l
—— < c 3.1
2 31

Observing that
(n+6Gm)?
L(n)

we find from proposition 2.35 and inequality (3.1) that 7; and <y, are bounded.
The previous lemma shows that ||n]|3 < DK(n) < DI, .(n) < 2Dvj|u|, and hence
p(Inl|3) = 0 because of the choice of M. O

< Tpuln) <204 ul,

Finally, we establish some basic properties of a minimizing sequence {n,,} for
Jp,u- Without loss of generality we may assume that

sup [[nmll2 < M
meN

(Inmll2 = M would imply that 7, ,,(n,) — oo) and it follows that {n,,} admits
a subsequence such that lim,, o [|[1m||2 exists and is positive (5, — 0 in H?(R)
would also imply that J, ,,(7m) — 00). The following lemma records further useful
properties of {n,}-

LEMMA 3.5. Every minimizing sequence {nm} for J, . has the properties that

Tou(m) <2081l —clul™,  Lm) Zclul,  La2(m) > clul,
M, () < —clul”, 1m|1,00 = e|pe|”

for each m € N, where

(1 + Ga(n))?
£2(77) .

Proof. The first and second estimates are obtained from lemma 3.2(i) and the
remark leading to (3.1), while the third is a consequence of the calculation

L
iy < {20 < ity nev (32)

Mo () = Tp,u(n) — Ka(n) —

Turning to the fourth estimate, observe that

Mo (m) < Tp () — 20|l < —clpl”

https://doi.org/10.1017/50308210515000116 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000116

832 M. D. Groves and E. Wahlén
because
(1 + G2(n))?

Kalm) + =700

> 205 |l

(see lemma 3.2(ii)).
Finally, it follows from the calculation

Mp,u(nm) - p(||Tlm||§)
PLa(m) 208G (m) Lat(0m) | 26Gn (11m)

=Ko0m) = ) Eal) T L) Ea() T L)
_ g2(77m)5n1(77m) + (g(nm) + gZ(nm))gnl(nm)
L(1m ) L2 (1m) L(1m) ’

the inequalities

|G (1)1, 1G (nm)| < CHUMH%/%
1Gu1 (M) |, [t ()| < el[m 11,005
|L1(nm)] < CHanLw”nm”%ﬂ

and (3.2) that
(Mo (mn) = p(11m13)] < €llml1,00-
The fifth estimate is obtained from this result and the fact that

Mo (1) = p(lmm13) < —clpl”™

REMARK 3.6. Replacing 7, () by J.(n) and M, (1) by

(1 + G2(n))?
Lo (77)

in its statement, one finds that lemma 3.5 is also valid for a minimizing sequence

{nm} for J,, over U\ {0}.

Myu(n) == Tu(n) = Ka(n) —

3.2. Minimizing sequences for the penalized problem
3.2.1. Application of the concentration-compactness principle

The next step is to perform a more detailed analysis of the behaviour of a mini-
mizing sequence {n,, } for J, ,, by applying the concentration-compactness principle
(see Lions [21,22]); theorem 3.7 states this result in a form suitable for the present
situation.

THEOREM 3.7. Any sequence {u,,} C L'(R) of non-negative functions with the
property that

oo

lim Um(x)de=0>0

m—oo J_

admits a subsequence for which precisely one of the following phenomena occurs.
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o Vanishing: for each r > 0 one has that

T+r
lim (sup/ U (T) dx> =0.
m—0o0 \ zeR Jz—r

o Concentration: there is a sequence {x,,} C R with the property that for each
€ > 0 there exists a positive real number R with

R
/ U (T 4+ Tpm)dz 24 — ¢
-R

for each m € N.

e Dichotomy: there are sequences {x,} C R, {My(nl)},{MT(nQ)} C R and a real
number k € (0,¢) with the properties that

M, M — o0, MY /M 0,
MY M2
/ U (T + X)) dz — K, / U (T + xp)dz — K
EYIe) -MD

as m — oo. Furthermore,

T+r
lim (sup/ U (2) dx) <K
m=o0 \ zeR Jz—r

for each r > 0, and for each £ > 0 there is a positive real number R such that

R
/ U (T + T )dT 2 K — €
-R

for each m € N.

Standard interpolation inequalities show that the norms || - || are metrically
equivalent on U for r» € [0,2); we therefore study the convergence properties of
{Nm} in H(R) for r € [0,2) by focusing on the concrete choice r = 1. One may
assume that ||, [|1 — ¢ as m — oo, where £ > 0 because 1,, — 0 in H"(R) for r > 3
would imply that J, ,(7,) — oo. This observation suggests applying theorem 3.7
to the sequence {u,,} defined by

Um = 77;3 + 773@7
so that ||um| 1) = [[7ml|7. The following result deals with ‘vanishing’ and ‘con-
centration’ (see Buffoni et al. [9, lemmas 3.7 and 3.9]).
LEMMA 3.8.

(i) The sequence {u.,} does not have the ‘vanishing’ property.

(ii) Suppose {um} has the ‘concentration’ property. The sequence {Nm(- + Tm)}
admits a subsequence, abbreviated, with a slight abuse of notation, to {nm},

which satisfies R
lim {2 < 37

m—r
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and converges in H"(R) for r € [0,2) to n). The function n*) satisfies the
estimate
I 115 < DE(™) < 2Dvf|l,

manimizes Jp,, and minimizes J,, over U \ {0}, where

U={necHR): |n]2 < M}.

We now present the more involved discussion of the remaining case (‘dichotomy’),
again abbreviating the subsequence of {9, (- + )} identified by theorem 3.7 to
{Nm}. The analysis is similar to that given by Buffoni et al. [9] in their study of
three-dimensional irrotational solitary waves, the main difference being that nega-
tive values of p are also considered, so that u is replaced by |u| in estimates (this
change is necessary since the numbers p(!) and u(? appearing in part (iv) of the
following lemma, which are later used iteratively, may be negative). We therefore
omit proofs that are straightforward modifications of those given by Buffoni et al.;
note, however, that references in their paper to Appendix D (in particular theo-
rem D.6) for ‘pseudo-local’ properties of operators should be replaced by references
to §2.2.2 (in particular theorem 2.36) here.

Define sequences {7],(,1)}, {777(73)} by the formulas

7 () = nm(ﬂi)x<]\;(nl)>, @) = ) (1~ X<Mf(n)>)

so that
suppny,) C [<2M), 2M)], suppny) C R\ (=MF), MD).
LEMMA 3.9.
(i) The sequences {nm}, {7],(7%)} and {777(,3)} have the limiting behaviour
S A e ol e [ U /1o PR

as m — oo and satisfy the bounds

sup [0\ )2 < M, sup [n{P]2 <M,  sup [n) + P2 < M.
meN meN meN

(ii) The limits limy,— 0o L‘(n%)) and lim,, oo E(ng)) are positive.

(iii) The functionals G, K and L satisfy

g g g
Ko m)—SKpmi)) =K mP)—0,
c c c
g’ g’ g’
K8 () =K 3 () = K" 3 0P| —0
c c c

0

as m — Q.
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(iv) The sequences {nm}, {nm)} and {nm } satisfy
lim jp(nm) = hm I, @ (% ))+n}i_r>noo‘7u(2)(77’g))’
lim J(0m) = lim Tl (n)) + lim Tl (n2),

m—r o0

where
p =a®(u+ lim Gnn)) — Tim G(nid),

i = a® (it Tim Glpm) ) — Tim Gn2),
m— 00

m—o0

and the positive numbers oV, o2 are defined by

o — w o — w
limy;,— 00 [’(nm) ’ lim,, oo ,C(nm)

(v) The sequence {777(71)} converges weakly in H*(R), and strongly in H"(R) for
r€[0,2), to a function nV) € H?(R) with |n™M|3 < DK(nM) and ||nM|, >
ol

(vi) The sequence {777(,%)} is a minimizing sequence for the functional

Ty : H*(R) = R U {00}

defined by
(W2 +G)? )
T () = KO+ ey ealnl), e U2\ {0},
0 n & Us \ {0},
where

Uz = {n€ H*R): [nll3 < M* = [nV13},  p2(llnll3) = p(ln ™13 + Inll3)-
(vii) The sequences {nm,} and {n,(g)} satisfy
1imp(lmal3) = Tim_pa(In213)
im T (m) = T () + Jim T, e ()

and
I3 + im In$215 < Hm [Inm]l3
m—r 00

with equality if limy, o0 p(||7m||3) > 0

Proof. For part (i), see Buffoni et al. [9 lemma 3.10(i) and (ii)].

Turning to part (i), observe that /.Z(nm)) — 0 as m — oo implies that || 12 —
0, and hence Hnm I (1 — 0 as m — oo, which contradicts part (i). The same argument
shows us that L£(nm’) 4 0 as m — oo. Because the derivative of G is bounded on
U, we find that

G(m) — G(n&Y + 1) < ellnm — 0l — 022 — 0
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(see part (i)), and therefore that

G(mm) — G(n5)) — G(2)
=G(m) — GO + 0 +6(0% +nl) —6(Y) — ()

=o0(1) =o(1)

as m — oo, in which theorem 2.36 has been used. The same argument applies to K
and £ and establishes part (iii).

Part (iv) follows from part (iii) by a direct calculation (cf. Buffoni et al. [9,
corollary 3.11]); for parts (v), (vi) and (vii) see Buffoni et al. [9, lemmas 3.12,
3.15(i) and 3.15(ii)]. O

3.2.2. Iteration

The next step is to apply the concentration-compactness principle to the sequence
{uz,m} given by
U2 m = 77/22,m + n%,mv
where 12, = 77,(3), and repeat the above analysis. We proceed iteratively in this
fashion, writing {n,,}, p and U in iterative formulas as {n; ,, }, 1 and Uy, respec-

tively. The following lemma describes the result of one step in this procedure (see
Buffoni et al. [9, §3.3]).

LEMMA 3.10. Suppose that there exist functions nV, ... n*) e H?(R) and a se-
quence {Nk+1.m} C H2(R) with the following properties.

(1) The sequence {Nk+1,m} is a minimizing sequence for
Tprsr s H?*(R) — RU {0}
defined by

(tr41 +G(n))?

K(n) + +per1(lml3), 0 € Urir \ {0},

jpk+17#k+1 (77) = ‘6(77)
o, n g Uk+1 \ {0}7
where .
s = {n € H(R): Dol < 3% = 3 1913}
j=1
and
k .
prta(nll3) = p(Z I3 + 77||§>,
j=1
o hmm—>oo ‘C(nk-‘rl,m) . :

(i) The functions n, ... ,n*) satisfy
0<|[nW5 < DKWY, j=1,....k,
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and

§ j <1) +Cpk+1 Hk410

where

L _ E(U(j))

——— i i 0Dy i—

m—0o0
and Cpk+1,mc+1 = inf jpk+17l$k+1 .

The sequences {nm}, {Nkr1.m} and functions nM ... ") satisfy

b g g
= M—00 r m—00 r

Tgi_{nm plnml3) = Tim prpr (Imes1.ml13)
and

Z||77(J)||2+ hm [Mkt1,mll3 < hm 17|15
Jj=1

with equality if imy, o0 p(|[7m||3) > 0

Precisely one of the following phenomena occurs.

(1)

There exists a sequence {Tp+1,m} C R and a subsequence of {nNi+1.m(- +
Tr+1,m)} that satisfies

g1 m(c i m) 3 < Znn“ I3

and converges in H"(R) for r € [0,2). The limiting function n*+1) satisfies

k+1 (G _ g
DK @Y) = Tim Kb (),

k+1
0 < [[n* V5 < DK(n**D), Cou = Z ‘7M§l)(77(J))

with ;L,(H)_l = U1, minimizes Jp, .| u... and minimizes J, m over Usy1\{0},
where

k
Ot = {n e HA(R): [nfl} < 32— 3 ||n<ﬂ>|§}.

The iteration terminates with this step.
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(2) There exist sequences {nkH s {77k+1 m} with the following properties.

(i) The sequence {nk+1 ) converges in H"(R?) for r € [0,2) to a function
n*+Y) that satisfies the estimates

0 < [ln™ VI3 < DEM™V), "V o > eluliy
(ii) The sequence {n,(i)l,m} 18 a minimizing sequence for

J (2) H2(R)*>RU{OO}

Pk+2:Hp 41
defined by
K(n)
(12 +9()? )
Tawl, M= =gy Towra(lnl). n € Uiz \ {0},
0, n ¢ Uk+2 \ {O}a
where .
+
Usa = {n e H2(R): Il < 02 = Y 19 1}
j=1
and
k1
prsa(ll) = o 30118 + 113 ).
j=1
i oo L2, )
2) m—»00 k+1,m . Y (2) )
Mk+1 limm_>oo E(T}m) (M T 7&21100 g(nm)) W}E)noo g(nk+1’m)7
furthermore
k+1
Co,p = Z j <1) Cpk+2,,u§€2_e_1’
where
(k+1)
L L(n )
Fir = limy, 00 £(Nm)’ orta, nl inf jpk+2 wly

(iii) The sequences {nm}, {7),(3_31”} and functions nV ..., n* 1) satisfy

k(G g . g
(j+1) ; = 1
j; IZ (77 ) + W}EHOO ’; ("7k+1 m) mgnoo ’Z (nm)a
. 2y _ 1 (2) 2
Tim p(mald) = tim_prea(ini .2
and
k+1 .
)12 . 2 . 2
Do nPIE+ tim g )13 < lim g3
j=1
with equality if im, o0 p(|[7m||3) > 0
The iteration continues to the next step with Ngyo.m = nl(f—izl,m’ m € N.
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The above construction does not assume that the iteration terminates (that is
‘concentration’ occurs after a finite number of iterations). If it does not terminate,
we let k — oo in lemma 3.10 and find that ||[*®)||; — 0 (because

k k k
>IN < DY K@) < DY T,00%) < Deyy < 2Dvf |
j=1 i=1 i=1

for each k € N, so that the series Y 7, 7|13 converges), up — 0 (because

BB > clpa), Cpgo, — 0 (because e, o, < 204 |jug) and

Co.p = Z ju§1) (n(j))-
j=1

For completeness we record the following corollary of lemma 3.10, which is not used
in the remainder of the paper (cf. Buffoni et al. [9, corollary 3.17]).

COROLLARY 3.11. Every minimizing sequence {nm} for J,, satisfies

lim |l < M.
e

m—r

3.3. Construction of the special minimizing sequence

The sequence {7, } advertised in theorem 3.1 is constructed by gluing together
the functions 1) identified in §3.2.2 with increasingly large distances between
them (the index j is taken between 1 and k, where k = oo if the iteration does
not terminate). The minimal distance between the functions is chosen so that the
interaction between the ‘tails’ of the individual functions is negligible and |7}, |3 is
approximately Zle 79013 = O(u) (we return to the original physical setting in
which p is positive). The algorithm is stated precisely in part (ii) of the following
proposition (which follows immediately from part (i)); for the proof of part (i), see
Buffoni et al. [9, proposition 3.20].

ProrosIiTION 3.12.

(i) There exists a constant C' > 0 such that

k
Z 7-Sm(J)
j=1

where (Txn)(x) := V) (x + X), for all choices of {S;}s_,. Moreover, in the
case k = 0o the series converges uniformly over all such sequences.

2
< 202D1/0,u,
2

(ii) The sequence {7} defined by the following algorithm satisfies
7m 13 < 2C%Dvop.

(1) Choose R; > 1 large enough so that

: p
10D 22| R,y < e
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(2) Write S1 =0 and choose S; > S;_1 +2R; +2R;_1 forj=2,...,k.
(3) Define

Tm = ZTSjJr(jq)m??(j)a m € N.

Observe that a local translation-invariant analytic operator 7: U — R has the

property that
k

lim T () =Y T(nW).

Jim T = 32 T017)
Part (i) of the next lemma states that the functionals G, K and £ behave in the
same fashion (with corresponding estimates for their L2-gradients); it is deduced
from theorem 2.36 using the method given by Buffoni et al. [9, lemma 3.22]. Part
(ii) follows from part (i) by a straightforward calculation that shows that

k
VAR SVINT
=1 7

~

( ) ]
mlgnoo Tu (i) ZJ w (nY im_ O
(cf. Buffoni et al. [9, corollary 3.23]).
LEMMA 3.13.

(i) The sequence {ij} and functions {n}" satisfy

g t (G o
dim 9K () =D 4K o (7).
i=1 | L
g/ k g/ '
[,’ i=1 .
(ii) The sequence {7} has the properties that
. L B
i Jy(im) = oyl T (im)llo = 0.

The proof of theorem 3.1 is completed by the following proposition.

PROPOSITION 3.14. The sequence {7} is a minimizing sequence for J,, over U\
{0}.

Proof. Let us first note that {7,,} is a minimizing sequence for J, over U \
{0} since the existence of a minimizing sequence {v,,} for 7, over U \ {0} with
limy, o0 T (Vm) < limy, o0 Jpu(7m) would lead to the contradiction

n}gnoo jp,u(vm) = rr}gnoo xZL(Um) < rr}gnoo ju(f]m) = rr}gnoo jp,;t(ﬁm) = Cp,p-
It follows from this fact and the estimate ||7},,]|3 < 2C?Dyopu that

inf{ T, (n): lInll2 € (0, M)} = inf{T.(n): lInll2 € (0, /2C2Drop)}
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for all M € (v/2C2Dvypi, M ). The right-hand side of this equation does not depend
upon M; letting M — M on the left-hand side, one therefore finds that

nf {7, (n): [Inll2 € (0, M)} = nf{F.(n): [[nll2 € (0, vV2C2Drop)}

= i Ji(n)-
O
4. Strict subadditivity
The goal of this section is to establish that c, is strictly subadditive, that is,
Crntpz < Cpy F Cups 0 <[, |p2], p1 + pi2 < pro, (4.1)

where negative values of the small parameter are again allowed. This fact is deduced
from the facts that c, is an increasing strictly subhomogeneous function of p > 0,
that is,

Cap < GCy, a>1. (4.2)

The strict subhomogeneity property of c, is established by considering a ‘near
minimizer’ of J, over U \ {0}, that is, a function in U \ {0} with

1715 < e, Tu(@) < 2wop—cu”,  T@lo < 1,

and hence £(7), L2(7) > cp (see the remark above (3.1) and inequality (3.2)), and
identifying the dominant term in the ‘nonlinear’ part M, (77) of J,(7). In §§4.2
and 4.3 we show that

c/ ﬁi’dx+o(u‘r’/3), 8> B,
0> M) =4 7 (43)
—c/ Atz +o(u®), B < fe

where 7, is obtained from 7 € H?(R) by multiplying its Fourier transform by the
characteristic function of the set S = [—ko — dg, —ko + do] U [ko — o, ko + 0] with
00 > 01if 8> B and g € (0,ko/3) if 8 < Bc; inequality (4.2) is readily verified by
approximating M (7,,) by the homogeneous term identified in (4.3). The details of
this procedure are given in §4.4.

Straightforward estimates of the kind

G () K (71, £ (i) = O[T 13) = O(17?)

do not suffice to establish (4.3). According to the calculations presented in Appendix
A, the function 7}, which is constructed using the Korteweg-de Vries scaling for
B > . and the nonlinear Schrodinger scaling for 5 < 3., satisfies the estimate (4.3)
(with 7 replaced by ;). The choice of 7, is of course motivated by the expectation
that a minimizer, and hence any near minimizer, should have the Korteweg—de
Vries or nonlinear Schrodinger length-scales. Our strategy is therefore to show that
iy is O(u'/?) with respect to a weighted norm. To this end we consider the norm

Il = [ 1 ] = ko)) P

—0Q0
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and choose a > 0 as large as possible so that ||| ||« is O(x'/2); this more detailed
description of the behaviour of 7} allows one to obtain better estimates for G;(7),
KC;(n) and £;(7), and thus establish (4.3) (see §§ 4.2 and 4.3 for 5 > 3. and 8 < [,
respectively).

4.1. Preliminaries

In this section we establish some basic facts that are used in §§4.2—4.4.

4.1.1. Splitting of n

In view of the expected frequency distribution of 7, we split each n € U into
the sum of a function 7, with spectrum near & = +ky and a function 7, whose
spectrum is bounded away from these points. To this end we write the equation

TLn) = Ky(m) + Klaln) + 2(“2(?7;’”)%@ T 2(”2(%”)) L)

Lg('f]) ’ / _ L_C’/(n) ’ /
_< ) >£2(77) < £ > ni(n)
= Kb (n) + 200G (n) — V3L (1)

s+ 2( 52 ) +2( L gt

S(E ) (S )~ (50" e

in the form

o0 = 7|70~ Ko~ 2( 52 < o) - 2( 2 gt

+<“+Wm+%>0”%wn—wyym+<“+ﬂmf;Mﬂ

L(n) L(n) L(n)
and decompose it into two coupled equations by defining 7o € H?(R) by the formula
_ 1 1- Xs(k) ’ ¥t
m =[S B ) - Ko
1+ G(n) ), (u+ﬂm>/
—2 G 2 4
( () 0 )G2(n) L) 1(m)
1w+G(n) )(M+QM) >,
+ + - L
(2 ) (M st
M+ﬁ@f, }}
+ n
and 11 € H%(R) by 11 = 1 — 12, so that 7; has support in S; here we have used the
fact that ) k)
[
£ 7t S

is a bounded linear operator L?(R) — H?(R).
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4.1.2. Estimates for ||| - |||

PROPOSITION 4.1.

Loo < P nlllas 1K nlloc < cp®llnllla hold for each

(i) The estimates ||n]
n € H*(R).

(ii) The estimates
I + Kgnllo < cp®lllnllla, ko # 0,
and
K ) ™l < p*llnllas 7 € No,
hold for each n € H?(R) with supp7 C S.
Proof. (i) Observe that

NP5 < elllkl il @y, =01, (4.4)
15 nllo0 < (K = Dnlloo + 0l

< c(|[(1k| coth [k] = 1)l L1 =) + [17]]s0)

< e[|kl ey + 19021 ) (4.5)

and
IEP A7 Ry

([ ) [0 R ak

& k27 0
dk L+ p=(k + ko))l (k)| dk

+(/w1+u—4@(k+ko)4 )/Oo( +um (kA4 ko))l (k)]
<cep®flli*, =01

(ii) The first result follows from the calculation

I + kgnll§ = I1(&* — K5)ill3

ko+do —ko+do
<(/ ko ik + |k+ko|2|ﬁ(k)|2dk>
ko—0d¢ —ko—3d0

Fooo 2 2 4 2
<(/k (12 + =2k — ko YAk dk

0—00

~hotdo 2 2 4 2
[ G o) dk)
—ko—4d0

) ko+do 4 4 9
wa(/k (14 gk — kol*)|A(k)? dk

0—00

—ko+do
-/ (1+u‘4ak+kol4)lﬁ(k)l2dk>
—ko—4d0

= cp®*[|lnll3,
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while the second is established by repeating the proof of the second inequality in
part (i) and estimating |k| < ko + do. O

4.1.3. Estimates for the wave speed

The following proposition is used in particular to bound the deviation of the
quantity (u+ G(7))/L(7) (the speed of the corresponding travelling wave when 7
is a minimizer of 7, over U \ {0}) from the linear wave speed vy.

PROPOSITION 4.2. The function 7 satisfies the inequalities

Ra(il) < W v < Ra(i)
and
Ra (i) = () < “p 20 — o < Rai) = M, (),
where
Ry () = w (ML) + 40, (),
Ra() =~ L (vt ) + 4t 4) — 2
and

L(1) Lo(7)

Proof. Taking the scalar product of the equation

~\ \2 ~
72 =300 ~ ("L i)+ 2 (ML 2D )55+ vty )

with 7 yields the identity

p+g@m _ (Jum),m)

L(n) Ap

1 N (M"‘g(ﬁ))Q 1 I (Y 5 (7
b (ICz(n) n L(n)) + ML) + 4, ).

The first inequality is derived by estimating the quantity in brackets from above
and below by means of the estimate

(e Ga())? _ _ _
avon < Ka(i) + LTI — 7 3) = M) < 2oom = M, )
and the second inequality follows directly from the first. O
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4.1.4. Estimates for the functionals G, IC and L

Turning to the functionals G, K and £: U — R, denote their non-quadratic parts
by Gui, Ku1, Ln1 and write

4

gnl(n) == Z gk (77) + gr(n)v

k=3
4
Ka(n) = 30 Kaln) + e,
k=3
Lu(n) =Y Lin) + L:(n),
k=3
so that
G.() = & [ ()~ KO~ K (), (16)
K=o [ (VT a2 [ - K)o
(4.7)
Lo =5 [ alf) — K~ K 0) — K2(0) (4.8

We now record useful explicit formulas for the cubic and quartic parts of the func-
tionals in terms of the Fourier-multiplier operator K° and give order-of-magnitude
estimates for their cubic, quartic and higher-order parts.

PRrROPOSITION 4.3. The formulas

. _v > 2K0%4 K _“ﬁ = 34
Gs(n) = n° K ndx, 3(n) = 5 n° dz,
1 o0
Laln) =5 [ (K0 ) do

and

w w [*
Ga(n) = 577277’2 dz — Z/ n*K°(nK"n) dz,

—00

ﬁ o0 w2 o0
Ka(n) = —g/ n'* dz — @/ n’K'n® dz,

1

La(n) = 5/ (K (K n)nEK "y + (K n)n*n") da

hold for each n € U.

Proof. The formulas for Gz and K3, K4 follow directly from (1.10) and (1.11).
Equations (1.12) and (2.26) imply that

Ls(n) = %/w nEy(mnde, L) = 3Hi()(0,0) + Ki(n)n,

— 00
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while lemma 2.31 shows that
( )(C1?<2) = _ulwu2x + ul'qu2y|y 1= (KOC1)(K0<2) + Cicé’
where u; is the weak solution of (2.7)—(2.9) with § = (}, j = 1,2, so that
Ly(n) = —5(Kn)* + 30" + Ki(n)n. (4.9)

Taking the inner product of this equation with 7, we therefore find that

scatn) = 3 [ T (KO 4 n?n) da 4 2L (),

2 — 00
which yields the given formula for £3(n).
Similarly, (1.10) and (2.25) imply that

G =75 [ rKinda

and
Gi(n) = wH (M) (0, n) + 2wK1(n)n® + LwnKi(n)n
= —2w(K*) K+ fom?)'n' + TwKi(n)n® + swnKi(n)n.
)

The formula for G4(n) follows by taking the inner product of the latter equation
with 7.
Finally, (1.12) and (2.26) imply that

cion =y [ wands, L4 = F0000) + Koy

— 00

and lemma 2.31 shows that
Hy (1) (C15 G2) = —ul ub, — ud,ui, +“1yu2y +u2yuly 277U1yu2y|y 1-
Using (2.18), we find that
uyly=1 = G+ (0, D]y=1 = =(Q"Vu") - (0, D)]y=1 = mugy +n'ugly=1 = n¢' —n' K¢,
where u is the weak solution of (2.7)—(2.9) with £ = ¢/, so that
My (1) (n,m) = =202 K n — 2K K ().
Equating (4.9) and
Ly(n) = K" (nKn) — 5(K°)* — 30 —"n,
which follows from the formula for £3(n), we find that
K (n)n = —K°(nK"n) — (n'n)’

so that
Ly(n) = —n"K + K'nK°(nK"n) + K°n(n'n)’ + Ka2(n)n.

The formula for £4(n) is obtained by taking the inner product of this expression
with 7. O
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PROPOSITION 4.4. The estimates

¢ <cllnl3nllee + 1" + kdnllo),

)

)

)

) 2 " 2 2
| ¢ <clnlznlliee + 17" + kgnllo)?,

)

) 3 1/ 2 2

) <clnllznlli,ee + 7" + Egnllo)

)

hold for eachn € U.

Proof. These results are obtained by estimating the right-hand sides of the formulas
given in proposition 4.3 and (4.6)—(4.8) using proposition 2.29. O

PROPOSITION 4.5. The estimates

1,00 + 10" + Kgnllo + [ K| o),

lo ¢ < clmll2(lln

100 + 10" + Kgnllo + 1K nllc)?,

lo ¢ < cllnll2(lln

1,00 + 10" + Kgnllo)?

lo ¢ < cllmll3(lln

hold for each n € U.

Proof. We estimate the right-hand sides of the formulas

Gs(n) = jwKn* + 5wnK"n, (4.10)
Ks(n) = 30°n?, (4.11)
Ly(n) = —K°(nK°n) — $(K"n)* — in* — 07, (4.12)
Gi(n) = —3w(K°n*) K’y — swK°(nK"n?) — win® — wn®n” — 2wnK°(nK°n),
Ki(n) = 36n"n" — 3w*n” K'n?,
Lh(n) = =202 K — 2K°n K" (n)n + Ka(n)n

and

Gl(n) = tw(H (n) = H M) (*,n) + tw(K(n) — K° — K'(n))n?

+ Jwn(K(n) — K° — K (n))n,

https://doi.org/10.1017/50308210515000116 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000116

848 M. D. Groves and E. Wahlén

/’ 1 /
8(1 807~ s )7~ AP WOPP) — 3PP () - KO

Li(n) = 5(H (n) = Hi(n) = Hy(n)(n,m) + (K(n) — K° — K'(n) — K*(n))n

KL (n)

using proposition 2.29 and the estimate

1

1H 1 1()(C1, G)lo < CBY(

o)1 lls 2l1C2lla/2,  J € No.

It is also helpful to write
Ksm) =mai(n,n),  Gs(n) =ma(n,n),  L5(n) =ms(n,n),
where m; € L2(H?*(R), L*(R)), j = 1,2,3, are defined by

ml(ula U2) = %W2U1U27

1. .70 1 0 1 0
ma(u1,up) = WK (ugug) + zwur K ug + zwus K uy,

—%KO(U,:[KO’U/Q) — %KO(’U,QKOul)

ms(uy, us)
170 0 1 1 1
— 5K u1 K ug — Su1,U0p — 5UIzeU2 — 5UIUes

and, similarly,

Ks(n) = n1(n,n,m), Gs(n) = na(n,n,m),  Lsn) =na(n,n,n),

where n; € L3(H*(R),R), j = 1,2, 3, are defined by

(oo}

1 9
ni(ur, ug, u3) = gv urugug de,

— 00

na(u1, ug, uz) = / Plurus K us) dz,

nz(u, ug, ug) = / Plujubug] dr — 7/ P[( u1 uQ)ug} dx

and the symbol P[] denotes the sum of all distinct expressions resulting from
permutations of the variables appearing in its argument.

PROPOSITION 4.6. The estimates

[lm (1, u2) o < cllmllee + 7 + kgmllo + 1K n1ll100) luzll2, 5 =1,2,3,

and

I (1, uz, us)| < ellmlltoe + 177 + kgmillo + 1K mll1,00) luzll2lusll2,  j=1,2,3,

hold for each n € U and uz, uz € H(R).
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4.1.5. Formulae for the functionals M,, and Mu

LEMMA 4.7. The estimates
M,.(n) = Ks(n) + 200Gs(n) — v5L3(n) + Ka(n) + 200Ga(n) — v La(n)

" (“ Zf(;gm - ) (Gs() + Ga(m))

(/H-%( n VO) (“Z:—?g ) +u0)(£3(17) + La(n))

o (25

L2(n)
O3 (Imll1,00 + 0" + Kgnllo)?),
)

(Myu(n),m) + 4pM,(n
= 3(Ks(n) + 2v0Gs(n) — v Ls(n)) + 4(Ks(n) + 2v0Gs(n) — v5L3(n))

w+ Ga(n)
+ 2( o) z/0> (3G3(n) +4G4(n))

(,ng( ") _,/0> (u+92< n) +V0)(gcg<n>+4c4<n>>

E

L2(n)

Ls(n)
a0 (55890

(u P(Inll1,00 + " + Kgnllo)®)

and

M) = u=(Ga(n) + Gan)) + (“ 22%7577)

+ O (IInll100 + 10" + k5nll0)?)

)(Es(n) L)

hold for each n € U with |0 < cu'/? and La(n) > cp.

Proof. Using the formulas

(B+Gm)* (14 Ga(n)?
L(n) L(n)

Mu(n) = Ku(n) +

and

one finds that

Lo(n)
Ga(m)?  (r+Go()\ Gu(m)Li(n) | (1 +Ga(n) Y Lu(n)?
a0 2( L2(n) ) o ( L2(n) ) ()
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We estimate the first line by substituting
Gui(n) G3(n) + Ga(n)
Ku(n) p = < Ks(n) + Ka(n) p + 0w ?([nll1.0e + 0" + kgnllo)®)
Ln(n) L3(n) + La(n)

(see proposition 4.4) and
p+ Ga(n)

Ls(n) = o).

Writing
Gui(n) = Ga(n) + O(u(|[nll1 00 + 11" + Knl0)?)
(see proposition 4.4) and estimating

Gs(n) = O([lnllss|Inl3) = Oullnl )
(using the formula for Gs(n) given in proposition 4.3) yields

Gul(n)?* = Gs(n)* + O (Inll1.00 + [In" + K5 llo)*)

and

Lu(1)G3(n)* 2 Mo 12 183
T =0 oo+ 0" +k
(recall that L£(n) = cLa(n) for n € U), so that

Gu(n)* _ Gs(n)®
L(n)  La(n)

the remaining terms on the second line are estimated in the same fashion.
Altogether we find that

MAm=KWﬁ+4”+%@)%m—(”“Mmf@w>

+ O 2 (|Inll1,00 + 10" + k3nllo)?);

Ls(n) Ls(n)
1+ Ga(n) w+Go(m) Y
+ ]C4(77) + 2(£2(77)>g4(77) - (‘62(77)) £4(77)

I N R AN
e <g3“” ‘é(”)< Lan) >)
+ 02 (IInll1,00 + 10" + E20ll0)?),

from which the stated formula for M, (n) follows by an algebraic manipulation.
The other estimates are derived by similar calculations. O

4.2. The case 3 > (.
We begin by estimating the wave speed.

PROPOSITION 4.8. The function 1 satisfies the estimates

‘u+9@)_y

D L il + 1770 + 1)

‘u+gxm_y = e ’ '
L)
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Proof. Proposition 4.4 implies that
9,0 )
|55 ()] wllll100 + 7" M0), 5 = 3,4,
1L ()]

and lemma 4.7 shows that

My D MG, (), 77) + 4uM ()] < ep[7ll1,00 + 117" o),
M ()] < e(llfll1,00 + 117" ll0)-

The results are obtained by combining these estimates with proposition 4.2. O

COROLLARY 4.9. The quantity

S() = T - nl<>—2(‘W—uo)g;<ﬁ>—2<“+g );
77

IS0 < el 2 Illoe + 17" llo + 1K ) + 1™).

satisfies

The next step is an estimate for |||71]||o and ||72]|2-
LEMMA 4.10. The function 7 satisfies ||71[|2 < cp and ||72]|3 < e+ for a < 3.

Proof. Using the equations

1|1 =xs(k)

g(k)m = FIS(n)], 2 =F o0k

FIS@)]|,
we find from corollary 4.9 that

I7ill2 < e (i ll1,00 + 17 o + 1K Tt lloe) + 12 I7i2ll2 + 1),
and therefore

I72llz < e(u 2 1all100 + 177 llo + 1K1 llo) + 7). (4.13)

and

/ g(k)? |7 (B)[* dk < e(p(lI71 1100 + 177 lo + 1K1 llo0)? + el 2l + 1)

— 00

(see proposition 4.1). Multiplying the above inequality by p~*%, using (4.13) and
adding |71 |3 < ||7]|3 < cu, one finds that

1712 < e(e" (I ll1,00 + 137 lo + 1K %1 [loo) + 1) (4.14)
el a2 + ),

so that [[|[|2 < cp for v < 1. The estimate for 7j follows from inequality (4.13). O
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It remains to identify the dominant terms in the formulas for
M) and (M, (7),77) + 4 M, (7)

given in lemma 4.7; this task is accomplished by combining the estimates in propo-
sitions 4.11 and 4.12 and lemma 4.13.

PROPOSITION 4.11. The function 1 satisfies the estimate

G(7) G (1)
Ks(7) ¢ = 4 Ks(in) ¢ + o(u®?)
L3(1) L3(71)

Proof. Using proposition 4.6, we find that

(- [ml - 02 lll2\ |~
(i {2 o )| < el {212 1l

C,U2+a

o(p?),

N

while

I3

[ (712, 12, T2)| < || 72]l5 3+3a/2 — (153,

<o
it follows that

n; (71 + fias i+ Tz, i1+ 712) — n (7, 771, 1) = o(p®/?)
for j = 1,2,3. 0

PROPOSITION 4.12. The function 1 satisfies the estimate

Ks() + 2v0Gs (i) — v5 L3(7) = 3 (3w” + 1)/ i da + o(u°/3).

—0Q0

Proof. Note that
W/ it de + w/ i (K — i) da,
W /

1 [ .
5/ dx—/ (Kom—m)nfdx

[~ * o
5/ (K" —ij1)*in da + 5 / 72 do

oo — 00

Q
w
—
Rt}
=
S~—
I
N

8

e
w
—
Pt
=
~—
I
=
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(see proposition 4.3) and estimate

oo
\ | el < el
— 00

e |7 I3
CM3/2+50</2

o(u'?),

< 7 llso 1771 ol 27 = 1[0

NN

(o)
‘/ i (K — 1) da

— 00

< eI
<

CM3/2+50¢/2

= o(p*?),

o0
‘ [ iR = ) e < il K0 —
— 00

< ep® |l
< CM3/2+9Q/2

o(u?),

in which the calculation
1%l = [ corh ]~ 1)21q06)? ak
<o [ KhiwPE
= |13 < eIl

for n € H?(R) has been used. One concludes that

o0

Ks() + 2v0Gs () — 5 L3(7h) = 3 (3w® + wrp + l/g)/ 7 da + o(u°/?).
~——— J_o
=1

LEMMA 4.13. The estimates

Mz, (aff) = a® (K3 (i) + 200G (71) — v5 L3 (7)) + a®o(u®'?),
(M2, (a), aff) + da® pMaz, (aff) = 3a® (K3 (77) + 200Gs(71) — 15 L3 (7)) + a®o(u°/?)
hold uniformly over a € [1,2].

Proof. Using lemma 4.7, the estimates given in proposition 4.4 and

p+Ga(n)
Ly(n) o)
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we find that

Moy lai) = a* o)+ 20a (i) = 13 + 2 027 — 0 ) ()

_Cﬁj%m_m)Cij%m+wJQwﬂ

+0(a* 12 (|Ifill1,00 + 117" 1l0))

uniformly over a € [1,2]. The first result follows by estimating

lill100 + 17" ll0 < c(u® |l lla + I7i2ll2) < ept/>To72,
w4 Ga(n) 1/24a/2 {93(77)} 3/2
— 2 — =0 ar=y, s =0
70 R SRR Vot ) S
and a? < 2a3. The second result is derived in a similar fashion. O

COROLLARY 4.14. The estimates

o0
Meylan) = ot +1) [ it do  aouil),
— 00

(M, (ail), i) + 402 M g2, (ai]) = 303 (2 +1) / 7 dz + a®o(u’?)

—0o0

hold uniformly over a € [1,2] and

o0 -
/ s dx < fclf’/d.
— 00

Proof. The estimates follow from propositions 4.11 and 4.12 and lemma 4.13, while
the inequality for 7 is a consequence of the first estimate (with @ = 1) and the fact
that M,,(77) < —ep®/>. O

4.3. The case 3 < (3¢

4.3.1. Estimates for near minimizers

We begin with an observation that shows that the equation for 71 may be written
as

g9(k)in = xs(k)FIS(nm)], (4.15)

where

() = T30 = Kl + Kam) ~2( 2% 0 ) )

~2(E 20 ) @t - G

(" ﬁ(ign)”")(ﬁ(%m%) o
(
)

+< ﬁ(in)
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PROPOSITION 4.15. The identity

Gs(m)
xsF [ K5(m) p| =0
ﬁé(m)

holds for each n € U.

Proof. Using (4.10)—(4.12) we find that the supports of G(m1), K5(n1) and L5(m)
lie in the set [—2]{:0 — 260, —2ko + 250] U [—250, 250] ] [2](30 — 260, 2ko + 250] ]

In keeping with (4.15), we write the equation for 79 in the form

ot 1) =7 [ B s,
where
() = 7o estm) + 2P ) gyt - (W)chm)]];

(4.16)
the decomposition 7 = 1y — H(n) + n3 forms the basis of the calculations presented
below. An estimate on the size of H(n) is obtained from (4.16) and proposition 4.6.

PROPOSITION 4.16. The estimate
IH ()2 < e(llmllveo + ) + kgmillo + [|1K°m
holds for each n € U.

1,00 + lIm3l2) 171 |2

The above results may be used to derive estimates for the gradients of the cubic
parts of the functionals that are used in the analysis below.

PRrROPOSITION 4.17. The function 1 satisfies the estimates

195(72) = G3() o
1K) = K5 (7 )llo ¢ < e (i
1£5(1) = £5(71)llo

Proof. Observe that
Ga(n) — Ga(m) = ma(H (n), H(n)) + ma(ns,73)
— 2ma(n1, H(n)) — 2ma(ns, H(n)) + 2mz(n1,m3)

and estimate the right-hand side of this equation using propositions 4.6 and 4.16.
The same method yields the results for K4 and £f. O

1,00 + 177 + K71 llo + (1K 71 [l1,00) + |I73]]2)-

Estimates for Gs(7), K3(7) and L3(7]) are obtained in a similar fashion.

PROPOSITION 4.18. The function 1 satisfies the estimates

|G (1)
()| p < elpllim
1L(7)]

Loo + 17 + kg7l + (1K 71 [|1,00) + £2ll73]]2)-
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Proof. Observe that

Go(m) = 1(@0m).m) = 5 [ FGH )i b

:é/wxd@fw%mﬂﬁﬂk

—0o0

=0
=0

(since 71 = xs(k)71), so that

Gs(n) = Ga(n) — Gz(m)
= —na(H(n), H(n), H(n)) + n2(ns,n3,m3) — 6na(m, H(n),ns3)
— 3na(n1, 1, H(n)) + 3nz(n, m,m3) + 3n2(H(n), H(n),ns)
+ 3na(H(n), H(n),m) + 3n2(ns, 03, m) — 3na(nz, s, H(n))

and estimate the right-hand side of this equation using propositions 4.6 and 4.16.
The same method yields the results for K3 and Ls. O

Estimating the right-hand sides of the inequalities

1G4 (7) = Ga (i) llo < [1Ge(@)llo + 194D llo + 195(7) — G (71)lo,
|G ()] < [Ge(D)] + [Ga ()] + |Ga (7))

NN

(together with the corresponding inequalities for C and £) using propositions 4.4
and 4.5, the calculation

[nll1,00 + 17" + Kgnllo + 1K n]loo
< clmllteo + In) + Egmllo + 1K milloe + I H ()2 + IIn3]l2)
< elllmlly,oo + 177 + Kgmillo + 1K°n1ll1,00 + lInsll2)- (4.17)

and propositions 4.17 and 4.18 yields the following estimates for the ‘nonlinear’
parts of the functionals.

LEMMA 4.19. The function 7 satisfies the estimates

1G71 (1) — G5(1) llo
||’Cfl1(7?) - Ké(fh)”o
(1£51(77) — L£5(771) llo
< (W2 (1 ll1,o0 + 177 + Kginllo + 1K A1 ll1,00)2 + 12 133]l2),
|Qn1(77~)| . R 0~ 2 =
K ()] ¢ < clplllMnllr,co + 195 + Eginllo + 1K H1ll1,00)" + wll73]]2)-
|£nl(77)|

We now have all the ingredients necessary to estimate the wave speed and the
quantity [[|71|a-
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PROPOSITION 4.20. The function 1 satisfies the estimates

‘u+g(ﬁ) e
L(7)
_ < c((1nll1,00 + 1177 + a0+ 1K 1 ]1,00)2 + 1733 |2+ 1 7/2).
‘M+92(77) e
Lo(n)

Proof. Combining lemma 4.7, inequality (4.17) and lemma 4.19, one finds that

IM(@)], (M (), 7) + ApM,u (7))
< e(plllin oo + 177 + k5 llo)? + 1K 71 [|1,00) + well7is]l2),
M) < (I ll1,00 + 177 + Kill0)? + 1K 1 [|1,00) + [1733]]2),

from which the given estimates follow by proposition 4.2. O

LEMMA 4.21. The function 7j satisfies |||71]||2 < cu, ||73]13 < cu2% and ||H(7)||3 <
12T for a < 1.

Proof. Lemma 4.19 and proposition 4.20 assert that
IS@ o < e (Illoe + 177 + k3 llo + 1K full1.00)* + 1217332 + 1),
whereby

iy + kg llo + 1K it l|1,00)? + /2 |17is]|2 + 1),

1733112 < e (linlls,

and therefore

)? + 1) (4.18)

liisll2 < e (1 ll1,00 + 17 + kdillo + 1K %1 1,

and

/ g(k)? |1 |* dk < c(ullinlloo + 177 + Kgillo + |1 K Mll1,00)* + pllisll3 + ™)

— 00

< el 1100 + 177 + Ko llo + K 1 ll1,00)* + 1Y)

Multiplying the above inequality by p~** and adding ||7;]|2 < ||7||2 < cp, one finds
that
Ml < eCu™ =l llvoo + 77 + kg llo + K 1 ][1,00)* + 1) (4.19)
< (' 2 lmllla + w),

where proposition 4.1 and the fact that g(k) > c(|k| — ko)? for k € S have also been
used.

The estimate for 7; follows from the previous inequality using the argument
given by Groves and Wahlén [17, p. 401], while those for 775 and H(7}) are derived
by estimating |||71[|2 < cp in (4.18) and proposition 4.16. O
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4.3.2. Estimates for the variational functional

The next step is to identify the dominant terms in the formulas for M, (7) and
(Mé(f]), ﬁ>~+ 4MMM(7?) given in lemma 4.7. We begin by examining the quantities
Ga (1), Ka(n) and La (7).

PROPOSITION 4.22. The function 1 satisfies the estimates

Ga(1) Ga()
Ka() p = < Kaliin) ¢ + o(p?).
L4(7) L4(7)
Proof. Write
Ka(m) =pr(n,msmm),  Ga(n) = p2(n,momym),  La(n) = pa(n,n,m,m),

where p; € L2(H*(R),R), j =1,2,3, are defined by

1 oo
p1(ur, ug, us, ug) = _§/ uyubusuly de — 4—18002/ Pluius K (uzuy)] da,

— 00

po(uy, ug, uz, ug) = %w/ Plujuguiuly] dz — ﬁw/ Pluius KO (us K uy)] dz,

Plurug (K usz)ul] dz

oo

1

p3(“17u2,u3,u4) = 2

+ %/ PIK° (u1 Kus)uz K uy) de,

and estimate each term in the expansion of
pj (i — H () + 73, i — H (7)) + 71, T — H () + 73, 7 — H(7) +713) — p; (71, 71, T, )
for j =1,2,3. Terms with zero, one or two occurrences of 7j; are estimated by

(2)

2
i N (2) 171]]2 i 2
. H | o .
o | L E@H) { 5”)} < IH®D] {” 5”)”2} < e = o),
. 73 . 1775]|2
n3 ||773||2

while terms with three occurrences of 7; are estimated by

" ({ﬁl}(g)’ {H@})‘ <edinmnrn s {”H(ﬁ)”Q}

73 i, 132
17 1lo 731

2|l +o72

<
< C/J/5/2+a

O

To identify the dominant terms in G4 (1), K4(71) and L4(7)1) we use the following
result, which shows how Fourier-multiplier operators acting upon the function 7,
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whose spectrum is concentrated near k = +kg, may be approximated by multipli-
cation by constants.

LEMMA 4.23. For each n € H?2(R) with ||n|2 < cu'/? the quantities

n=F ool = F X oo 0] = 0

satisfy the estimates
(i) m" = Hikon + O(pt/*F),
(i) KO(ni") = f(ko)ni + O(ut/*+),
(i) ((m")2) = £2koi(ni)? + O(u!+3/2),
(iv) (nfn) = O(u'+3272),
(v) KO((n")?) = f(2ko)(ni")? + O(pt+30/2),
(vi) KO(nfny) = nifng + O(u'3/?),
(vii) Fg(k) " Fl(ni)?)] = g(2ko) ()2 + O(u'T3/2),
(viii) F~ g(k) " Flnny 1] = g(0) ' my + O(u'+372).

Ukt
Here the symbol O(uY) denotes a quantity whose Fourier transform has compact
support and whose L?(R)-norm (and hence H*(R)-norm for s > 0) is O(u?).

Proof. Estimates (i) and (ii) follow from the calculations
Gk F ko)A 13 = (k] = ko)illg, (K = F(ko)) ()13
(because f(k) = f(ko) + O(Jk| — ko) for k € S) and

< cll (k] = ko) |13

. 1 [ 90 _oa . . .
Ik =Ryl < 5 [ 2 2 k] = ko) ke < et 2 < e+,
while (iii) and (iv) are obtained from the observations

109 F 2iko) ()2 [lo = 112((92 F koi)my )i llo

2([(9x F tko)ni|lol|miE [l o
cu! /243012

N

lla
14+3a/2

NN

Clt
and

(07 ) llo = [1((82 — iko)ni )ny + ni (82 + iko)ny )llo

< 110 — ko) [lolImy lloe + 111 ool (@ + iko)ny llo

~
143a/2
< epttiel2,

in which proposition 4.1 has been used. Estimates (v) and (vi) are deduced from

(iii) and (iv), respectively, by means of the inequalities

(K = £(2ko)) (7)< cll(1k] = 2ko) FI(ni))I3 = II(ik F iko) FI() )13
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(because f(k) = f(2ko) + O(Jk| — 2ko) for k € 25) and
1K = £O)n 0y 15 < clllklFin 0 NG = 1iEF [ ny 1115
~

=1

(because f(k) = f(0)+ O(|k|) for k € [—2dp,2d0]), and (vii) and (viii) are deduced
from (iii) and (iv) in the same fashion. O

PROPOSITION 4.24. The function 1y satisfies the estimates

K:4(771) = Aéll/ 7711 dz + O(,ug)a Aéll = _%BWké - iwg(f(Z]{:O) + 2)7
Galin) = A2 / Adr fo(i®), A2 = Lwk? — Luwf(ko)(f(2ko) +2).
L) = A3 / ftde 4 o(u®), A= (ko) (F(2ko) +2) — LR2F(ko).

Proof. Using the formulas given in lemma 4.23, we find that
/ iy do = / (@2 (@) + )2 (@) + i ar (70) (7)) dz

= 2k2 /oo ()2 (77)? da + o(p®),

—00

and similarly
| ORI dr = 21 (2ho) (ko) + 45 k)

< [ o+ o),
| ar= okt [ i a+ o),

/ T RO dr = (2f(2k0) +4) / T ) de + o),

— 00 — 00

/OO K K i )i K do = (2 (2ko) f (ko) + 4 (ko)?)

<[ T ) da + o),

oo
[ omig de = ok rhe) [ G102 d + o)
— 00 — 0o

The result is obtained by substituting the above expressions into the explicit for-
mulas for K4, G4 and L4 given in proposition 4.3. O

COROLLARY 4.25. The function 1 satisfies the estimate

oo

Ka(7) + 20064 () — vRLa(7) = As / 7tz + o(s?),

— 00

where Ay = A} + 2vgA% — VA3,
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We now turn to the corresponding result for G3(77), K3(7) and L3(7}).

PROPOSITION 4.26. The function 1 satisfies the estimate

G (i) w (G4(in)
Ka(i) § = / K4 b H (i) de + (%),
£5(7) o | gy (i)

Proof. Each term in the expansion of

(i — H() + 73, — H() + 73,71 — H(1]) + 17)3)

with zero or one occurrence of 77; can be estimated by

i e 17212 TR
N . H .
m (3G p T L <edim@e {1l < qureee o),

3 B
73 1732
while
a2 (i1, 71, 7is)| < cllfill3]I7s]l2 < cpp® T = o(u®)
and
na (71, 71, 71) = G3(71) = 0.
It follows that
Gs(77) = —3na (71, 7, H (7)) + o(1®)
= —dGs[in](H (7)) + o(p®)

== [ g ar+ o)

The same argument yields the results for K3(7) and L3(7). O

PROPOSITION 4.27. The function 1) satisfies the estimate

1 ! (= !~ /[~
H() = | U ) + 20 ) — R3] + o)
Proof. Noting that

‘/Hg(ﬁ)

v —vo| <l llliE + 17slle + 1N 2) = O(ut )

L(n)
(see corollary 4.20) and
1G5(771)llo

‘lKé(ﬁl)HO < c’ua/2|||ﬁ1ma”ﬁ1”2 _ O(u1+a/2)
1£5(7) llo

(see proposition 4.5), one finds that

() = 7~ | s PG + 2003 ) — L4 0)]| + 010 *"2).

=o(p?)
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Combining propositions 4.26 and 4.27, one finds that

Ks (7)) + 2v0Gs (7)) — va L3 (7))
_ / (K47 + 200G () — VLY ()

— 00

x F1 [g(lk)]-"[lCé(ﬁl) + 200G3 (M) — V5 L3 (7)]| da + o(p?), (4.20)

which we write as
Ks(77) + 210G (77) — v5 Ls(7)
. / M i) F g (k) MGy i) da
—a [ MG F g MG D e o), (421
— 00
where
M = mq + 2vgms — I/gmg,
in order to determine the dominant term on its right-hand side.

PROPOSITION 4.28. The function 1) satisfies

Ks(7) + 200G3(7) — 3La(7) = As / 7t de + o(u?),

where
Az = (2k ) ( ) 39( )_1(14%)2’
Al = §WVof(2ko) +wio f (ko) + 3w + v f(2ko) f (ko) + v f(ko)® — Skgvi,
Af = Jwvo +wiof (ko) + 5w + 15 f (ko) + 514 f(ko)® — 315 k3-

Proof. Lemma 4.23 implies that

M@, 70) = Az(i)* + O(u' ),

so that
F - g(k) T M (G, 50)] = F - g(k) T M (57, 77)] = g(2ko) T A3 (7)) + O(u' ™),
and
M (i, iy ) = A+ O(u'™),
so that
F gk) MG 1)) = 9(0) " AS il + O ™);
the result follows from these calculations and (4.21). O

The requisite estimates for M, (7) and (M;,(7),7) + 4pM,,(77) may now be
derived from corollary 4.25 and proposition 4.28.
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LEMMA 4.29. The estimates

Mazy(ail) = a®(Ka (i) + 20G3(71) — v5 L3 (7))
+at (Ka(77) + 21064 (77) — 5 L4(7)) + a’o(1®),
<M;2u(aﬁ)a aﬁ> + 4a2ﬂMa2u(aﬁ)
= 3a® (K3 (7)) + 2v0G3(77) — v5 L3(7))
+4a* (Ka () + 200G4(7) — v L4 (7)) + a®o(p?)
hold uniformly over a € [1,2].

Proof. Lemma 4.7 asserts that

Moz, (aif) = a® (K3 (77) + 21063 (77) — 15 L3(7)) + a* (KKa(7) + 200G4(77) — v5 La(7))

(MR ) @a(i) + a0
_(pEG) N (Gl N (st 0t La(i
< L2(17) 0)( L) 0>( L3(1) + a”La(n))

a* o (rtGa(n) Y
T <g3(”) < L>(7) >£3(”)>
+ 0@ 2(||fill1,00 + 17 + KEiill0)?)

uniformly over a € [1,2].
The first result follows by estimating

93(77)} 3/2 {94(77)} 2

DL ou3/2), D _ o),
{zsw W5 eam = OW)

iill1.00 + 117”7 + K3illo < c(u?|[ifllla + [|73]]2) < cpt/2He/?

(see (4.17)),

< el lla + lnsllz +pN—12) < eptte

’u+g2(77) e

Lo(7)

and noting that

Guli) ~ (" ) eali
= G(7]) — L3 () + o(p”)

_ / (G — vl (i)

x F L;(lk)ﬂ/cg(ﬁl) + 20003 (711) = v5 L5 ()] | de + o(p?)
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= - /_O;(M(fmﬁf)f‘l[gw)‘lM(m,m)]
+ M (i, 770 )FHg(k) ™ M (i, 7)) da
o[ RGEF ) MG ) e + o)
= [ itas o
= O(u**®) + o(p?),

where M = my — vgms and ~ is a (possibly negative) constant. Here, the third line
follows from the second by propositions 4.26 and 4.27 and the fifth from the fourth
by repeating the proof of proposition 4.28.

The second result is derived in a similar fashion. O

COROLLARY 4.30. The estimates

Masyai) = (@ 4s +a 1) [ it o+ abofs),
(M2, (an), afp) + 4a2,u./\;lazu(aﬁ) = (3a® Az + 4a*Ay) / it do 4+ a®o(u®)

hold uniformly over a € [1,2] and
/ it de > cpd.

Proof. The estimates follow by combining corollary 4.25, proposition 4.28 and
lemma 4.29, while the inequality for 7; is a consequence of the first estimate (with
a = 1) and the fact that M, (7]) < —cu®. O

4.4. Derivation of the strict subadditivity property

In this section we derive the strict subadditivity property (4.1). We begin by
showing that ¢, is a strictly subhomogeneous increasing function of p > 0. The
first of these properties is a corollary of the next proposition.

PROPOSITION 4.31. There exist ap € (1,2] and q¢ > 2 with the property that the
function a — a=IMgyz2,(an), a € [1,a0], is decreasing and strictly negative.

Proof. This result follows from the calculations

d  _ N _ _ . ~ -
@(a 2 Mgz, (aif)) = a” 72 (=5 Mz, (ail) + (M2, (af)), aff)o + 4a® pM g2, (ai}))
= ia‘”z <}La3(;’w3 +1) / s da + a3o(u5/3)>
a2 (3t 40 [ o)
< —epd/?

<0, a€(1,2),
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for 8 > 8. (see corollary 4.14) and

d B _ .
(@ Moz, o)
= @D (=M (@) + (M, (ai), aiio + 4021 M2, (ai)

= g (atD) ((—q(a3A3 +a*Ay) + 30> Az + 4a*Ay) / it da + ago(/f))
— (- pAatatt-gan [ atdss o)

< —cp?
<0) a < (170/0)’ qc (2aq0)7
for 8 < B (see corollary 4.30); here ag > 1 and ¢ > 2 are chosen so that (3 —

q)As + a(4 — q) A4, which is negative for a = 1 and ¢ = 2 (see Appendix B), is also
negative for a € (1, a9] and ¢ € (2, go]- O

COROLLARY 4.32. The number c, is a strictly subhomogeneous function of pn > 0.
Proof. The previous lemma implies that

M (@ ?7,) < a*?qgM, () <0, a € [1,a2],
from which it follows that

Cap < Tap(a'?7)

(apt + Ga(a' i)
Lo(a/?7jy,)

(1 + G(m))? al/? .
T ) e et

2

_ a(/czmm) + gt Mmm)) (0" — a) M, ()

< aJ (fm) — e(a"?q —a)p”", a € [1,ap].

= Ka(a' i) + + M(a?7,,)

<a (ICg(f]m) +

In the limit n — oo the above inequality yields
Cap < acy — clat?q — a)u’ < ac,, ac€ (1,ad).

For a > a2 we choose p > 2 such that a € (1,ag?] (and hence a'/? € (1,42]) and
observe that

1 2
Cap < @ /pca(p_l)/pu <a /pca(p_m/pu << acy.

LEMMA 4.33. The number c, is an increasing function of u > 0.

Proof. Using proposition 4.8 for 8 > (. and proposition 4.20 for 8 < (., one finds
that

1A+ G(im) = voL(fm) + O(*?) > e+ O(1*?)
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so that
B+ G(im) 2 capt

for some ¢, € (0,1). Let dy, =1 — ¢, so that d, € (0,1).

First suppose that p1 € [dypia, pa]. Let {72,} be the special minimizing sequence
constructed in theorem 3.1 for u = po and note that

1+ G (i) = po + G(7) — (2 — 1) = i — dupiz >0,
so that J,,, (72,) < Ty, (72,). It follows that
ur < T () < Ty (1) = €

as n — 00, that is,
<

Cﬂl cuz .

For p; < dyus we choose p > 2 such that p; € [dius, 2] (and hence pp €
[dod? " o, d2 i) and obviously d?™ 'y € [ded?pa, dips], ¢ = 0,...,p — 2) and
observe that

<... <

< < Cap=2,, S < Cpy-

G S Cazpip

Our final result is stated in the following theorem.
THEOREM 4.34. The number ¢, has the strict subadditivity property
Cprtpz < Cuy T Cups 0< |M1|7|M2‘,M1 + p2 < po.
Proof. Using the strict subhomogeneity of ¢(u) for p > 0, we find that

M1+ po M2
Cuytps < Tc;u =Cu + Ecm < Cuy + Cpy

for 0 < py1 < po, and for pu; < 0, po > 0 with pq + pe > 0 its monotonicity for
1 > 0 shows that
Cprtpz S Cun < Cuy + Cps-

5. Existence theory and consequences

5.1. Minimization

The following theorem, which is proved using the results of §§3 and 4, is our final
result concerning the set of minimizers of 7, over U \ {0}.

THEOREM 5.1.
(i) The set B, of minimizers of J, over U\ {0} is non-empty.
(if) Suppose that {nm} is a minimizing sequence for J, on U \ {0} that satisfies

sup [|nml2 < M.
meN

There exists a sequence {x,,} C R with the property that a subsequence of
{Nm(xm + )} converges in H"(R), r € [0,2), to a function n € B,,.
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Proof. Tt suffices to prove part (ii), since an application of this result to the sequence
{fm} constructed in theorem 3.1 yields part (i).

In order to establish part (i) we choose M € (sup,,cy [|7m|l2, M), so that {n,,} is
also a minimizing sequence for the functional 7, ,, introduced in § 3.1; the existence
of a minimizing sequence {v,, } for 7, , with limy, oc Ty, (vm) < iy, —o0 Tp,u(m)
would lead to the contradiction

Y&i_{noo Tu(vm) < W}gnoo Tpu(vm) < mlgnoo Tpu(Mm) = n}gnw Tu(m) = cu-
We may therefore study {n,,} using the theory given in §3.2, noting that the
sequence {uy,} with u,, = (1,,)> + 12, does not have the ‘dichotomy’ property:
the existence of two sequences {77,(71)}, {1753)} with the features listed in lemma 3.9
is incompatible with the strict subadditivity property of ¢, (see theorem 4.34).
Recall that the numbers p™), 1(2) sum to p; this fact leads to the contradiction

Cp < €y F Cu@
< lim Jo0 (nV) + Jim e ()
= mlgnoo ju(nm)
=cy.

We conclude that {u,,} has the ‘concentration’ property, and hence 9, (- + x.,) —
n) as n — oo in H"(R) for every r € [0,2) (see lemma 3.8(ii)), whereby 7,,(1) =
1im— 00 Ty (M (- + @) = ¢, so that nV) is a minimizer of J, over U \ {0}. O

The next step is to relate the above result to our original problem of finding
minimizers of H(n, &) subject to the constraint Z(n,£) = 2u, where H and Z are
defined in (1.6) and (1.7).

THEOREM 5.2.

(i) The set D,, of minimizers of H on the set

S.={(n,€) € U x H*(R): Z(,€) = 2u}
1§ non-empty.

(i) Suppose that {(Nm,&m)} C S, is a minimizing sequence for H with the
property that sup,,cy ||Mmll2 < M. There exists a sequence {z,} C R with
the property that a subsequence of {(Nm(Tm + ), Em(Tm + *))} converges in
H"(R) x H*l/z(R), r €[0,2), to a function in D,,.

Proof. (i) We consider the minimization problem in two steps.

(1) Fizn e U\{0} and minimize H(n,-) over T, = {{ € Hi/z(]Rg: Z(n,&) =2u}:
notice that H(n,-) is weakly lower semi-continuous on H,’”(R) (since £ +—
(G(n)ﬁ,f)é/2 is equivalent to its usual norm), while Z(n,-) is weakly con-
tinuous on H,’”(R); furthermore, H(n,-) is convex and coercive. A familiar
argument shows that (7, -) has a unique minimizer &, over T),.
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(2) Minimize H(n,&,) over U \ {0}: because &, minimizes H(7,-) over T),, there
exists a Lagrange multiplier v, such that
G(m)&y +wn' = vy,
and a straightforward calculation shows that

b = ) (g —wm), vy = "Zé@ (5.1)

According to theorem 5.1(i), the set B, of minimizers of J,(n) = H(n,&,)
over U \ {0} is not empty; it follows that D, is also not empty.

(i) Let {(m,&n)} C U x H}Y*(R) be a minimizing sequence for H over S,, with
SUp,,en |[Mmll2 < M. The inequality

H(nma gnm) < H(nnu gm)

shows that {(nx,&,,)} C U x HY?(R) is also a minimizing sequence; it follows that
{nm} C U\ {0} is a minimizing sequence for J,,, which therefore converges (up to
translations and subsequences) in H"(R), r € [0,2), to a minimizer 1 of 7, over
U\ {0}.

The relations (5.1) show that &,,, — &, in Hi/z(R) and, using this result and the

calculation
CHgm gnm %1/2 S %<G(77m)(§m - fnm)a (ﬁm - fnm»
=2H (nm, fm) + 27'1(77m7 fnm) - 47'[(777717 %(gm + fnm))

< QH(ﬁm, gm) + 2H(77m7 gnm) - 46/1«

— 2¢, + 2¢, — 4cy

=0
as n — oo (recall that H( nm,g H(Nm,En,) = T (m) = ¢, for all € € Hl/z( R)),
one finds that &, — &, in H)} ) as m — 0. O

5.2. Convergence to solitary-wave solutions of model equations
5.2.1. The case 3 > (3.

Suppose that 7 is a minimizer of J over U \ {0}, write n = n; + 72 according to
the decomposition introduced in §4.1 and define ¢,, € H?(R) by the formula

m(x) = 1?2 oy (' Pa).
In this section we prove that dist(¢,, Dxav) — 0 as p | 0, uniformly over n € B,

where Dyqv is the set of solitary-wave solutions to the Korteweg—de Vries equation
and ‘dist’ denotes the distance in H!(R).
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REMARK 5.3. Observe that

Ka(n) Ko (1) Ka(n2)
Ga(m) p =14 Ga(m) p + 13 Ga(n2)
L(n) La(m) La(n2)
———
=0(|Inll3)
=0(p*t™)

because 77 and 75 have disjoint supports, and

pw [ wof
Golm) =2 [ 2w Kalm) =4 [ dan,
while the estimates

(o9} o
| (klcoth b = Dlinfab < [ Rk =l

— 00 — 00

< eIz, < ep' 2,

/ wmmm—rﬁwm#%<g/k%#%=ﬂw%

<cept|nlll3 = epttie
show that ~
Lo(ny) = g/ qﬁfl dz + O(u'*?)
and - h -
Lo(n) = g/ ¢2 da — §M5/3/ (¢,)? dz + O(p' ).

Furthermore, corollary 4.14 implies that
M) = b5+ 0 [ 6 do+ o).
Our first result concerns the convergence of the L?(IR)-norm of minimizers of 7,

over U \ {0}.

PROPOSITION 5.4. The estimate |¢,||3 = 4(w? + 4)7/2 + O(4>*) holds for each
n € B,.

Proof. Tt follows from

‘/Hrgz(??)

L 7

<cpT20 L) < ep,

that
voLa(n) — Ga(n) = pu+ O(u/>+3/%),
and the result is obtained by combining this estimate with

voLa(n) = Ga(n) = 1 (2v0 +w) u/ 62 da + O(u'T2).
Vo
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The next step is to show that the Korteweg-de Vries energy Exqv(¢,) corre-
sponding to a minimizer n of J, over U \ {0} approaches cxqv in the limit z | 0.

THEOREM 5.5.
(i) The number c,, satisfies c, = 2vop + cxav > + o(u®/3).
(ii) Eachn € B, satisfies Exav(on) — ckav as p 0.

Proof. Notice that

e = Ju(n)
— a) + EROL 4 v, )
= 2w+ Kaln) + 200Ga(n) — 1 La(n) + (‘”f(f;;) - Vox/ﬁz(ﬁ)) M)

> 2wop + Ka(n) + 2v0Ga(n) — vg L2(n) + M, (n)

5/3 oo 2 2
o [ (o B (5 )

=2y + M5/35Kdv(¢n) + O(Ms/g), (5.2)

and combining this estimate with lemma A.1 yields
Ekav(oy) < ckav +o(1).
A straightforward scaling argument shows that
inf{Ekav(¢): ¢ € H'(R), 0]§ = 4(w* +4)7"%a} = a® exav,

whence
Exav(py) = (1+0(12*)* Pekay = ckav + o(1)

because [|¢, |2 = 4(w? +4)7Y/2 + O(u?*) (see proposition 5.4), and it follows from
(5.2) that

cu = 2vop + 1B exav + 0(M5/3)-
The complementary estimate

5/3 5/3)

¢y < 2o+ P exav + o(p
is a consequence of lemma A.1. O
We now present our main convergence result.

THEOREM 5.6. The set B,, of minimizers of J,, over U\ {0} satisfies

sup inf ||¢, — ¢rav (- +)[[1 =0
neB, zER

as 1 0.
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Proof. Suppose that the limit is positive so that there exists € > 0 and a sequence
{tm} with g, | 0 such that

sup inf |[¢, — dxav (- + )1 =&, meN,
neCy,, TER

and hence a further sequence {n,,} C U \ {0} with n,,, € C},,, and

dist(¢y,,,, Dkav) = ;Ielﬁg |y — pxav(-+)|l1 > 3e, meN.

On the other hand, Exav(¢y,,) — cxav and ||y, |2 — 4(w?+4)71/2 asn — oo (see
proposition 5.4 and theorem 5.5(ii)); combining lemma 1.2(ii) with a straightforward
scaling argument, we arrive at the contradiction of the existence of a sequence
{z,,} C R such that a subsequence of {¢,, (z, + -)} converges in H!(R) to an
element of Dkqv . O

REMARK 5.7. The previous theorem implies that {||¢,||1: 7 € B} is bounded, so
that

. > 1 > _9y .
1910172 ) < </001+/F2/3k2dk> </OO(1+# 2/‘31432)|771(7<?)|2dk)

o 1 i - k
_,.2/3 —2/31.2
= [ v t) ([0 ()

= 2 "% || 17
< eptl3,

2
dk>

and hence [|71]l1.00s [K%N1]lc < cp®/? (see (4.4) and (4.5)) and it follows from
(4.13) and (4.14) that

s <ews  lmells < u™?.

For n € B, lemma 4.10 therefore also holds with oo = % (the result predicted in
the Korteweg—de Vries scaling limit).

Our final result shows that the speed v, of a solitary wave corresponding to
1 € B,,, which is given by the formula

L+ Gm)
L)

satisfies
v = 1o + 2(w? 4+ 4) " uav p?® + o(u?/?)

uniformly over n € B,,.

THEOREM 5.8. The set B, of minimizers of J,, over U \ {0} satisfies

sup = (o + 2(w® + 4) " Pukavp®’?)| = o(u*®).

neb, /3(77)
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Proof. Using the identity

p+6Mm) 1
L) 2

(see the proof of proposition 4.2), we find that

pw+G(n) 1 273, 1 w? /OO 3 2/3
—_— = = — (= +1 d
L) Vo + 5Ckavis T + g\ 3 + . ny dz + o(u™'”)

L (ep = Myu(m) + ﬁ(WlL(n),n) + 4 M ()

1 [ w? i
=1+ %CKdVH:2/3 + 3 <3 + 1) ,u2/3/ ¢;°’7 dz + o(p?/?)

1 wQ [e%s)
vy + %5Kdv(¢Kdv)/i2/3 + 3 <3 + 1) M2/3/ Pkay dz + o(u?/?)

2
Vo + iﬂz/g/_ ((5 - ) (dkav)? + 2(% + 1) ¢%<dv) da +o(u*'?)

=8(w2+4)~1/2vKav

:VO+2(W2+4)_1/2VKdVH2/3+0(M2/3)7

in which theorem 5.5(i), corollary 4.14 and theorem 5.6 have been used. O

5.2.2. The case 3 < [

Suppose that 7 is a minimizer of J, over U \ {0}, write n = my — H(m) + 13
and n; = nfr + 1, according to the decompositions introduced in §4.3, and define
¢y, € H*(R) by the formula

n(x) = Sud,(pa)eor.

In this section we prove that dist(¢,, Dnrs) — 0 as p | 0, uniformly over n €
B,,, where Dnrs is the set of solitary-wave solutions to the nonlinear Schrodinger
equation and ‘dist’ denotes the distance in H*(R).

REMARK 5.9. Note that

Ka(n) Ka(n1) Ko(—H(n) +n3)
Ga(n) p =< Ga(m) ¢+ Ga(—H(n) +n3) (5.3)
La(n) Lo (1) Lo(—H(n) +ns3)

because 71 and F[—H (n) + n3] have disjoint supports.

Our first result concerns the convergence of the L?(R)-norm of minimizers of 7,
over Us \ {0}.

PROPOSITION 5.10. The estimate ||¢, |3 = (vof (ko) + gw) ™' + O(u™) holds for
each n € B,,.

Proof. Tt follows from

‘u + Ga2(n)
52(77)

1+«

—w| <Y, La(n) < cp,

https://doi.org/10.1017/50308210515000116 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000116

Solitary gravity—capillary water waves with constant vorticity 873

that
wLa(n) = Ga(n) = p+ O(u***). (5.4)

On the other hand,

wLa(n) — Ga(n) = voLa(m) — Ga(m) + OIH(n)|3 + IInsl3)
voLa(m) — Ga(m) + O(u*T*)

o0 B w o0 B
uo/ 0t Ko, dx+§/ niny de 4+ O(u*)

— 00

= (st +5) [ witnr o+ 0

= (§r0s )+ 2 ) [ lon s+ 0t

and the result is obtained by combining this estimate with (5.4). O

The next step is to show that the nonlinear Schrédinger energy Enrs(¢,) corre-
sponding to a minimizer 7 of J, over U \ {0} approaches exrg in the limit g | 0.

THEOREM 5.11.
(i) The number c, satisfies ¢, = 2vou + enLsp® + o(p?).
(ii) Fachn € B, satisfies Envs(¢n) — enus as 1 0.

Proof. Notice that

u = Ju(n)
= ka(o) + LEROE a5
= 2wop + K2(n) + 200G2(n) — 15 L2(n) + <“+£g;((£) - uomf +M,u(n)
> 2vo0 + K2 (n) + 2v0G2(n) — v§ L2(n) + Mu(n), (5.5)
where

Ka(n) 4 210G2(n) — v5 La(n)
= (K2 + 2v0Ga — 5 L2)(m) + (Ka + 200G2 — v5L2)(—H(n) +13).  (5.6)

The second term on the right-hand side of (5.6) is estimated using the calculation

(K2 + 2v0Ga — v5L2)(—H (1) + n3)
= (K2 + 210Gz — 1v5L2)(H(n)) + O(| H (1) |l2lInsl2) + O(llns|13)

o0

3 | aIFECP b+ o)

—0o0

= 1 /OO g(k)—1|.7'—[K:3(’l71) + 2V0g3(7]1) _ Vg£3(771)]|2 dk + O(MB)

—00
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= —2(K3(n) + 210Gs(n) — 5 L3(n)) + o(p®)

— 3y [ et ol

oo
——da® [ ol do o+ o),

where we have used proposition 4.27, (4.20) and proposition 4.28. Turning to the
first term on the right-hand side of (5.6), write

1
(o + 2060 3L)(m) = § [ o®linPak= [~ gt (P a

and note that
g(k) = 39" (ko)(k — ko)* + O(|k — kol|®), K € [ko — bo, ko + o).
One finds that

/'mfmﬂwwWMf/ ﬁmw+mWM

) e

(because Ay (k + ko) = 1 uF|¢,(px)]) and

f/ 16,2 da

/ (k — ko) | (k)| dk < ep®[m [|2 = O(u**3*),

—00

dx ¢"

so that

009 = 3= ko) B Ak = o)

— 00

Altogether these calculations show that
(K2 + 21962 — Vg£2)(771)

, oo 3A oo
St [ o ae =Sl [ o tan o) (5)

Substituting (5.7) and

o0

-MAm:L%+An/

— 00

it da + o(p®) = 3(As + Aa)p® / |6n|* dz + o(p?)
(see corollary 4.30) into inequality (5.5) yields

w > 2ot o Ol [l o+ 3G Au+ At [ (614 de + o)

= 2wop + p*Enrs(y) + (1), (5.8)

and combining this estimate with lemma A.2 yields

Envs(¢n) < enws + o(1).
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A straightforward scaling argument shows that
inf{Exws(¢): ¢ € H(R), |¢]|2 = (o f(ko) + %w)fla} = a’enes,

whence
Enws(dy) = (1+ O(u®))’enws = enws + o(1)

because [|¢, |12 = ($v0.f (ko) + sw) ™! + O(u®) (see proposition 5.10), and it follows
from (5.8) that

cu = 2vop + pPens + o(1?).
The complementary estimate
cu < 2vop+ pPenws + o(p®)
is a consequence of lemma A.2. O

Our main convergence result is derived from theorem 5.11 in the same way as
the corresponding result for 8 > . (see Appendix A.1).

THEOREM 5.12. The set B, of minimizers of J,, over U \ {0} satisfies

sup inf [lg, — e“onis(- + 2)|l1 = 0
neB, UJE[OE,H%TF],
x

as 1 0.

REMARK 5.13. The previous theorem implies that {||¢,|/1: 7 € B, } is bounded, so
that

e <2( [ e )
ko—do L+ 172(k — ko)

‘ (/:0+60(1 + 72 (k = ko))l (k)2 dlc)

0—00

%0 1
<2 dk
</_oo L+ p=2(k — ko)? )

([

—o0
=211y |7
<,

2
dk>

C(k—k
¢"( u0>

and hence [|91]/1,00, |K°71|l1.00 < cp (see (4.4) and (4.5)) and it follows from
proposition 4.16 and inequalities (4.18), (4.19) that

s < ew. NHmOIE <cp®, lusll < ep’

For n € B, lemma 4.21 therefore also holds with o = 1 (the result predicted in the
nonlinear Schrédinger scaling limit).
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Our final result shows that the speed v, of a solitary wave corresponding to
1 € By, which is given by the formula

p+G(n)

Oy

satisfies
v = vo + 4w + 200 f (ko)) onsp® + o(p?)
uniformly over n € B,,.

THEOREM 5.14. The set B, of minimizers of J,, over U \ {0} satisfies

sup p+9Mm)
neb, /3(77)
Proof. Using the identity

p+6m) 1 1 / v
) - ﬂ(cM — M, (n) + @(Wlu(n),n) + 4pMy(n))

(see the proof of proposition 4.2), we find that

Lg(n)_ 1 2 i ﬁ /Oo 4 2
Zn = Uy + 5CNLSH +2M 5 + Ay 7y dz + o(p”)

— (vo + 4w + 200 f (ko)) 'onrsi®) | = o(i?).

— 00

3 /A i
= 1o + sentsp® + 16 (23 + A4> Mz/ || * daz + o(11)

3 /A o
=1 + 2Ens(dnis)p® + 6 (23 + A4) uQ/ |pnes|* dz + o(p?)

— vo+ 122 / (39" (ko) dhws|” + 3 (345 + Aa)|onus|") dz +o(u?)

—00

1 1 -1
:2<Zvof(ko)+§w) UNLS

= vo +4(w + 2 f (ko)) s i’ + o(u?),

in which theorem 5.11(i), corollary 4.30 and theorem 5.12 have been used. O

Appendix A. Proof of lemma 3.2(i)
A.1. The case 3 > (.

LEMMA A.1. Suppose that p > 0. There exists a continuous invertible mapping
u— a(p) such that

T (%) = 2vop + exavi®® 4 o(u°/?3),

where

n*(z) = ®¢xav(ow).
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Proof. Let us first note that

K" =" + ()" = F (k[ coth k| — 1 = 3[k|) 7] = O(a''/?),

<Lelk|*

and hence

KO — " = F (k] coth [} — 1)7"] = O(a™?).

Using these estimates and ||n*||o = O(a*/?), one finds that
1 3 o 2 1 5 > 2
Ka(n*) = 3¢ / Pray dz + Pia ﬁ/ PRav dz,
—0o0 —o0
1 <,
Ga(n*) = —Za?’w/ Pkav dz,
—o0
* 1 > * 770, x
Ez(n)=§/ n Ky da
13 [ 15 [ 7
—o0 —o0
and

| =
Ks(n*) = gaswz/ ¢i0’<dv dz,

Gal) = o [ PR do

1 ° e 1 > * * *
—te [ Pdes de [ @ty ) de
= ioﬁw/ Prav dz +O0(a’),

* 1 > * * * *
Lal) =5 [ O () do

— 00

——1 [ o

o0

+1 /Oo (—2(K°n* — ") (*)? = (K°n* —0*)*n* + (n*')*n*) dw

2 — 00

= —%CVS/ dicay dz + O(a’),

in which the further estimate ||n*|l~ = O(a?) has been used (see proposition 4.3
for the formulas for G3, K3 and L3). Finally, proposition 4.4 shows that G4(n*),
Ka(n*), La(n*) and G:(n*), Ke(n*), L:(n*) are all O(a’).
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The above calculations show that
K(n*) 4 2v0G () — v L(n*)
o? > 1 V2 >
=— (1 -wry— Vg)/ Piay dz + 2(/3 - ;)015/ Pieay dz

2 ~—
=0

1(w? 2\ 5 [T s 7
+ - = F+wr+15 | drqy dz + O(a’)
2\ 3 ~—— o

= a"Exav(pxav) + O(a’)

= cxava® + O(a7).
The mapping
a = kl(n) =g’
=a? (V20 + Z) /OO Pkqy dz + O0(a®)
= Of\/m/z ¢%{dv dz + O(O‘S)

is continuous and strictly increasing and therefore has a continuous inverse p
a(u); furthermore, a(p) = p'/3 4 o(u*/3) and

Tu(*) = 2vop = K(*) + 200G () — 8L(0*) = ckavi®™® + o(/®).

A.2. The case 8 < (B¢

LEMMA A.2. Suppose that p > 0. There exists a continuous invertible mapping
uw— a(p) such that
Tu(n) = 2vop + envsp® + o(i?),

where

n*(x) = adnrs(ax) cos kox

a2 2

o
— 7g(2k0)*1A§¢NLS(ax)2 cos 2kgr — ?g(O)*lquSNLS(ax)z.

Proof. We seek a test function n* of the form
n*(z) = adnrs(ax) cos kox + a?1h(ax) cos 2kor + o*&(ax)

with 9, ¢ € S(R).
Choose n € N and x € C§°(R). Straightforward calculations yield the formulas

K°(x(aw)) = x(az) + Si(z),

where

$1(x) =~ (1K coth k] - l)x@ﬂ
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and
K°(x(ax) cosnkox) = f(nko)x(ax)cosnkox + af (nko)x' (ax) sin nkox
— 2o f"(nko) X" (o) cos nkoz + Sa(z),

where

So(x) = LF1 {R,Lko(k)(k’ - ”"fo)BY(k ankoﬂ

+ 17 |:R—nko (k) (k + nko)® (k +ank0)]

and Ry, (k) = % " (k,,) for some k,, between k and w; the remainder terms S; and S,
satisfy the estimates ||S{"™ ||o = O(a™+3/2) and ||Ss|ac = O(a®), ||S2]1 = O(a™/2).
Furthermore, repeated integration by parts shows that

[ e {n} ma)as = 0far)

oo COS

for each m € N, so that

/°° x(ow) {ig;} (M) {fjj;} (mez) dz = O(a™)

— 00

for all my,...,my € Nwith m; £--- +my #£0.
Estimating using the above rules, one finds that

Ka(n*) = 1+5k0 / s da + 5/ s d
—|—Z(1+45k§)/_oow2dx+7/_Oo£2dx+0(a4)7

oo 3 [e’¢) 3 es}
Ga(n*) =—%w/ ¢12\1Lsdx—a—w/ w2dx—%w/ £ dr + O(a?),

8 —o0 —00

[e'e] 3 [e'e]
£a) = Lo 0k) [ Rusdo+ Gr'l) [ ofusar
—3f(2k0) /OO Y?dr + o /OO €2 dz + O(at),

/ <z>Nstdx+—w / G2s€ da + O(a),

3

Ks(n*) = %
* « ko 2
Gs(n*) = ) (f(ko) + )w/ dnrs¥ dz

8 (0 3 ) [ Gaseds+otad)

063 2
a() = 5 (s stzhe) - LA 28 [ 2,

3

+ 227 (00) — f0) +13) [ Gasdr+O(a)
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and
* o? 4 2 ! 4
Kalr) = = (30K +*(/(2ho) +2)) [ oy da+0(a),

a3
g4<n*>=(k§—f(’“°)(f(2’“0 +2) / Bhusdz +O(a?),

16 2
043
L) = S (0 2ho) +2) = 3310 [ okasde +0(a)

(see proposition 4.3 for the formulas for K3, G3, L3 and K4, Gy, L4). Finally, observe
that

" (z) + kin* (x) = & Pfps(ax) cos kor — 202 kopiyg (o) sin kox
+ o (ax) cos 2kox — 40P ko) (o) sin 2kox
— 3k2a®y(ax) cos 2kox + o€’ (ax),
so that ||n*” 4+ k2n*|lo = O(a?/?), and using the further estimates ||n*||2 = O(al/?)
and [|n*||1,.c = O(a), one finds from proposition 4.4 that KC.(n*), G:(n*), L.(n*) are

all O(a/?).
The above calculations show that

K(n*) + 210G (n*) — vi L(n")

— %( — 12" (ko) / s da + —/ 9(2ko)* + AY¢%i g0 da

+—/ 0)& + A ¢NLsf>dm+—A4/ Sl d +O(a7/?)

00 k 2
Cer-ni st [ sdrr Lok [ (0+ D20 ) a0

3 o] 2
+290) | (§+g(2) A%afNLs) du

— 00

—1 —1 [es}
r o (Sas- 22—y - S (92) [ otusds 4 0™,

in which the second line follows from the first by the definitions of A}, A%, A, and
the third from the second by completing the square. The choice

9(2ko) !
2

g(0)~*

V== Agdlus, €= -5 Aydus

therefore minimizes the value of KC(1n*) 420G (n*) —v2 L(n*) up to O(a/?), whereby

Kn*) +21G(n*) — o L(n*) = o®Exws(dnis) + O(a™/?)
= CNLsOé3 + O(OL7/2).
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The mapping

a— vln*) —

g(n")
=« <Zof(ko) +

881

z) /700 P dz + O(a?)

is continuous and strictly increasing and therefore has a continuous inverse p —

a(p); furthermore, a(p) = p + o(p) and

Tu(n*) = 2vop = K(n*) + 210G (n*) — 5 L(n*) = exusp® + o(1?).

Appendix B. The sign of Az + 2A4,4

The quantities 8, w, kg and vy are related by the fact that g(k)

> 0 with equality

precisely when k = +ko. It follows from the simultaneous equations g(kg) = 0,

9’ (ko) = 0 that
v6 f' (ko)

14 Bk§ — 15 f(ko)

8=

2]60 ’ w= 140

)

and inserting these expressions for 5 and w into the formulas for Az and Ay (see

corollary 4.25 and proposition 4.28), one finds that

I/g(Ag +2A4) = agyg + CLGVS + a41/61 + agz/g + ag, (B1)
in which
ag = —g5ha(ko) ™" (1 + 2k (ko))
az = —3ha(ko) " (3(2ko) + ko f (ko) + 2h1 (ko) (3 + Sko ' (Ko))),
ay = —3ha(ko)~ ((%f@k‘o) + Skof' (ko))? + 2ha (ko) (5 + Skof' (ko))?)
—2(35 + 31/ (2ko)),
a6 = —3ha(ko)~ <% (ko) f(2ko) — 3kg + Fhof! (ko) f(2ko) + 1 f'(ko)?)
X (3f(2ko) + 5kof' (ko))
— gha(ko) ™ ha (ko) (3o f (ko) + 5. f (ko) — 5k§ + k3 f' (Ko)?)
X (3 + skof' (ko))
+2(—g5kof’ (ko) f(2ko) + lk% iskof' (ko) — §.f (ko) — 15 f (ko) f (2ko)),
ag = —$ha(ko) (5 f (ko) f(2ko) — 5k5 + 11" (ko) f(2ko) + £/ (ko)?)*
- %h2(k0)71h1(ko)(ikof/(ko) + 3 f(ko) — 5k + 2k3 [ (ko)?)?
— 255k [ (ko) + & f (ko) (f(ko) +2) — 2k f (ko)
— 2(3kof" (ko) — f (ko)) (§k5 — 15/ (ko) (f (2ko) + 2))
+ 21 (5kof' (ko) — f(ko))*(f(2ko) + 2)
and
(ko) = —2LZR0) + 27 Ro) 4 8Rof (ko) -y ) — 31 (ko) + £ (o) — £ (2Ko).

—2— ko f'(ko) + 2f(ko)
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The right-hand side of (B 1) defines a polynomial function of vy with coefficients
that depend upon kg, and the following argument shows that it is negative for all
positive values of 1.
First note that ag, as and a4 are negative because
_ _ 2k
(ko) = 9(0) g(2h) 1 >0, ha(ko) = 22800 5 ¢,

Yo
A lengthy calculation shows that

kg oo a —1 oo a

. 0 8,2j+1 5.2j+1 8,25 1.2j
ag = — : k STk

T sinh kg <;J 2i+1)!° > ;0 (25)1°°

in which explicit formulas for the coefficients ag ; are computed from the above
expression for ag. Elementary estimates are used to establish that ag ; > 0, so that
ag is also negative. The argument is completed by demonstrating that 4ajag — a2
is positive. For this purpose we use the calculation

k4 0 b. . —1 oo Ci .
4 a2 0 J 23 J_ .29
G T T G k‘0<z(2j)! o) 2 gk

Jj=0 Jj=0

with explicit formulas for the coefficients b; and c¢;, which are also found to be
positive.
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