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The functional F(u) = [ f(z, Du) is considered, where B is the unit ball in R?,
u varies in the set of the locally Lipschitz functions on R? and f belongs to a family
containing, as model case, the following integrand:

2
flx,2) = } ‘3‘\(2 o)+ 2P,z = (z1,22), 2= (21,22) €ER®, 1<p<2

The computation of the relaxed functional F is provided yielding an explicit
representation formula.

This formula nevertheless is not integral, because F' is not a measure and does not
coincide with the obvious extension of F over all W1 (B).

This phenomenon is essentially due to the non-standard growth behaviour of
f(z, z) in the variable z.

1. Introduction

In 1926 (cf. [28]) an unexpected phenomenon concerning an integral functional of
the calculus of variations was pointed out.

The considered functional was naturally defined and lower semicontinuous (with
respect to the L' topology) on the set of absolutely continuous functions defined
on the interval [0, 1]. Moreover, on the set of the functions w of this kind and such
that 4(0) = 0 and w(1) = 1, a minimum value was attained. This value, surpris-
ingly enough, was strictly lower than the infimum value of the same functional
computed on the set of Lipschitz functions with the same boundary conditions
(Lavrentieff phenomenon); this fact implies that, for example, this minimum value
cannot be approximated by a finite-elements method. Other examples of the same
phenomenon concerning much simpler functionals were shown in [30].

Starting from these papers, an extensive literature was developed both to discover
more instances of this phenomenon and to determine conditions to avoid its presence
(cf. [5-8,12,20,25-27,29]).

On the other hand, given a topological space (U, 7) satisfying the first countability
axiom, a 7-dense subset X of U and a functional F' defined on X, a standard
procedure of the calculus of variations is to define the relaxed functional F of F,
ie.

F(u) = inf{limhian(uh) Auptn € X, up S ul, uel. (1.1)
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This functional is 7-lower semicontinuous and, provided it has minimum value,
we have

The Lavrentieff phenomenon can then be seen in the following way. There is a
functional G defined on a topological space (U, 7) as before, the restriction F' of G
to a subset X 7-dense in U is considered and the minimum values of both G' and F
on U are compared. Then, even if we consider integral functionals of the calculus of
variations, lower semicontinuous with respect to a topology of the kind L!, and we
take the restriction to a class of regular (say Lipschitzian) functions, it may happen
that

Znellrle(u) <£n€1(1]1F(u) (1.3)

Such an approach has led to a search for functionals of this kind G, naturally
defined on a large class of functions, that are different from the corresponding
relaxed functionals F' (cf. [2,11,14,16,17,21]).

The usual procedure is to then find some explicit function u such that G(u) <
F(u) and some representation formula for F', known in the one-dimensional case.

Starting from a important example of this kind, given in a two-dimensional case
(cf. [21]), in the present paper we intend to give a complete representation (i.e. for
every u € L) of F for a class of functionals G showing the Lavrentieff phenomenon.

The phenomenon is well enlightened by the appearance of an odd-looking non-
integral representation formula of ' (while on the Lipschitz functions, F naturally
coincides with G).

More precisely, let us denote by B the unit ball in R? and by Lip,,. the set of
locally Lipschitz functions on R2.

In some papers (see, for example, [14,21]), the following setting has been consid-
ered: (U,7) = L'(B) endowed with the strong topology, the integrand function

x
f(x,z):%|<z',x>|+|z|?, r=(x1,22), 2= (21,22) ER?, 1<p<?2, (1.4)

and the functional

Glu) = /Bf(ac,Du)dac7 u € WhP(B), (15)
400,

we LY(B)\ Wi (B)
(observe that G(u) is naturally +oo on WH1(B) \ WiP(B)).

Then, if X = Lip,,., F = G|x and u*(x1,22) = |z2|/|z|, both G(u*) and F(u*)
have been computed, resulting in

Gu*) = /B |Du*|P < 7r+/B |Du*[P = F(u*). (1.6)

We can observe that such an integrand f(x, z) only verifies a non-standard growth
condition (cf. [21]),

2P < f(x,2) < a(z) + 2|7 where ¢ > 2, a € Li,.(R?). (1.7)
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In the present paper we consider a slightly more general family of integrand
functions,

f(x,z)zg(i>M+|z|p, r=(x1,22), 2= (21,22) ER?, 1<p<2,

x|/ |af?

(1.8)
where g : S* — R is a Holder function, with Holder exponent s > ((2—p)(p—1))/p,
non-negative and positive almost everywhere; such integrand functions show the
same growth behaviour of the example, and we perform, for this family, the explicit
computation of F' over all L!(B).

For every u in WHP(B), we will define

w(p,0) =u(pcosh, psinh), pe(0,1), 6eR, (1.9)

and & as the unique 27-periodic function such that g(cos@,sin @) = £(6).
We will prove that whenever G(u) < 400, w has the trace for p = 0 (a.e. § € R),
namely w*. Moreover, &w™ € L([0,27]) and

Flu) = G(u) —|—rcn€i§ ; 775(9)|w+(9) —c|df if G(u) < +o0, (1.10)

400 otherwise.

Let us note that if g(cos6,sinf) = |sinf| and u*(z1,z2) = |x2|/|z|, equa-
tion (1.10) gives the last equality in (1.6).

We observe that F(u) shows an extra piece, essentially due to the diversity
between the coercivity exponents of the lower and upper controls of f(z,z) in (1.7)
(cf. also [15]). Moreover, the use of polar coordinates enables us to clarify the nature
of this piece.

Finally, we prove that, in general, F is not a measure.

2. Notation and preliminary results

In this section we describe the notation we use throughout the paper.

In particular, we need to consider a space of functions slightly more general than
the space of BV functions, and we just summarize some standard results for BV
functions that are still valid for this space.

We will need two different copies of R?: R?(z1, x2) and R?(p, #). We will consider
a function denoted by u as u = u(z1,x2) and a function w as w = w(p, ).

We will denote by

B = B(0,1) C R*(zy, x3) the unit ball, (2.1)

= (a,b) x (¢,d) C R*(p,0) any open interval, (2.2)
Q = (2a —b,b) x (¢, d) for every @ as above, (2.3)
Q= (a+ A\, b) X (c,d) for every 0 < A < b — a, (2.4)
R=1(0,1) x (0,27) C R%(p,h), (2.5)
Ry = (\1) x(0,2m) for every 0 < A < 1, (2.6)
R=(-1,1) x (0,27). (2.7)
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Moreover, we will denote by 7 = 7(p,0) a positive symmetric mollifier, i.e. a
function that enjoys the following properties:

(i) 7(p,0) € C2(S), S=A{(p,0) : |(p,0)| <1}
(ii) / (p,0) dpdf = 1;
e
(iii) 7(p, ) > 0;
(iv) 7(p,0) = o(|(p,0)]) for some function o : R — R.
We will then define

1 1
r2(00) = 7

;(p, 9)) for every € > 0, (2.8)

and the convolution product of a function w in L{ _(R?(p,0)) with 7. as

(1e xw)(p,0) = / Te(p—p', 0 —0Nw(p',0")dp'de’ . (2.9)
RZ
We refer to [24, pp. 10, 11] for the standard properties of convolutions with
mollifiers.
DEFINITION 2.1. Let §2 be an open set of R?(p,6) and let w be in L*(£2). We say
that w is in C(2) if

sup/ wa—w dpdf < +o0, I={peCt): |y <1} (2.10)
verJo  Op

Furthermore, in this case, we define

— zsup/ w—wdpdﬁ. (2.11)
dp velJ

REMARK 2.2. If w € C(£2), then dw/0dp (in the sense of distributions) is a bounded
Radon measure with total variation expressed by (2.11).

EXAMPLE 2.3. If Ow/dp € L1(£2), then

/ | _ H owl (2.12)
0 3p ap L(0)
Proof. We refer the interested reader to example 1.2 in [24, p. 3]. O

THEOREM 2.4. Let {wp} be a sequence of functions in C(2) such that wy, — w in
L (). Then we have

loc

0 owy,

I3 0
0l @

— éliminf/
P h—oo Jo| Op

In particular, if the liminf in the right-hand side is finite, then w € C({2).

(2.13)

Proof. Adapt the proof of theorem 1.9 in [24, p. 7]. O
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DEFINITION 2.5. Let w be in C(£2). We define

ow
w = ||lw|| 1 —|—/ ’— . 2.14
lwlleoy = llwllLr o) Rrr (2.14)

We note that || - [|¢(0) is clearly a norm on C({2).
THEOREM 2.6. (C(£2), || - lle(2)) is a Banach space.
Proof. We refer the interested reader to remark 1.12 in [24, p. 9]. O
LEMMA 2.7. Let Q = (a,b) X (¢,d) and w € C(Q). Then there exists a (unique)

function wt € L*((c,d)) such that

1 o+n a+n
liI?(()l+ — / lw(p,0) —w(0)dpdd =0 a.e. o€ (cd). (2.15)
n—0" 1 o—n Ya

Moreover, if ¥ € CH(Q), we have (in distributional sense)

W qrao—— [ &% _ [*
/Qwap dpdf = /Qwap /C w™ (0)Y(a, d)dd. (2.16)

Proof. Adapt the proof of lemma 2.4 in [24, p. 32]. O

The function w™ defined on (¢, d) is the trace of w on the left-hand side of the
rectangle @; in the same way, we define the trace w™ on the right-hand side.

PROPOSITION 2.8. Let Q1 = (r,8) X (¢,d), Q2 = (s,t) X (¢,d) and let wy € C(Q1),
we € C(Q2). Let Q = (r,t) X (¢,d) and let w: Q@ — R, defined by

w = {wl in Q1. (2.17)
wo in Q.
Then w € C(Q) and
ow / dwy / Owo /d _ L
—| = — |+ — |+ | |w{ () —w3(6)d6. (2.18)
/Q’ap ol Op Q2! Op ¢ v (6w
Proof. We refer the interested reader to proposition 2.8 in [24, p. 36]. O
LEMMA 2.9. If w € C(R) and £(0) is a continuous function on [0,27], then w€ €
C(R).
Moreover,
A(wg) ow
—_— = 2.19
o T (2.19)

as measures on R, and if given a measure v we denote by |v| its total variation
measure, we have

owe)| _ 0w
o _ o] -
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Proof. wé is obviously in L'(R). Moreover, if v € C}(R), || < 1 and we set
h = &, then we have

o / oh /’
—dpdf = —dpdf <
/Rw§ op r Rwap P egloagir| )

whence wé € C(R).
Now we prove (2.19). Observe that for every ¢ € C}(R) we have

() (3 {5 [

Equation (2.19) follows from (2.22) and (2.23), recalling that for every measure v
we have

< +o0, (2.21)

v(A) = sup (v, ) for every open set A. (2.24)
PECL(A), lol<1

Finally, equation (2.20) comes from (2.19) and the fact that |v€| = |£]|v]| for every
measure v on R. O

LEMMA 2.10. Let w be in L*(R) and let £(0) a continuous function on [0,27] such
that w& € C(R) (therefore, w& owns the trace (wé)™ a.e. on (0,27)). Let > 0 and
let CF = {0 € [0,27] : |€(0)] < pu}. Then w € C(R\ ((0,1) x CH)), the trace wT* is
defined on (0,27) \ C* and we have the equality

U)+’# (w€)+

= a.e 0 € (0,2m) \ C*. (2.25)
Proof. The only non-trivial thing is equality (2.25), which comes from (2.15) applied
to wé and wtH. O

DEFINITION 2.11. Let w be in L*(R) and let £(6) be a continuous function on
[0,27] such that w& € C(R). Let Z = {0 € [0,2n] : £() = 0} and assume that Z
has zero Lebesgue measure. We define the trace w™ of w on the left-hand side of R
as

wh = (wor a.e. in (0, 27). (2.26)

§

REMARK 2.12. By lemma 2.10, for every p > 0, we have that wt = wh#* in
(0,2m) \ C*. Moreover, w™ € L1 ((0,2m) \ Z).

loc

3. Some further consideration on C
PROPOSITION 3.1. Let w € L*°((0,1) X R) be 27 periodic in 6 and assume that

ow

dp

€ LL((0,1) x R). (3.1)
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Let 0 < e <1 and set

c, p<e, 0eER,
w(p,0) = L w(p,0),  e<p<1, 0ER, (3.2)
w2—p,0), 1<p<2 R
and
We o = Teo *x W™, a2l (3.3)
Then w € C(R) if and only if
. dwg
liminf —| dpdf < +o0.
e—0t Jp
In this case, we also have
) ga aw 27 N
lim =\|dpdf = | |=—|dpdb + lwT () — c| d6. (3.4)
e—0t Jr| Op Rl Op 0

Proof. First of all, let us observe that, by (3.2) and (3.3), w¢ ,(p,0) is defined for
every p < 1, 8 € R and it is clear that

+ ~
W o S0 0% in LY(R).

By theorem 2.4 applied to {w¢ ,} C C(R), we obtain

o Owe , o g o w’e
lim inf — | dpdf = liminf — | dpdf > (3.5)
e—0+ Jp| Op e—0+ Jp| Op 2l Op
If
- QWE o
liminf —|dpdéd
e—0t Jp

is finite, then w®¢ € C(R), w € C(R), the trace wT of w for p = 0 is defined and,
by proposition 2.8,
-,

J,

On the other hand, if w € C(R), let us define

27
ow dpd9+/ lwt(8) — ¢| dé. (3.6)
dp 0

Owoe
dp

R = (—e™1+¢&%) X (=%, 2w + &%),
( ) *( )} 3.7

R® = (e, 14 &%) x (=%, 2w + %),
then, by the definition of w®¢, the #-periodicity of w and proposition 2.8, we have

that w®¢ € C(R?) and, by hypothesis (3.1), dw™¢/dp € L*(R?). Because of stan-
dard properties of mollification (cf. [24, p. 12]), we have

/aw
R

E,(x
ap

c 8ws,c

ap

dpdf < /

(3.8)

&
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Moreover, again by proposition 2.8 and the boundedness of w,

dwee we:C o
/ e </ e —|—25(||w||Loo(B)—|—c)—|—/ 01 dp . (3.9)
<l Op rl Op R'=\r| Op
Since |[R®\ R| — 0 as ¢ — 01, we get
g,c g,C
limsup/ w < hmlnf/ w (3.10)
es0+ < Op e—0+ Jp| Op
Moreover,
€,c 27 w
/ w :/ |w:(9)—c|de+/ 2l dpae, (3.11)
rl Op 0 R.10p

where w is the trace of w on the left-hand side of R. and it can be easily proved
(cf. [24, p. 33]) that

2m

27
lim lwt (0) — ¢|df = / lw™ (0) — | db. (3.12)
e—0% Jo 0
Therefore,
Ow=* ow o
li = dpdv *(0) — c| df. 3.13
R N ey R +/ [w™(0) — (3.13)
By (3.8), (3.10) and (3.13) it follows that
ow c B 2m
lim sup / dpdv < —w’dpd19+ / lwt (8) — | do. (3.14)
e—0t JR 3[’ rIOp 0
Then the left-hand side is finite. Finally, equality (3.4) follows from (3.5), (3.6)
and (3.14). |

Obtaining the same proposition for the product {w is straightforward if £ never
takes the value zero. Otherwise, the proof is more delicate and some lemmas are
needed.

LEMMA 3.2. Let w € L*((0,1) x R) be 2r periodic in 0 and assume that there
exists p > 1 such that
ow [?
dp
Let 0 < e < 1 and w®° be defined by (5.2).

Now let Q@ = (0,1) X (a,b)) C R, 0<0<1,Q° =(—0,1+0)%x (a—o0,b+0),
Q= (g,140)x(a—0,b+0).

p € L'((0,1) x (0, 37)). (3.15)

Then there exist some constants ci,...,cs, depending only on ¢, p and w, such
that
Owe* ,
/ ’ i R (3.16)
a g,C a g,C , , a
/ e / ’ L o0 4 c3ot /PP L oY/ aw (3.17)
Q7 PllLr(Q==\@)
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Proof. We have, by proposition 2.8 and by the boundedness of w,

e,c b
/’8111 / |wj(9)—c|d9—|—/ ’a—w’dpdﬁ
a Qe ap

/ a—w’dpdﬁ, (3.18)
Q.19p

< 27(lwl| Lo By 4 ©) +

where w is the trace of w on the left-hand side of Q.. Moreover, by Holder’s
1nequahty, we get

ow
| 155|200 <107 | 2 lir@olle™ 2l
Q-19pP
1/p )
<(l%] ) e, 6
L'(R)
Finally,
1/ 1-p /7 2oy Y
TP = P <|——(E"P -1 . 3.20
M = () #7 aa0) " < (e -0) T e
By (3.18), (3.19) and (3.20), we easily obtain (3.16). Similar computations lead
o (3.17). O

LEMMA 3.3. Let w € L*°((0,1) X R) be 27 periodic in 0 and assume (3.15) holds.
Let € > 0 and let w*° and w¢ , be, respectively, defined by (3.2) and (3.3). Let Q
be as in the previous lemma and assume o = p' —2=(2—p)/(p —1).

Then w € C(Q) if and only if

L Qwg ,
lim inf — | dpdd < 400.
e—=0t Jg dp
In this case, we also have
a Ca 8 b
lim ’w_€’ dpdd = / ’—w’dpdﬁ —|—/ lwt(0) — c|df. (3.21)
e—=0t Jg dp Q op a

+ ~
Proof. As in proposition 3.1, it is clear that wg , 20w in L'(Q). By theo-

rem 2.4 applied to {w¢ , } C C(Q), we obtain

owe ow 0,c
liminf/ ’ Yea dpdd = hmlnf/ ’—’d dd > / ’8111
e—0t Q 3p 3

e—0t
so that if

: (3.22)

dpdy

o QW o

liminf -

e—0t Jg 8p
is finite, then w € C(Q) . In this case, the trace w™ on the left-hand side of @Q is
defined and, by proposition 2.8,

/’aw(]c
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On the other hand, if w € C(Q), let us define Q7 and Q7° as in the previous
lemma. As in proposition 3.1, we get w € C(Q°") and dw°/dp € L1 (Q="*).
Now observe that, because of standard properties of mollification (cf. [24, p. 12]),

we have 9
wca 8 g,c
/ ’ 22l dpdd < Y (3.24)
Q 3p Qsa 3p
By lemma 3.2 applied for 0 = %, we obtain
g,C g,C
/ aw / ’8@0 + e 4 cge( @/ HL/p g_w . (3.25)
Q" PIlLr (@ =\Q)
Since v > 0, (v +2)/p' =1 >0 and |Q<" ¢\ Q| — 0 as ¢ — 0T, we have
£,c e
limsup/ ow < limsup/ ’ 2 (3.26)
c—ot Jg=| Op e—0+
Moreover,
Ow=° ’ 0
/ ’ Y / lw (0) — ¢| do +/ ’—“”dp(w, (3.27)
a Qe ap
and it can be easily proved (cf. [24, p. 33]) that
b b
lim+/ lw(0) — c[df = / lwt(0) — c|df. (3.28)
e—0 a a
Therefore,
Ow=° 0 ’
lim / ’ Y / ’—w +/ lwt () — ¢| db. (3.29)
e—0t Q op a
By (3.24), (3.26) and (3.29), it follows that
Swe o P b
limsup/ ’—5’ < / ’_w —|—/ lw™ (0) — | db. (3.30)
e—0t JQ dp Q dp a

Then the left-hand side is also finite. Finally, equality (3.21) follows from (3.22),
(3.23) and (3.30). O

PROPOSITION 3.4. Let £ a non-negative periodic Hélder function on [0, 27|, positive
almost everywhere. Let w, w*°, w¢ ,, p, ¢, a be as in lemma 3.3.

Then there exists o, depending on the Hélder exponent s of &, such that o > 1,
a=p —2 and w€ € C(R) if and only if

o QW o
liminf | & — | dpdd < 400.
R dp

e—0*

In this case, there exists the trace w™ on the left-hand side of R and

27
0wt (0) — c|df < +o0.
0
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Moreover,

a C

lim
e—07t

dpdd = /5’ ; ) |wt(0) — c|db. (3.31)

Finally, if the Hélder exponent s of £ is greater than ((2 —p)(p —1))/p, then «
can be chosen smaller than p’ — 1.

Proof. By theorem 2.4 applied to {wg £} C C(R), we obtain that

ow 0,c
liminf/ ¢ aw 5 : (3.32)
e—0t Jp
and consequently, if
w
liminf ==\ dpdv
mipt | ¢ ! 5|
is finite, by (3.32), we have that w%<¢ € C(R) and w¢ € C(R).
In this case, by proposition 2.8, lemma 2.9 and definition 2.11, we have
a 0,c a 27
/ W / L2 | e@)wt ) - ¢l ao. (3.33)
Rl Op R 10p 0

On the other hand, we have

a g,¢C 27
12t < / apai+ | T @) (0)—cldos [ €0)w(6)—u? (6)]db,
rl Op dp 0
(3.34)
where wZ () is the trace of w on the left-hand side of R..
Since the last integral converges to zero as ¢ — 0%, we obtain
Owe© o 2m
limsup/ Wl < / ¢ —w’ dpdd + | £@)|w*(0) — | do. (3.35)
c—o+ JrI Op r 10p 0
Let us now divide the interval [0, 27] into n = n(e) sub-intervals of length 27 /n,
namely (t;_1,t;), i = 1,...,n(¢). Let us take a number o such that « > 1 and
a > p’ — 2. Moreover, if
1(2
o+ —(—/ - 1) > 0,
S\P
it is certainly possible to assume both
2/p’'—1 ot
z 2070 and n(e)e =20, (3.36)
n(e)®
Let Q; = (0,1) x (t;—1,t;) and let a; = inf{&(0) : 6 € (t;—1,t;)}. We have
owe - ’ Owe
¢ dpd¥ < (a ( ) ) / —=1dpdd, (3.37)
/ R 3p ; (e) A Op
where A is the Holder constant of £&. Now, as in (3.24), we have
owe ,, ows*°
/ ’_ apan< [ |2 (3.38)
Q. 9p Q| 9p
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By lemma 3.2 applied with @ = @Q; and o = &%, we obtain

£,c £,c , a
/ 8:;) S/ 8:;) + o 4 ezt /P L L/ aw , (3.39)
Q*l o il op PLe (@™ \@i)
and setting v = (a4 2)/p’ — 1, we have
aws © ow®* »| OW
Z < 5 + n(e) En .
Q" Rl OP P L Q" \Qo)
ow®* o
< + n(e)cge® + 2¢387Y(e), (3.40)
rl Op
where
»| OW
ve) = |32 .
PIlLr U, (@7 \Q)

and the last inequality holds (if € is small enough) because no more than two sets
overlap at the same time.
In the same way,

aws € ow®* aw
Z a; <[ ¢ 3 + n(e) 3, .
—1 R P Pl L Q"5 \Qi)
a g,C
g’ | 1 n(e)eas® + 2587 (e). (3.41)

Then, by (3.37), (3.38), (3.39), (3.40), (3.41) and again by lemma 3.2, we get, for

suitable constants,
ow¢ ,

/ 5’%’%(&9 S / § + n(e)cae® + 2c57P(e) + isg/p T (342)

R P R n(e)

Now, since o = p’ — 2, we have v > 0. Moreover, by (3.36), we have

aws,c

U775\ Q)| ="~ 0 and lim y(e) = (3.43)
i=1 a0
By (3.42), (3.43), (3.36) and (3.35), we deduce
c o a £,C
limsup/ £ Hea dpdd¥ < limsup {’ v
e—0t JR ap e—07t

dpd19 + §(9)|w+(9) —c|df. (3.44)

Then the left-hand side is finite. Moreover, equation (3.31) follows by (3.32),
(3.33) and (3.44).
Let us finally observe that

p/_1+(2—pﬁp—1)(§_1>:
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If s > ((2—p)(p—1))/p, then we have p’ — 1+ (1/s)(2/p’ — 1) > 0 and the last
part of the thesis easily follows. O

PROPOSITION 3.5. Let B the unit ball in R?, w € WHP(B)NL>®(B), 1 < p < 2,
and let w(p,0) be defined by

w(p,0) =u(pcosh, psind), pe(0,1), H€R. (3.45)
Then w € L*°((0,1) X R) is 2w periodic in 0 and (3.15) is satisfied.

Proof. The only thing to verify is (3.15). It can be easily seen that

[Vw(p,0)]| < [[Vu(pcos, psin )| V1 + p2. (3.46)
Therefore,
3T 1 aw P
/ / p’— dpdf < 2/ IV2VulP dz < +o0, (3.47)
0o Jo dp B
so that (3.15) is satisfied. O

4. The computation of the relaxed functional

Let B be the unit ball in R?, (U, 7) = L*(B) endowed with the strong topology and
X = Lipy,, the set of locally Lipschitz functions on R?. Let

x Z,x
f(x,z)zg( >|<|3€|2>|+|Z|p, r=(x1,22), 2= (21,22) ER?, 1<p<2,

||
(4.1)
where g : S — R is a Holder function, non-negative and positive almost every-
where, with Holder exponent s > ((2 — p)(p — 1))/p, and £ is the unique 27-periodic
function such that g(cos6,sinf) = £(0) for every 6 € R. Let

Glu) = /Bf(ac,Du)dac7 u € WHP(B),
+00

(4.2)
we L(B)\ W'P(B),
and F = G|x and F(u) be defined by (1.1) for every u € L!(B).
We will follow this notation throughout this section.
LEMMA 4.1. If u ¢ WHP(B), then F(u) = +o0o0.
Proof. By contradiction, let u ¢ W' (B) and F(u) < 4oc.
Then there exists a sequence {up}n C Lip,., m > 0, such that
(i) up, — u in LY(B) as h — +oc,
(ii) / |Duy |P dz < F(up) < m for every h € N.
B
Since uj, — u in L'(B), we have
iy = — / Az — 7 = — / d (4.3)
ip == | updz —u=-—= [ udz. :
1Bl Jp 1Bl Jp
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By the Poincaré-Wirtinger inequality, there exists m; € R such that

lun — tnllwrrs) < ml/ |Dup|P dz < mim. (4.4)
B

By (4.3) and (4.4), we can suppose that {uy}, is bounded in W1P(B), so that,

by the reflexivity of this space, we can assume that

up —u  weakly in WHP(B). (4.5)

Then we have u € WP(B); a contradiction.

PROPOSITION 4.2. Letu € WHP(B) and let w be defined by (3.45). If F(u) < +00,

then Ew € C(R) and

B o 2m
F(u) >/B|Du|pdx—|—/R§’a—1:’+rcn€i§ ; E(0)|wt (0) — | db. (4.6)

Proof. Let {un} C Lipy,. be such that u, — u in L*(B). Then we have

/ |DulP dz < liminf/ |Dup,|P da. (4.7)
B B
Moreover, we have, for every h € N,
D 0
[ o( 2 ) Bl = [ 2 apas (4.8)
B || || r | Op
where
wp(p,0) =up(pcosb, psinf), pe(0,1), 6€R. (4.9)

Let ¢, = up(0) = wp(0,0), 6 € R.
Let us prove that {cp,}; has a converging subsequence.
If not, we will have limy, |c| = +00. Let A C R be such that

|A[ >0,
IM>0:w(p,0) <M ae. (p0)cA.

(4.10)

Since we can assume that u; — u weakly in WP (B), we have that w;, — w in

LY(R). Therefore, w;, — w almost uniformly in R and we can find A’ such that

A’ > 0, }

lwp(p,0)] < M +1 forevery h > h, (p,0) € A'.

If 75 is defined by mo(p, 0) = 0, we have |ma(A’)| > 0.
Let p1 > 0 be such that § = |[{0 € [0, 27] : £(0) < u}| < |m2(A)].
Now, if limy, |c,| = +00, we get

1
0
/g—awh dpd9>,u/ / Zh a9 dp
r | Op 0 J{oera(ae0)z uyl Op
/ / | 2o dpdd
= :U’ —
{0ema(A):£(0)>pu} YO dp

(4.11)

> p(len] — M — 1)(|Jma(A)| =) — +00 ash — oo,  (4.12)
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In fact, for every 6 € my(A’), there exists p(6) such that (p(6),60) € A’ and

1 p(0)
| 152>
0 0

Therefore, if liminfy F'(up) < +oo, then we can assume (up to a subsequence)
that ¢, — & If we set y,(p,0) = wy, + & — cp,, we have that £y, — &w®€ in LY(R).
Then, by theorem 2.4, proposition 2.8, lemma 2.9 and definition 2.11, we get

a’wh
dp

a’wh

—_— dp = |ep| — M — 1. (4.13)
dp

. owy, . wy,
hmhlnf/Rg a_p dpdf = hmhlnf‘/I%{’ p dpdf
— lim inf /R g’%—zzl dpdo
- [ |2
Rl Op
B 2m
= [ f5el+ [ @@ —da
R 10p 0
>/ 3 ow + min 2W§(9)|w+(9)—c|d9 (4.14)
- R 3p ceER J ’ ’
The thesis easily follows by (4.7) and (4.14). |
REMARK 4.3. If we set
2m
d(e)= [  €&O)w*(9)—cldd,
0

then if ¢ # 400, it can easily be seen that v is continuous and coercive so that
there exists ¢ such that ¢(¢) = min.cr¥(c).

In order to prove the opposite inequality we need some lemmas.

LEMMA 4.4. Let {a; ;};jen be a double-indexed sequence of non-negative real num-
bers satisfying the following properties

ai,j > Ait1,j VZ,] eN and lilmaivj =0 V] eN, (415)
limsupa; ; =¢; VieN and limc; = 0. (4.16)
j 1

Let us set

by =supa; ;. (4.17)
jEN
Then

limb; = 0. (4.18)

Proof. Let o > 0. By (4.16), there exists io such that 0 < ¢; < 30 Vi > iy and there
exists jo such that a;, ; < o Vj > jo. Therefore, by (4.15), we get

0< Qi,j <o Vi > i(), ] > jo. (419)
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Moreover, again by (4.15), there exists i; such that
0<ai;<o Yiziy, j=1,....j0— 1 (4.20)
By (4.19) and (4.20), we have
0<b <o Vi>=max(ig,i1) (4.21)
and, by the arbitrariness of o, the thesis. O

LEMMA 4.5. Let L(R™) be the family of Lebesque measurable sets of R™ and let
{Ya,j} accimey, jen be a family of functions defined on R™ satisfying the following
properties

ha,; is a measurable function VA € L(R™), j € N; (4.22)

there exists a function ¢(x) € L*(R™) such that

0<Ya(x) <o(z) ae xzecR" VAcLR"), jeN; (4.23)
ACA = yYa @) <ta (@) ae xeR; (4.24)
Al -0 = / thaj(z)de =0 VjeN; (4.25)
Yaj(x )—>0 a.e. x ¢ A. (4.26)
Then, if we set
¢(6) = sup / Ya (e (4.27)
|A|<6, jeNJ R

we have that ¢(8) decreases to zero as § — 0F.

Proof. Since ¢ is an increasing function of d, to prove the thesis is sufficient to show
that there exists a sequence {&;} such that &, — 0T and limy, ¢(d,) = 0.

Let {85, }x be a sequence of non-negative real numbers such that ZZOZO dp, < +oo.
By (4.27), for every h € N there exists A, € L(R™), j;, € N, such that

1
Al <o [ vana@de> o) - 1 (4.28)
jirg
Let us now consider B; = Uk%Ak and let us define
Qi j = / T/)Bi’j(.l‘) dz Vi,j €N (429)
jir g

By (4.23), (4.26) and Fatou’s lemma, we have
limsup a; ; S/ ¢(z) dz. (4.30)

J B;

Moreover, since {B;}; is decreasing and

|Bil <) 1Anl < Z%TO,

h>i h>i
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by (4.25) we obtain

lima; ; = lim/ Yp, j(x)de =0 VjeN. (4.31)
K3 K3 g

Let us now set by, = sup,enan,j- By (4.30) and (4.31), the hypotheses of lemma 4.4
are satisfied. We then get

limby, = 0, (4.32)
and by the definition of by, and by (4.24) we have
1
> ang, > [ @) de > 600~ 1 (4.33)
R
By (4.33), we get limy, ¢(d,) = 0 and the thesis. O

PROPOSITION 4.6. Let u € W'P(B) N L>°(B) and let w be defined by (3.45). If
¢w € C(R), then F(u) < +00 and

2m
F(u)<L|Du|pdx+L§(9)’g—j dpd9—|—rcneiﬂré ; EO)|wt(0) —c|dh.  (4.34)

Proof. Let w¢, w¢ , be defined by (3.2) and (3.3). We define
Ue,o (21, 22) = wE (S (21, 72)), (4.35)

where J is the usual change of variables in polar coordinates. By (3.2), u. o is just
defined in a neighbourhood of B, but we can easily modify it outside of B in order
to have u. o € Lipy,,..

We intend to prove that, if « < p’ —1 = p’/p and ¢ takes its values in a sequence
decreasing to zero, then

/ |Du5,a|pdx—>/ | DulP dz. (4.36)
B e—=0t Jp

For every A > 0, by (3.46), w € WP(R)). Therefore, we can assume, up to
subsequences, that

wi, ——w a.e. (p,0) € Ry,
7 e—07t
owg , 0
Zea 00 a.e. (p,0) € Ry,
Op  ==ot Op (4.37)
0w a Ow (p.0) € R
— — a.e. .
96 o+ 00 P »
Then, by a diagonal method, we can assume that
WE 4 ——w a.e. (p,0) € R,
=0 (4.38)
Du, o — Du a.e.r € B.
E—

Therefore, by Vitali’s convergence theorem, to get (4.36), we only need to check
that [ |Duc o|P dz are uniformly absolutely continuous. If we express the integrals
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in polar coordinates, we have to show that

owe N2 1 [owt . V3
©¢ — ©c dpdé 4.39
/(( 3p>+p2( 89>>pp (4.39)

are uniformly absolutely continuous. Equivalently, we will prove that

/’ ’ dpdo, /’aw;ai’
P 00

p' P dpd (4.40)

are also.
We begin with

/’8111;0‘ Cpdpdo
Let A C R and set n = e“.
Then
A 87-?7 ! N, Ec( 1 pnl /' 10/ b
14° = 8—p(p—p,9—9)w’(p,9)dpd9 pdpdl < I1(e) + I2(e),
RZ
where
2m e+n 87' p
/ / —L(p—p,0— 0w (p,0)dp'd0’| pdpdb (4.41)
e—n R?
and
ow p
Iz(e) = / / (p—1p,0—0 )—(p’,@’)dp’dﬁ’ pdpdf. (4.42)
AQR5+7, R? a
Since w*®° is bounded,
’(%) *w™e < ma my € R+a
P n
and i
Li(e) < mgn_p/ pdp < maen' P = mge'te(l=p), (4.43)
e—n
We note that
1 P
l+a(l-p) >0 & a<—=—.
p—1 p

Then we have

ow
IQ(E) </ P(/ Tn(p_p/ae_e/) a_
ANRcyy R2 P

ow b ’ ’ 1107
= —(p, 0" pn(p—p',0 —0")dpdo ) dp’dé’. (4.44)
R2 AmRs+n

dp
Let {¢,}, be the sequence of values taken by ¢ and let us define

w (/ prp(p—p',0—0") dpd9>. (4.45)
Aﬁjo+n

(.0

P
dp/d9/> dpdb

(0,0

o
wAJ(pﬁe) ’ap
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Taking into account that, by the linearity of p, the last integral is less than p’,

we have »

ow
p/X(O,Q)X(—Tr,BTr) € Ll(RQ) (446)

p
Hypotheses (4.24) and (4.25) are quite obviously satisfied.
If (p',0") € A€ is a Lebesgue point of x4, we get

Yaj <

0 p
Va0’ 0) = aw( 1,0) (/ pra(p—p',0 — 9’)dpd9>
P ANRc; 1y
ow P 1
<m|l—(p,0)| =———— xa(p,0)dpdd — 0. (4.47
’ ap (p ) |B((p/a 9/)3 77)| B((p’,0"),m) ( ) J ( )

Therefore, the hypotheses of lemma 4.5 are satisfied.
Let now take o > 0. By (4.43), there exists jo such that

I <10 Vj=jo. (4.48)
By lemma 4.5, we have that there exists dp such that
sup / Ya, (z)de < 3o (4.49)
|A|<d0,j ENJ IR

By (4.48) and (4.49), we obtain that

c
wsj,a

P
|A] < do, i=jo pdpdf < o. (4.50)

By the absolute continuity of

/ ’ 8w§j "
dp

we have that there exists d; such that

P
pdpdf, forj=1,...,50—1,

P
pdpdf < o. (4.51)

owe
|A] < 61, j<jo = /’ 0
A

By equations (4.50) and (4.51), we get the uniformly absolute continuity of

-

The uniform absolute continuity of

/ ows , |?

00
can be proved in a similar and easier way. In this case, we do not have to consider
the first term I; and we define

ow
00

ptPdpde

wA,j(p/ae/) ( ' 9)

(/ ot Py (p—p 0 —0) dpd9> : (4.52)
ANR.,
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If p' > e; —n, then B(p',n) C {(p,0) : p > 2p'} (if j is large enough). Therefore,
by (4.52), we have

P
w _
_’ (n)! PX(0,2) % (—7,37) € L'(R?). (4.53)

The rest of the proof is analogous.

Now Vitali’s convergence theorem gives (4.36). By (4.36), proposition 3.4 and
arbitrariness of ¢, we easily obtain (4.34), provided that « satisfies p'—2 < o < p’'—1
and o > 1. O

THEOREM 4.7. Let u € WYP(B). Then F(u) is finite if and only if éw € C(R).
Moreover,

271'

/ | DulP + |§|’ + rcnln 1€(0)||w™(0) — c| deb. (4.54)

Proof. Equation (4.54) follows by propositions 4.2 and 4.6 and lemma 2.2 of [15].
O

Finally, we want to show that if we consider

fe,2) = 'i—f?,'|<z,x>| e

and we define F(£2,u) as the relaxed functional of F(£2,u) fn z, Du) in the
same setting of the previous section, F(-,u*) is not a measure, where u (xl, To) =

|2l /|-
THEOREM 4.8. The functional F(-,u*), defined as above, is not sub-additive.

Proof. Since f(x,y) = 0, we have that F(-,u*) is an increasing set function. Let us
set

E2Y
u (2, 22) = T

By = {(x1,22) € B: x5 >0},
By = {(x1,22) € B:x3 <0}.

By observing that every sequence {uy, }, C Lip,,. converges to u* in L*(ByU Bs),
and is obviously also converging to u* in L'(B), we deduce that

F(B,u*) = F(B; U By,u"). (4.55)
We now prove that

F(B,u*) > F(By,u") + F(Ba,u"). (4.56)
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In fact, we have

F(By,u*) = F(Ba, u*)
= / |Du*|P + min/ | sin(0)|]w™ () — c|d6
B c€R Jo

= /B |Du*|P + £(3y/3 — ), (4.57)

the second equality being achieved in a similar way to the computation already
made for B.

Therefore, (4.56) follows by (1.6), (4.57) and the inequality m > 1(31/3 — 7).
From (4.56) and (4.55), we obtain

F(BluBg,u*) >F(Bl,u*)—|—F(BQ,u*) (458)
and the thesis. O
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