Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-02-06T23:43:18.231Z Has data issue: false hasContentIssue false

Construction of symplectic structures on 4-manifolds with a free circle action

Published online by Cambridge University Press:  21 March 2012

Stefan Friedl
Affiliation:
Mathematisches Institut, Universität zu Köln, Weyertal 86–90, 50931 Köln, Germany (sfriedl@gmail.com)
Stefano Vidussi
Affiliation:
Department of Mathematics, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA (svidussi@math.ucr.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let M be a closed 4-manifold with a free circle action. If the orbit manifold N3 satisfies an appropriate fibering condition, then we show how to represent a cone in H2(M; ℝ) by symplectic forms. This generalizes earlier constructions by Thurston, Bouyakoub and Fernández et al. In the case that M is the product 4-manifold S1 × N, our construction complements our previous results and allows us to determine completely the symplectic cone of such 4-manifolds.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2012