
Proceedings of the Royal Society of Edinburgh, 142A, 359–370, 2012

Construction of symplectic structures
on 4-manifolds with a free circle action

Stefan Friedl
Mathematisches Institut, Universität zu Köln, Weyertal 86–90,
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Let M be a closed 4-manifold with a free circle action. If the orbit manifold N3

satisfies an appropriate fibering condition, then we show how to represent a cone in
H2(M ; R) by symplectic forms. This generalizes earlier constructions by Thurston,
Bouyakoub and Fernández et al . In the case that M is the product 4-manifold
S1 × N , our construction complements our previous results and allows us to
determine completely the symplectic cone of such 4-manifolds.

1. Introduction and main results

Let M be a closed 4-manifold with a free circle action. We denote the orbit space
by N and we denote by p : M → N the quotient map that defines a principal
S1-bundle over N . We denote by p∗ : H2(M ; R) → H1(N ; R) the map given by
integration along the fibre. Our main result (which will be proved in § 2) is the
following existence theorem.

Theorem 1.1. Let M be a closed, oriented 4-manifold admitting a free circle ac-
tion. Let ψ ∈ H2(M ; R) such that ψ2 > 0 ∈ H4(M ; R) and such that p∗(ψ) ∈
H1(N ; R) can be represented by a non-degenerate closed 1-form. Then there exists
an S1-invariant symplectic form ω on M with [ω] = ψ ∈ H2(M ; R).

Remark 1.2.

(i) Note that, given φ ∈ H1(N ; R), we can represent φ by a non-degenerate
(i.e. nowhere zero) closed 1-form if and only if φ lies in the cone on a fibred
face of the Thurston norm ball (see [13] for details). Therefore, the theorem
assumes implicitly that N admits a fibration over S1.

(ii) This theorem generalizes work by Thurston [12], Bouyakoub [2] and Fernández
et al . [4]. More precisely, Thurston first constructed symplectic forms on
product manifolds S1 × N for fibred 3-manifolds N . Bouyakoub generalized
Thurston’s results and showed that, given ψ as in the theorem, there exists
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an S1-invariant symplectic form ω with p∗([ω]) = p∗(ψ). Finally, Fernández
et al . proved the theorem in the case where p∗(ψ) is rational.

Let W be a 4-manifold. The set of all elements of H2(W ; R) which can be rep-
resented by a symplectic form is called the symplectic cone of W . Note that this is
indeed a cone, i.e. if ψ can be represented by a symplectic form, then any non-zero
scalar multiple can also be represented by a symplectic form. Determining the sym-
plectic cone of 4-manifolds is a fundamental problem, but little seems to be known
in general. We refer the reader to [10, § 3] for more information.

In [6] we showed that if N is a closed 3-manifold, then S1×N is symplectic if and
only if N fibres over S1. (In the case that b1(N) = 1 this also follows from combining
the work of Kutluhan and Taubes [8] with the work of Kronheimer and Mrowka [7]
and Ni [11].) In fact, a slightly more precise version of this result [6, theorems 1.2
and 1.4] will allow us to determine, in § 3, the symplectic cone of closed 4-manifolds
of the form S1 × N .

Theorem 1.3. Let N be a closed, oriented 3-manifold. Then, given ψ ∈ H2(S1 ×
N ; R), the following are equivalent:

(i) ψ can be represented by a symplectic structure;

(ii) ψ can be represented by a symplectic structure which is S1-invariant;

(iii) ψ2 > 0 and the Künneth component φ = p∗(ψ) ∈ H1(N ; R) of ψ lies in the
open cone on a fibred face of the Thurston norm ball of N .

Remark 1.4.

(i) Note that we are not claiming that any symplectic form is isotopic, or even
homotopic to an S1-invariant form, although this might be the case.

(ii) We expect a very similar theorem to hold for closed 4-manifolds with a free
circle action. In fact, the proof of theorem 1.3 together with work of Bowden [3]
and the authors [5] shows that an analogous statement holds for circle bundles
M → N whenever N has vanishing Thurston norm or N is a graph manifold.

Convention. All maps are assumed to be C∞ unless stated otherwise. All mani-
folds are assumed to be connected, compact, closed and orientable. All homology
and cohomology groups are with integral coefficients, unless it says specifically
otherwise.

2. Construction of symplectic forms

2.1. Outline of the proof of theorem 1.1

In this section we shall give a proof of theorem 1.1 modulo some technical lemmas
which will be proved in §§ 2.2–2.4.

For the remainder of this section let M be an oriented 4-manifold admitting a
free S1-action. We denote the orbit space by N and we denote by p : M → N the
quotient map that defines a principal S1-bundle over N .
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In the following we denote by e ∈ H2(N) the Euler class of the S1-bundle M →
N . (Note that M decomposes as a product M = S1 × N if and only if e = 0.)
Recall the Gysin sequence

Z = H0(N ; R) ·e−→ H2(N ; R)
p∗

−→ H2(M ; R)
p∗−→ H1(N ; R) ∪e−−→ H3(N ; R) = R.

(2.1)
Here p∗ : H2(M ; R) → H1(N ; R) is the map given by integration along the fibre.
The same sequence can be considered for cohomology with integral coefficients.
Note that the map p∗ : H4(M) → H3(N) is an isomorphism, and we endow N with
the orientation given by the image of the orientation of M under p∗.

Throughout this section we assume that ψ ∈ H2(M ; R) is such that ψ2 > 0 ∈
H4(M ; R) and such that p∗(ψ) ∈ H1(N ; R) can be represented by a non-degenerate
closed 1-form α.

Lemma 2.1. There exists a 1-form β on N such that α ∧ β is closed and [β ∧ α] =
e ∈ H2(N ; R).

In the case that p∗(ψ) is integral, this lemma is stated in [4, lemma 15]. We give
the proof of lemma 2.1 in § 2.3.

Now let γ = β ∧ α. Since [γ] = e ∈ H2(N ; R), we can find a 1-form η (namely a
connection 1-form for M → N) on M with the following properties:

(i) η is invariant under the S1-action;

(ii) the integral of η over a fibre (which inherits an orientation from S1) equals 1;

(iii) dη = p∗(γ).

This form is often referred to as the global angular form. We refer the reader to [1]
for more details. Note that (i) and (ii) imply that η is non-trivial on any non-trivial
vector tangent to a fibre.

Note that d(p∗(α)∧η) = p∗(α∧γ) = p∗(α∧α∧β) = 0. We can therefore consider
ψ − [p∗(α) ∧ η] ∈ H2(M ; R). It follows easily from p∗(ψ) = [α] and the second
property of η that p∗(ψ − [p∗(α)∧ η]) = 0 ∈ H1(N ; R). By the exact sequence (2.1)
we can therefore find h ∈ H2(N ; R) with p∗(h) = ψ − [p∗(α) ∧ η]. By assumption
we have ψ2 > 0. Note that

ψ2 = (p∗(h) + [p∗(α) ∧ η]) ∪ (p∗(h) + [p∗(α) ∧ η])

= p∗(h2) + [p∗(α) ∧ η] ∪ [p∗(α) ∧ η] + 2p∗(h) ∪ [p∗(α) ∧ η]

= p∗(h2) + [p∗(α) ∧ η ∧ p∗(α) ∧ η] + 2p∗(h) ∪ [p∗(α) ∧ η].

The first term is zero since N supports no 4-forms, and the second term is zero
since η and p∗(α) are 1-forms. It follows that

p∗(h) ∪ [p∗(α) ∧ η] = 1
2ψ2 > 0 ∈ H4(M ; R).

Recall that the map p∗ : H4(M ; R) → H3(N ; R) is an orientation-preserving iso-
morphism. In particular, we therefore get that

h ∪ [α] = p∗(p∗(h) ∪ [p∗(α) ∧ η]) > 0 ∈ H3(N ; R).

We shall prove the following lemma in § 2.4.
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Lemma 2.2. Given h ∈ H2(N ; R) with h ∪ [α] > 0, we can find a representative Ω
of h such that Ω ∧ α > 0 everywhere.

It is now clear that the following claim concludes the proof of theorem 1.1.

Claim 2.3.
ω = p∗(Ω) + p∗(α) ∧ η

is an S1-invariant symplectic form on M which represents ψ.

It is clear that ω is S1-invariant. We compute

dω = d(p∗(Ω) + p∗(α) ∧ η) = p∗(α) ∧ dη = p∗(α ∧ γ) = p∗(α ∧ α ∧ β) = 0,

i.e. ω is closed. Also note that

ψ = p∗(h) + [p∗(α) ∧ η] = [p∗(Ω) + p∗(α) ∧ η],

i.e. ω represents ψ. It remains to show that ω ∧ ω is positive everywhere. For any
point q ∈ M , pick a basis a, b, c, d for the tangent space TqM such that

(a) p∗(a), p∗(b) are a basis for the tangent space ker α|p(q) of a leaf of the foliation
on N determined by α (in other words, α(p∗(a)) = α(p∗(b)) = 0 and p∗(a),
p∗(b) are linearly independent),

(b) α(p∗(c)) > 0,

(c) d is tangent to the fibres of the S1-fibration M → N and η(d) > 0.

Note that p∗(d) = 0 and p∗(α) vanishes on a, b, d. It is now easy to see that

(ω ∧ ω)(a, b, c, d) = 2(p∗(Ω) ∧ p∗(α) ∧ η)(a, b, c, d)
= 2p∗(Ω)(a, b) · p∗(α)(c) · η(d)
= 2Ω(p∗(a), p∗(b)) · α(p∗(c)) · η(d)
= 2(Ω ∧ α)(p∗(a), p∗(b), p∗(c)) · η(d).

Since Ω ∧ α is a non-zero 3-form and since p∗(a), p∗(b), p∗(c) form a basis for the
tangent space of N we see that the last expression is in fact non-zero. This shows
that ω ∧ ω is non-zero everywhere, but since ω ∧ ω represents the positive class ψ2

we see that ω ∧ ω is in fact positive throughout. This concludes the proof of the
claim and hence the proof of theorem 1.1.

2.2. Non-degenerate closed 1-forms and dual curves

Throughout this section α will be a non-degenerate closed 1-form on N . Note
that α (or strictly speaking Ker(α)) defines a foliation which we denote by F .
Before we can prove lemmas 2.1 and 2.2 we need a preliminary result regarding
representability of homology classes in N by smooth embedded curves transverse
to, or contained in a leaf of, the foliation F . The following lemma is presumably
known (its existence is discussed in, for example, [9]) but we include a proof for
completeness.
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Lemma 2.4. Let α be a non-degenerate closed 1-form on N with corresponding
foliation F and let p ∈ N . For every h ∈ H2(N ; Z) with h ∪ [α] �= 0 (respectively,
h ∪ [α] = 0) there exists a smoothly embedded closed (possibly disconnected) curve
c with PD([c]) = h transverse to (respectively, contained in a leaf of) the foliation
F and that goes through p.

Proof. Let α be a non-degenerate closed 1-form on N with corresponding foliation
F . We first pick a metric g on N . We let v′ be the unique vector field on N with
the property that for any p ∈ N and any w ∈ TpN we have g(v′(p), w) = α(w).
Note that this implies that α(v′(p)) �= 0 for all p. We then define a new vector field
v by

v(p) =
v′(p)

α(v′(p))
.

Note that α(v(p)) = 1 for all p ∈ N . We denote by F : N × R → N the flow
corresponding to −v, i.e. for any p ∈ N, s ∈ R we have

∂

∂t
F (p, t)

∣∣∣∣
t=s

= −v(F (p, s)) (2.2)

with initial condition F (p, 0) = p (as N is compact, the flow is defined for all s ∈ R).
Observe that Cartan’s formula implies that Lvα = d(ivα) + iv(dα) = d(1) = 0. It
follows that

d
ds

(F ∗
s α) = 0,

where Fs : N → N is the map defined by Fs(q) = F (q, s). Hence,

F ∗
s α = F ∗

0 α = α.

We shall repeatedly make use of the following formula: given a path

(γ, ρ) : [0, 1] → N × R,

by the chain rule the induced path η := F (γ, ρ) : R → N has tangent vector

dη

dt
=

d
dt

F (γ(t), ρ(t)) = (Fρ(t))∗

(
dγ

dt

)
+

∂

∂s
F (γ(t), s)

∣∣∣∣
s=ρ(t)

dρ

dt

and as usual the derivatives at the endpoints are interpreted as being one-sided.
Using (2.2) we can rewrite this vector as

dη

dt
= (Fρ(t))∗

dγ

dt
− v(η(t))

dρ

dt
∈ Tη(t)N. (2.3)

Let now γ : [0, 1] → N be any smoothly embedded loop with γ(0) = γ(1) = p
whose image (which by abuse of notation we shall also denote by γ), is dual to a
class h ∈ H2(N ; Z) such that

h ∪ [α] =
∫

γ

α = m ∈ R.
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Let ρ(t) = mt and denote, as above, η(t) = F (γ(t), mt). Define a map Φ : [0, 1] → R

as

Φ(t) =
∫

η|[0,t]

α,

where η|[0,t] denotes the restriction of the map η : [0, 1] → N to the interval [0, t].
Note that, by (2.3),

dΦ

dt
= α

(
dη

dt

)
= α

(
(Fmt)∗

dγ

dt
− mv

)
.

Using the identities α((Fs)∗) = F ∗
s α = α and α(v) = 1, we therefore obtain

dΦ

dt
= α

(
dγ

dt

)
− m.

In particular, it follows that

Φ(1) =
∫

η

α =
∫ 1

0
α

(
dη

dt

)
dt

=
∫ 1

0
α

(
(Fmt)∗

dγ

dt
− mv

)
dt

=
∫ 1

0
α

(
dγ

dt

)
dt − m

=
∫

γ

α − m = 0.

We consider now the following homotopy

H : [0, 1] × [0, 1] → N,

(t, s) �→ F (γ(t), sΦ(t)).

This is clearly a smooth map. Since Φ(1) = 0, this descends in fact to a homotopy
H : S1 × [0, 1] → N . Note that H(t, 0) = γ(t) for all t. We now consider the path
γ̃(t) defined by γ̃(t) = H(t, 1). Note that γ̃(0) = γ̃(1) = p. The map γ̃(t) is smooth,
and we claim that the image γ̃ of γ̃(t) is transverse to the foliation F if m �= 0, and
is contained in the leaf through p if m = 0.

In fact, as γ̃(t) = F (γ(t), Φ(t)), we have by (2.3),

dγ̃

dt
= (FΦ(t))∗

(
dγ

dt

)
− v(γ̃(t))

dΦ

dt
∈ Tγ̃(t)N.

Applying α pointwise, we get

α

(
dγ̃

dt

)
= (F ∗

Φ(t)α)
(

dγ

dt

)
− α(v)

dΦ

dt
= α

(
dγ

dt

)
− dΦ

dt

= α

(
dγ

dt

)
− α

(
dγ

dt

)
+ m = m,
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so dγ̃/dt is pointwise transverse to or contained in kerα, depending on the value
of m.

Note that γ̃ may have self-intersection and (when m = 0) may fail to be an
immersion. However, using a local model, we can use a general position argument to
further homotope γ̃ (at the price perhaps of increasing the number of components,
when γ̃ sits on a leaf) to get the curve c that satisfies the conclusions of the lemma.

2.3. Proof of lemma 2.1

We are now ready to prove the first of the two auxiliary lemmas, i.e. we shall
prove the following claim.

Claim 2.5. Let α be a non-degenerate closed 1-form on N and e ∈ H2(N ; Z) such
that e ∪ [α] = 0. There exists a 1-form β on N such that α ∧ β is closed and
[β ∧ α] = e ∈ H2(N ; R).

By lemma 2.4 we can find an oriented smoothly embedded curve c dual to e ∈
H2(N ; Z) such that α|c ≡ 0. We denote the components of c by c1, . . . , cm. We now
consider S1 ×D2 with the coordinates (e2πit, x, y) and we orient S1 ×D2 by picking
the equivalence class of the basis {∂x, ∂y, ∂t}.

Using the orientability of the N and of the leaves of the foliation we use a standard
argument to show that for i = 1, . . . , m we can pick a map

fi : S1 × D2 → N

with the following properties:

(i) fi is an orientation-preserving diffeomorphism onto its image;

(ii) fi restricted to S1 × 0 is an orientation-preserving diffeomorphism onto ci;

(iii) α((fi)∗(∂t)) = 0;

(iv) α((fi)∗(∂x)) = 0;

(v) there exists an ri ∈ (0,∞) such that α((fi)∗(∂y)) = ri everywhere.

Note that (iii), (iv) and (v) are equivalent to f∗
i (α) = ri · dy.

For i = 1, . . . , m we now pick a function ρi : D2 → R�0 such that the closure of
the support of ρi lies in the interior of D2 and such that∫

D2
ρi(x, y) dx ∧ dy =

1
ri

.

We define the following 1-form on S1 × D2:

β′
i(t, x, y) = ρi(x, y) · dx.

Note that

d(β′
i ∧ f∗

i (α)) = d(β′
i ∧ ri · dy) = d(riρi(x, y) · dx ∧ dy) = 0. (2.4)

https://doi.org/10.1017/S0308210510000727 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000727


366 S. Friedl and S. Vidussi

Furthermore, for any z ∈ S1 we have∫
z×D2

β′
i ∧ f∗

i (α) =
∫

z×D2
riρi(x, y) · dx ∧ dy = 1. (2.5)

For i = 1, . . . , m we now define the following 1-form on N :

βi(p) =

{
0 if p ∈ N \ fi(S1 × D2),
(f−1

i )∗(β′
i(q)) if p = fi(q) for some q ∈ S1 × D2.

Furthermore, we let β =
∑m

i=1 βi. We claim that β has all the required properties.
First note that β is C∞ by our condition on the support of ρi. Furthermore, it

follows immediately from (2.4) that β ∧ α is closed. Finally, we have to show that
β ∧ α represents e.

In order to show that β ∧ α represents e in H2(N ; R) = hom(H2(N ; Z), R) it is
enough to show that, for any embedded oriented surface S ⊂ N , we have∫

S

β ∧ α = e([S]).

We first note that e([S]) = c·s. It is therefore enough to show that for any embedded
oriented surface S ⊂ N , we have∫

S

βi ∧ α = ci · S.

In fact, given such a surface we can isotope S in such a way that S intersects the
curve c ‘vertically’, i.e. we can assume that

fi(S1 × D2) ∩ S =
k∐

j=1

εj · fi(z1 × D2)

for disjoint zi and εi ∈ {−1, 1}. We view this equality as an equality of oriented
manifolds, where we give zi × D2 the orientation given by the basis {∂x, ∂y}. In
particular, S is transverse to ci. In this case we have

ci · S =
k∑

j=1

εj .

On the other hand, it follows from (2.5) that

∫
S

βi ∧ α =
k∑

j=1

∫
εj ·(zj×D2)

f∗
i (βi) ∧ f∗

i (α) =
k∑

j=1

∫
εj ·(zj×D2)

β′
i ∧ f∗

i (α) =
k∑

j=1

εj .

This concludes the proof that β has all the required properties.

2.4. Proof of lemma 2.2

The following claim is the last missing piece in the proof of theorem 1.1.

Claim 2.6. Let α be a non-degenerate closed 1-form on N . Given h ∈ H2(N ; R)
with h∪[α] > 0, we can find a representative Ω of h such that Ω∧α > 0 everywhere.
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We first consider the case that h is represented by an integral class, i.e. by an
element in the image of the map H2(N ; Z) → H2(N ; R). Let F be the foliation
corresponding to α.

Using lemma 2.4 we can pick for each p ∈ N a curve cp transverse to F which
goes through p and which represents h. Since N is orientable we can pick maps

fp : S1 × D2 → N

such that

(i) fp is an orientation-preserving diffeomorphism onto its image (where we again
view S1 × D2 with the orientation given by {∂x, ∂y, ∂t}),

(ii) fp restricted to S1 × 0 is an orientation-preserving diffeomorphism onto cp,

(iii) α((fp)∗(∂x)) = 0,

(iv) α((fp)∗(∂y)) = 0,

(v) α((fp)∗(∂t)) > 0.

Note that (iii) and (iv) are equivalent to saying that (fp)∗(∂x) and (fp)∗(∂y) are
tangent to the leaves of the foliation F . Also note that on S1 × D2 we have dx ∧
dy ∧ (fp)∗(α) �= 0.

By compactness we can find p1, . . . , pk such that

k⋃
j=1

fpi(S
1 × 1

2D2) = N. (2.6)

We write fi = fpi , i = 1, . . . , k. Now we pick a function ρ : D2 → R�0 such that the
following conditions hold:

(a)
∫

D2
ρ =

1
k

;

(b) ρ is strictly positive on 1
2D2;

(c) the closure of the support of ρ lies in the interior of D2.

Let Ω′ be the 2-form on S1 × D2 given by

Ω′(z, x, y) = ρ(x, y)dx ∧ dy.

Clearly, Ω′ is closed and for any z ∈ S1 we have∫
z×D2

Ω′ =
1
k

.

For i = 1, . . . , k we now define the following 2-form on N :

Ωi(p) =

{
0 if p ∈ N \ fi(S1 × D2),
(f−1

i )∗(Ω′(q)) if p = fi(q) for some q ∈ S1 × D2.
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As in the proof of lemma 2.1 we see that Ωi is smooth, Ωi is closed and

[Ωi] =
1
k

h ∈ H2(N ; R).

Now let Ω(h) =
∑k

i=1 Ωi. Clearly, [Ω(h)] = h ∈ H2(N ; R), and it easily follows
from (2.6) and all the other conditions that Ω(h) ∧ α > 0 everywhere.

We now turn to the general case, i.e. to the case that h ∈ H2(N ; R) is not
necessarily integral.

Lemma 2.7. Let h ∈ H2(N ; R) with h ∪ [α] > 0. Then we can find m ∈ N, integral
h1, . . . , hm and a1, . . . , am ∈ R�0 such that hi ∪ [α] > 0 for all i and such that
h =

∑m
i=1 aihi.

We first show that lemma 2.7 implies lemma 2.2. Indeed, given h ∈ H2(N ; R)
with h ∪ [α] > 0, we pick integral h1, . . . , hm and a1, . . . , am ∈ R�0 as above. Then
we define Ω(h1), . . . , Ω(hm) as above. We let

Ω =
m∑

i=1

aiΩ(hi).

We see that

Ω(h) ∧ α =
m∑

i=1

aiΩ(hi) ∧ α > 0

everywhere. This concludes the proof of lemma 2.2, assuming lemma 2.7 holds.
We now turn to the proof of lemma 2.7. It is easy to see that we can pick a basis

e1, . . . , en for H1(N ; Q) such that ei ∪ [α] > 0 for all i = 1, . . . , m. We use this basis
to identify H2(N ; R) with Rn. We say that h ∈ H2(N ; R) with h ∪ [α] > 0 has
property (∗) if there exist m ∈ N, integral h1, . . . , hm and a1, . . . , am ∈ R�0 such
that hi ∪ [α] > 0 for all i and such that h =

∑m
i=1 aihi. Note that if h1, h2 have

property (∗), then h1 + h2 also has property (∗).
Given m ∈ {0, . . . , n} we now say P (m) holds if (∗) holds for all g = (g1, . . . , gn) ∈

H2(N ; R) = Rn with g1, . . . , gm ∈ Q. Clearly, we have to show that P (0) holds.
Note that P (n) holds since any rational element of H2(N ; R) is a non-negative
multiple of an integral element.

We now show that P (m+1) implies that P (m) holds as well. So assume P (m+1)
holds and that we have

g = (g1, . . . , gm, gm+1, . . . , gn)

with g1, . . . , gm ∈ Q and h · [α] > 0. By continuity we can find r > 0 such that
gm+1 − r ∈ Q and with the property that

(g1, . . . , gm, gm+1 − r, . . . , gn) · [α] > 0.

We write

(g1, . . . , gm, gm+1, . . . , gn) = (g1, . . . , gm, gm+1 − r, . . . , gn) + rem+1.

The claim now follows from P (m + 1) and em+1 ∪ [α] > 0.
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3. Proof of theorem 1.3

We first prove the following proposition.

Proposition 3.1. Let M be a 4-manifold with a free circle action. Denote by
p : M → N the projection map to the orbit space. Assume that (N, p∗([ω])) fibres
over S1 for any symplectic form ω such that p∗([ω]) is an integral class which
is primitive in H1(N ; Z). Then for any symplectic form ω the class p∗([ω]) ∈
H1(N ; R) can be represented by a non-degenerate closed 1-form.

Proof. First let ω be a symplectic form such that p∗([ω]) ∈ H1(N ; Q). We can
find s ∈ Q such that sp∗([ω]) = p∗([sω]) is a primitive element in H1(N). By
assumption (N, sp∗([ω])) fibres over S1, in particular sp∗([ω]) (and hence p∗([ω]))
can be represented by a non-degenerate closed 1-form.

Now let ω be a symplectic form such that p∗([ω]) ∈ H1(N ; R) \ H1(N ; Q), and
let C be the open cone over the face of the unit ball of the Thurston norm in
which C lies. (Note that C is a priori not necessarily top dimensional.) Since the
vertices of the Thurston norm ball are rational [13, § 2], and by the openness of the
symplectic condition, we can find a symplectic form ω′ on M such that p∗([ω′]) is
in H1(N ; Q) and is contained in the cone C as well. By the previous observation it
follows that there exists at least one element of C (namely p∗([ω′]) itself) that can
be represented by a non-degenerate closed 1-form. But then by [13, theorem 5] all
elements in C, in particular p∗([ω]), can be represented by non-degenerate closed
1-forms.

We can now prove theorem 1.3.

Proof of theorem 1.3. Let N be a closed oriented 3-manifold and let ψ ∈ H2(S1 ×
N ; R). We have to show that the following are equivalent:

(i) ψ can be represented by a symplectic structure;

(ii) ψ can be represented by a symplectic structure which is S1-invariant;

(iii) ψ2 > 0 and the Künneth component φ ∈ H1(N ; R) of ψ lies in the open cone
on a fibred face of the Thurston norm ball of N .

Clearly, (ii) implies (i). Theorem 1.1 shows that (iii) implies (ii). By the results
of [6, theorems 1.2 and 1.4] we know that, for any symplectic form ω with p∗([ω]) ∈
H1(N) primitive, the pair (N, p∗([ω])) fibres over S1. (Note that this is stated only
for integral forms [ω], but the argument in [6] carries through for any [ω] such that
p∗([ω]) is primitive.) Proposition 3.1 then asserts that for any symplectic form ω the
class p∗([ω]) ∈ H1(N ; R) can be represented by a non-degenerate closed 1-form.

Theorem 1.3 lets us determine the symplectic cone for a significant class of 4-
manifolds. Our result suggests that the symplectic cone shares the properties of the
fibred cone of a 3-manifold. We propose the following conjecture.
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Conjecture 3.2. Let W be a symplectic 4-manifold. Then there exists a (possibly
non-compact) polytope C ⊂ H2(W ; R) with the following properties:

(i) the dual polytope in H2(W ; R) is compact, symmetric, convex and integral;

(ii) there exist open top-dimensional faces F1, . . . , Fs of C such that the symplectic
cone coincides with all non-degenerate elements in the cone on F1, . . . , Fs.
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