Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-11T15:55:44.151Z Has data issue: false hasContentIssue false

Boundary concentrating solutions for a Hénon-like equation

Published online by Cambridge University Press:  30 January 2015

Shuangjie Peng
Affiliation:
School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, People's Republic of China (sjpeng@mail.ccnu.edu.cn)
Huirong Pi
Affiliation:
Center for Partial Differential Equations, East China Normal University, Shanghai 200241, People's Republic of China (huirongpi2001@163.com)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is concerned with the existence and qualitative property of solutions for a Hénon-like equation

where Ω = {x ∈ ℝN : 1 < |x| < 3} with N ≥ 4, 2* = 2N/(N − 2), τ > 0 and ε > 0 is a small parameter. For any given k ∈ ℤ+, we construct positive solutions concentrating simultaneously at 2k different points for ε sufficiently small, among which k points are near the interior boundary {x ∈ ℝN : |x| = 1} and the other k points are near the outward boundary {x ∈ ℝN : |x| = 3}. Moreover, the 2k points tend to the boundary of Ω as ε goes to 0.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2015