Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-02-06T06:59:42.931Z Has data issue: false hasContentIssue false

Complete representation of some functionals showing the Lavrentieff phenomenon

Published online by Cambridge University Press:  12 July 2007

A. Corbo Esposito
Affiliation:
Università di Cassino, Dipartimento di Automazione, Elettromagnetismo, Ingegneria dell'Informazione e Matematica Industriale, via G. Di Biasio no. 43, 03043 Cassino (FR), Italy (corbo@unicas.it)
T. Durante
Affiliation:
Università di Cassino, Dipartimento di Automazione, Elettromagnetismo, Ingegneria dell'Informazione e Matematica Industriale, via G. Di Biasio no. 43, 03043 Cassino (FR), Italy (durante@unicas.it)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The functional F(u) = ∫Bf(x, Du) is considered, where B is the unit ball in R2, u varies in the set of the locally Lipschitz functions on R2 and f belongs to a family containing, as model case, the following integrand:

The computation of the relaxed functional is provided yielding an explicit representation formula.

This formula nevertheless is not integral, because is not a measure and does not coincide with the obvious extension of F over all W1,p(B).

This phenomenon is essentially due to the non-standard growth behaviour of f(x, z) in the variable z.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2001