Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-02-06T03:57:31.334Z Has data issue: false hasContentIssue false

Some generating functions and inequalities for the andrews–stanley partition functions

Published online by Cambridge University Press:  27 December 2021

Na Chen
Affiliation:
School of Mathematical Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu215009, P. R. China (chenna1360@163.com, ernestxwxia@163.com)
Shane Chern
Affiliation:
Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada (chenxiaohang92@gmail.com)
Yan Fan
Affiliation:
Department of Mathematics, Jiangsu University, Zhenjiang, Jiangsu212013, P. R. China (free1002@126.com)
Ernest X. W. Xia
Affiliation:
School of Mathematical Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu215009, P. R. China (chenna1360@163.com, ernestxwxia@163.com)
Rights & Permissions [Opens in a new window]

Abstract

Let $\mathcal {O}(\pi )$ denote the number of odd parts in an integer partition $\pi$. In 2005, Stanley introduced a new statistic $\operatorname {srank}(\pi )=\mathcal {O}(\pi )-\mathcal {O}(\pi ')$, where $\pi '$ is the conjugate of $\pi$. Let $p(r,\,m;n)$ denote the number of partitions of $n$ with srank congruent to $r$ modulo $m$. Generating function identities, congruences and inequalities for $p(0,\,4;n)$ and $p(2,\,4;n)$ were then established by a number of mathematicians, including Stanley, Andrews, Swisher, Berkovich and Garvan. Motivated by these works, we deduce some generating functions and inequalities for $p(r,\,m;n)$ with $m=16$ and $24$. These results are refinements of some inequalities due to Swisher.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

1. Introduction

Let $\pi$ be an integer partition and $\pi '$ its conjugate. Stanley [Reference Stanley9, Reference Stanley10] introduced a new integral partition statistic

\[ \operatorname{srank}(\pi)=\mathcal {O}(\pi) -\mathcal {O}(\pi'), \]

where $\mathcal {O}(\pi )$ denotes the number of odd parts in the partition $\pi$. This statistic is called the Stanley rank.

Let $n\geq 1$ and $m\geq 2$ be integers. For any integer $r$ with $0\leq r\leq m-1$, define

(1.1)\begin{equation} p(r,m;n):=\#\{\pi|\pi \text{ is a partition of }n \text{ with }\operatorname{srank}(\pi)\equiv r \text{ (mod }m)\}. \end{equation}

From the fact that

\[ n\equiv \mathcal {O}(\pi) \equiv \mathcal {O}(\pi') \pmod{2}, \]

it is easy to see that for $n\geq 1$,

\[ p(n)=p(0,4;n)+p(2,4;n), \]

where $p(n)$ is the number of partitions of $n$. Moreover, if $m$ is even and $r$ is odd, then

\[ p(r,m;n)=0. \]

Stanley [Reference Stanley9, Reference Stanley10] also established the following generating function for $p(0,\,4;n)- p(2,\,4;n)$:

\[ \sum_{n=0}^{\infty} (p(0,4;n)- p(2,4;n))q^{n} =\frac{E(q^{2})^{4}E(q^{8})^{2} }{E(q)E(q^{4})^{6}}. \]

Here and throughout this paper,

\[ E(q):=\prod_{n=1}^{\infty} (1- q^{n}). \]

Following the work of Stanley, Andrews [Reference Andrews2] then obtained the generating function for $p(0,\,4;n)$:

\[ \sum_{n=0}^{\infty} p(0,4;n)q^{n} = \frac{ E(q^{2})^{2} E(q^{16})^{5}}{ E(q) E(q^{4})^{5}E(q^{32})^{2}}. \]

Furthermore, he proved that for $n\geq 0$,

(1.2)\begin{equation} p(0,4;5n+4) \equiv p(2,4;5n+4) \equiv 0 \pmod{5}, \end{equation}

which is a refinement of the following famous congruence due to Ramanujan:

\[ p(5n+4)\equiv 0\pmod{5}. \]

At the end of his paper [Reference Andrews2], Andrews asked for a partition statistic that would give a combinatorial interpretation of (1.2) since his proof of (1.2) is analytic. Berkovich and Garvan [Reference Berkovich and Garvan4] later provided three such statistics and answered Andrews’ inquiry.

In 2010, Swisher [Reference Swisher13] proved that (1.2) is just one of infinitely many similar congruences satisfied by $p(0,\,4;n)$. In her Ph.D. thesis [Reference Swisher12], Swisher also established the following elegant results:

(1.3)\begin{equation} \lim_{n\rightarrow \infty} \displaystyle\frac{p(0,4;n)}{p(n)} =\frac{1}{2} \end{equation}

and for sufficiently large $n$,

(1.4)\begin{align} p(0,4;4n)& > p(2,4;4n), \end{align}
(1.5)\begin{align} p(0,4;4n+1)& > p(2,4;4n+1), \end{align}
(1.6)\begin{align} p(0,4;4n+2)& < p(2,4;4n+2), \end{align}
(1.7)\begin{align} p(0,4;4n+3)& < p(2,4;4n+3). \end{align}

Berkovich and Garvan [Reference Berkovich and Garvan3] also gave elementary proofs of (1.3)–(1.7) with the restriction of “$n$ sufficiently large” removed. Further, Berkovich and Garvan presented a handful of new results, including

(1.8)\begin{equation} \lim_{n\rightarrow \infty} \displaystyle\frac{p(0,4;2n)- p(2,4;2n) }{p(0,4;2n+1)- p(2,4;2n+1)}=1+\sqrt{2} \end{equation}

and for $n\ge 1$,

\[ |p(0,4;2n)- p(2,4;2n) |>| p(0,4;2n+1)- p(2,4;2n+1)|. \]

In this paper, we establish the generating functions for $p(r,\, m;n)$ with $m=16$ and $24$. It should be pointed out that if we define

(1.9)\begin{equation} p(k;n):=\#\{\pi|\pi \text{ is a partition of }n \text{ with }\operatorname{srank}(\pi)= k\}, \end{equation}

then in view of (1.1) and (1.9),

(1.10)\begin{equation} p(r,m;n)=\displaystyle\sum_{k \equiv r\ ({\rm mod}\ m )}p(k;n). \end{equation}

It follows from [Reference Berkovich and Garvan4, (2.8) and (2.9)] that

(1.11)\begin{equation} \displaystyle\sum_{n=0}^{\infty} \sum_{k={-}\infty }^{\infty} p(k;n)z^{k} q^{n}=\displaystyle\frac{E(q^{2})^{2}}{E(q)E(q^{4})^{2} (z^{2}q^{2};q^{4})_\infty(q^{2}/z^{2};q^{4} )_\infty}, \end{equation}

where the $q$-Pochhammer symbol is defined as usual by

\[ (a;q)_\infty:=\prod_{n=0}^{\infty} (1-aq^{n}). \]

From (1.11), we observe that

\[ p(k;n)=p({-}k;n) \]

and then from (1.10),

\[ p(r,m;n)=p(m-r,m;n). \]

Therefore, we merely list the generating functions for $p(r,\,m;n)$ with $m\in \{16,\,24\}$ and $0\leq r\leq \frac {m}{2}$.

Theorem 1.1 We have

(1.12)\begin{align} \displaystyle\sum_{n=0}^{\infty} p(0,16;n)q^{n}& = \displaystyle\frac{S_1(q)}{8} + \frac{S_2(q)}{2} +\frac{S_3(q)}{4}+\frac{S_4(q)}{8}, \end{align}
(1.13)\begin{align} \sum_{n=0}^{\infty} p(2,16;n)q^{n}& = \frac{S_1(q)}{8}-\frac{S_4(q)}{8}+\frac{S_5(q)}{2}, \end{align}
(1.14)\begin{align} \sum_{n=0}^{\infty} p(4,16;n)q^{n}& =\frac{S_1(q)}{8} -\frac{S_3(q)}{4}+\frac{S_4(q)}{8}, \end{align}
(1.15)\begin{align} \sum_{n=0}^{\infty} p(6,16;n)q^{n}& = \frac{S_1(q)}{8}-\frac{S_4(q)}{8}-\frac{S_5(q)}{2}, \end{align}
(1.16)\begin{align} \sum_{n=0}^{\infty} p(8,16;n)q^{n}& =\frac{S_1(q)}{8} - \frac{S_2(q)}{2} +\frac{S_3(q)}{4}+\frac{S_4(q)}{8}, \end{align}

where

\begin{align*} S_1(q)& =\displaystyle\frac{1}{E(q)}, \quad S_2(q)=\frac{E(q^{2})^{2}E(q^{8})E(q^{32})^{3}}{ E(q)E(q^{4})^{3}E(q^{16})^{2}E(q^{64})}, \quad S_3(q)=\frac{E(q^{2})^{2}E(q^{16})}{ E(q)E(q^{4})E(q^{8})^{2}}, \\ S_4(q)& =\displaystyle\frac{E(q^{2})^{4}E(q^{8})^{2}}{E(q)E(q^{4})^{6}}, \quad S_5(q)=q^{2}\frac{E(q^{2})^{2}E(q^{8})E(q^{64})}{ E(q)E(q^{4})^{3}E(q^{16})}. \end{align*}

Theorem 1.2 We have

(1.17)\begin{align} \displaystyle\sum_{n=0}^{\infty} p(0,24;n)q^{n}& =\displaystyle\frac{F_1(q)}{12 }+\frac{F_2(q) }{3} +\frac{F_3(q)}{6} +\frac{F_4(q)}{6}+\frac{F_5(q)}{6} +\frac{F_6(q)}{12}, \end{align}
(1.18)\begin{align} \sum_{n=0}^{\infty} p(2,24;n)q^{n}& =\frac{F_1(q)}{12 } +\frac{F_4(q) }{12} -\frac{F_5(q)}{12} -\frac{F_6(q)}{12}+\frac{F_7(q)}{2} , \end{align}
(1.19)\begin{align} \sum_{n=0}^{\infty} p(4,24;n)q^{n}& =\frac{F_1(q)}{12 } +\frac{F_2(q) }{6} -\frac{F_3(q)}{6} -\frac{F_4(q)}{12}-\frac{F_5(q)}{12} +\frac{F_6(q)}{12}, \end{align}
(1.20)\begin{align} \sum_{n=0}^{\infty} p(6,24;n)q^{n}& =\frac{F_1(q)}{12 } -\frac{F_4(q)}{6}+\frac{F_5(q)}{6} -\frac{F_6(q)}{12}, \end{align}
(1.21)\begin{align} \sum_{n=0}^{\infty} p(8,24;n)q^{n}& =\frac{F_1(q)}{12 } -\frac{F_2(q) }{6} +\frac{F_3(q)}{6} -\frac{F_4(q)}{12}-\frac{F_5(q)}{12} +\frac{F_6(q)}{12}, \end{align}
(1.22)\begin{align} \sum_{n=0}^{\infty} p(10,24;n)q^{n}& =\frac{F_1(q)}{12 } +\frac{F_4(q) }{12} -\frac{F_5(q)}{12} -\frac{F_6(q)}{12}-\frac{F_7(q)}{2} , \end{align}
(1.23)\begin{align} \sum_{n=0}^{\infty} p(12,24;n)q^{n}& =\frac{F_1(q)}{12 } -\frac{F_2(q) }{3} -\frac{F_3(q)}{6} +\frac{F_4(q)}{6}+\frac{F_5(q)}{6} +\frac{F_6(q)}{12}, \end{align}

where

\begin{align*} F_1(q)& =\displaystyle\frac{1}{E(q)}, \quad F_2(q)=\frac{ E(q^{2})^{2}E(q^{8})E(q^{12})E(q^{16}) }{ E(q)E(q^{4})^{4}E(q^{24})},\ F_3(q)= \frac{E(q^{2})^{2}E(q^{16})}{ E(q)E(q^{4})E(q^{8})^{2}}, \\ F_4(q)& =\displaystyle\frac{E(q^{2})E(q^{6}) E(q^{24})}{ E(q)E(q^{8})E(q^{12})^{2}},\quad F_5(q)= \frac{E(q^{2})^{3} E(q^{12})}{ E(q)E(q^{4})^{3}E(q^{6})},\ F_6(q)=\frac{E(q^{2})^{4}E(q^{8})^{2} }{ E(q)E(q^{4})^{6}}, \\ F_7(q)& =q^{2}\frac{E(q^{2})^{2} E(q^{8})^{2}E(q^{12})E(q^{48})^{2} }{E(q)E(q^{4})^{4}E(q^{16})E(q^{24})^{2}}. \end{align*}

Remark Noticing that

\[ p(r,m;n)=p(r,2m;n)+p(m+r,2m;n), \]

one may therefore obtain the generating functions for $p(r,\,m;n)$ with $m\in \{6,\,8,\,12\}$ with the assistance of Theorems 1.1 and 1.2.

In light of Theorems 1.1 and 1.2, we prove the following results which are refinements of (1.3)–(1.7).

Theorem 1.3 Let $m\in \{4,\,6\}$ and $i$ be an integer with $0\leq i \le m-1$. Then

(1.24)\begin{equation} \lim_{n\rightarrow\infty}\frac{p(2i,4m;n)}{p(n)} = \frac{1}{2m}\end{equation}

and

(1.25)\begin{equation} \lim_{n\rightarrow \infty}\frac{p(4i,4m;2n)-p(4i+2,4m ;2n)}{p(4i,4m;2n+1) -p(4i+2,4m;2n+1)} = 1+\sqrt{2}.\end{equation}

Also, for sufficiently large $n,$

(1.26)\begin{align} p(4i,4m;n)& >p(4i+2,4m;n),\quad \text{if }n\equiv 0, 1\pmod{4}, \end{align}
(1.27)\begin{align} p(4i,4m;n)& < p(4i+2,4m;n),\quad \text{if } n\equiv 2, 3\pmod{4}. \end{align}

2. Proof of Theorem 1.1

In this section, we always set $\zeta =e^{\pi \mathrm {i}/8}$. In order to prove Theorem 1.1, we first establish a lemma.

Lemma 2.1 We have

(2.1)\begin{equation} \prod_{k=0}^{\infty} \displaystyle\frac{1 }{(1-\sqrt{2}q^{4k+2}+q^{8k+4})} =\frac{E(q^{8})E(q^{32})^{3}}{E(q^{4})E(q^{16})^{2}E(q^{64}) }+\sqrt{2}q^{2}\frac{E(q^{8})E(q^{64})}{ E(q^{4})E(q^{16})}\end{equation}

and

(2.2)\begin{equation} \prod_{k=0}^{\infty} \displaystyle\frac{1 }{(1+\sqrt{2}q^{4k+2}+q^{8k+4})} =\frac{E(q^{8})E(q^{32})^{3}}{E(q^{4})E(q^{16})^{2}E(q^{64}) }-\sqrt{2}q^{2}\frac{E(q^{8})E(q^{64}) }{ E(q^{4})E(q^{16})}.\end{equation}

Proof. Noticing that $\zeta ^{2}=\frac {\sqrt {2}}{2}(1+\mathrm {i})$, we have

(2.3)\begin{align} \prod_{k=0}^{\infty} \displaystyle\frac{1 }{(1-\sqrt{2}q^{4k+2}+q^{8k+4})} & =\prod_{k=0}^{\infty} \frac{ (1+\sqrt{2}q^{4k+2}+q^{8k+4}) }{(1+q^{16k+8})} \nonumber\\ & =\frac{E(q^{8})E(q^{32})}{E(q^{4}) E(q^{16})^{2}}f(\zeta^{2}q^{2},q^{2}/\zeta^{2}), \end{align}

where Ramanujan's general theta function is given by

\[ f(a,b):=({-}a;ab)_\infty({-}b;ab)_\infty (ab;ab)_\infty. \]

It follows from Entry 30 (ii) and (iii) on page 46 of Berndt's book [Reference Berndt5] that

(2.4)\begin{equation} f(a,b)=f(a^{3}b,ab^{3})+af(b/a, a^{5}b^{3}). \end{equation}

Taking $a=\zeta ^{2}q^{2}$ and $b=q^{2}/\zeta ^{2}$ in (2.4) yields

(2.5)\begin{equation} f(\zeta^{2}q^{2},q^{2}/\zeta^{2}) =f(\zeta^{4}q^{8},q^{8}/\zeta^{4}) + \zeta^{2}q^{2} f(\zeta^{{-}4}, \zeta^{4}q^{16}). \end{equation}

By the fact that $\zeta ^{4}=\mathrm {i}$, we have

(2.6)\begin{equation} f(\zeta^{4}q^{8},q^{8}/\zeta^{4})=(-\mathrm{i}\,q^{8};q^{16})_\infty (\mathrm{i}\,q^{8};q^{16})_\infty E(q^{16})=\displaystyle\frac{E(q^{32})^{2} }{E(q^{64})} \end{equation}

and

(2.7)\begin{equation} f(\zeta^{{-}4}, \zeta^{4} q^{16}) =( \mathrm{i};q^{16})_\infty (-\mathrm{i}\,q^{16};q^{16})_\infty E(q^{16}) =(1-\mathrm{i}) \displaystyle\frac{E(q^{16})E(q^{64})}{E(q^{32})}. \end{equation}

Making use of (2.5)–(2.7) and the fact that $\zeta ^{2}=\frac {\sqrt {2}}{2}(1+\mathrm {i})$, we arrive at

(2.8)\begin{equation} f(\zeta^{2}q^{2},q^{2}/\zeta^{2})= \displaystyle\frac{E(q^{32})^{2}}{E(q^{64})} +\sqrt{2}q^{2}\frac{E(q^{16})E(q^{64})}{E(q^{32})}. \end{equation}

Now, (2.1) follows from (2.3) and (2.8). Also, replacing $q$ by $\mathrm {i}\,q$ in (2.1) leads to (2.2).

Now, we are ready to prove Theorem 1.1.

Proof Proof of Theorem 1.1

Employing (1.10), (1.11) and the fact that

(2.9)\begin{equation} \displaystyle\sum_{j=0}^{15} \zeta^{kj}= \begin{cases} 16, & \text{if }k\equiv 0 \pmod{16},\\ 0, & \text{if }k\not\equiv 0 \pmod{16}, \end{cases} \end{equation}

we have, for $0\le a\le 15$,

(2.10)\begin{align} \displaystyle\sum_{n=0}^{\infty} p(a,16;n)q^{n}& =\displaystyle\frac{1}{16} \sum_{j=0}^{15}\zeta^{{-}aj} \sum_{n=0}^{\infty} \sum_{r={-}\infty}^{\infty} p(r;n)\zeta^{jr} q^{n} \nonumber\\ & =\frac{1}{16}\frac{E(q^{2})^{2}}{E(q)E(q^{4})^{2} }\sum_{j=0}^{15}\zeta^{{-}aj} G(\zeta^{j},q), \end{align}

where

(2.11)\begin{equation} G(z,q)=\displaystyle\frac{1}{ (z^{2}q^{2};q^{4})_\infty(q^{2}/z^{2};q^{4})_\infty}. \end{equation}

It is easy to check that for $k,\, j\geq 0$,

(2.12)\begin{equation} (1-\zeta^{2j}q^{4k+2} )(1-q^{4k+2}/\zeta^{2j}) =1-(\zeta^{2j}+\zeta^{{-}2j})q^{4k+2} +q^{8k+4}. \end{equation}

In light of (2.11) and (2.12),

(2.13)\begin{equation} G(\zeta^{j},q)=\begin{cases} \displaystyle\displaystyle\frac{E(q^{4})^{2}}{E(q^{2})^{2}}, & \text{if }j\in\{0,8\},\\ \displaystyle\prod_{k=0}^{\infty} \frac{1}{(1-\sqrt{2}q^{4k+2}+q^{8k+4})}, & \text{if }j\in\{1,7,9,15\},\\ \displaystyle\frac{E(q^{4})E(q^{16})}{E(q^{8})^{2}}, & \text{if }j\in\{2,6,10,14\},\\ \displaystyle\prod_{k=0}^{\infty} \frac{1}{(1+\sqrt{2}q^{4k+2}+q^{8k+4})}, & \text{if }j\in\{3,5,11,13\},\\ \displaystyle\frac{E(q^{2})^{2}E(q^{8})^{2}}{E(q^{4})^{4}}, & \text{if }j\in\{4,12\}. \end{cases} \end{equation}

Using (2.1), (2.2), (2.10) and (2.13), we find that

(2.14)\begin{align} & \displaystyle\sum_{n=0}^{\infty} p(a,16;n)q^{n} = \displaystyle\frac{1}{16}\frac{E(q^{2})^{2}}{E(q)E(q^{4})^{2} } \Bigg\{(1+({-}1)^{a})\frac{E(q^{4})^{2} }{E(q^{2})^{2}}\nonumber\\ & \quad+(\zeta^{{-}a}+\zeta^{{-}7a}+\zeta^{{-}9a}+\zeta^{{-}15a})\left(\displaystyle\frac{E(q^{8})E(q^{32})^{3}}{E(q^{4})E(q^{16})^{2}E(q^{64}) }+\sqrt{2}q^{2}\frac{E(q^{8})E(q^{64})}{ E(q^{4})E(q^{16})}\right) \nonumber\\ & \quad +(\zeta^{{-}2a}+\zeta^{{-}6a}+\zeta^{{-}10a}+\zeta^{{-}14a})\frac{E(q^{4})E(q^{16})}{E(q^{8})^{2} }\nonumber\\ & \quad+(\zeta^{{-}3a}+\zeta^{{-}5a}+\zeta^{{-}11a}+\zeta^{{-}13a})\left(\frac{E(q^{8})E(q^{32})^{3}}{E(q^{4})E(q^{16})^{2}E(q^{64}) }-\sqrt{2}q^{2}\frac{E(q^{8})E(q^{64})}{ E(q^{4})E(q^{16})}\right) \nonumber\\ & \quad+(\mathrm{i}^{a}+(-\mathrm{i})^{a})\frac{E(q^{2})^{2}E(q^{8})^{2}}{E(q^{4})^{4} } \Bigg\}. \end{align}

Theorem 1.1 follows from (2.14) and the fact that $\zeta =\frac {\sqrt {2+\sqrt {2}}}{2}+ \frac {\sqrt {2-\sqrt {2}}}{2} \,\mathrm {i}$.

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Throughout our proof, we always write $\omega =e^{\pi \mathrm {i} /12}$. We first prove the following lemma.

Lemma 3.1 We have

(3.1)\begin{equation} \prod_{k=0}^{\infty} \displaystyle\frac{1}{(1-\sqrt{3}q^{4k+2}+q^{8k+4})} =\frac{E(q^{8})E(q^{12})E(q^{16})}{E(q^{4})^{2}E(q^{24}) }+\sqrt{3}q^{2}\frac{E(q^{8})^{2}E(q^{12})E(q^{48})^{2} }{E(q^{4})^{2}E(q^{16})E(q^{24})^{2}} \end{equation}

and

(3.2)\begin{equation} \prod_{k=0}^{\infty} \displaystyle\frac{1}{(1+\sqrt{3}q^{4k+2}+q^{8k+4})} =\frac{E(q^{8})E(q^{12})E(q^{16})}{E(q^{4})^{2}E(q^{24}) }-\sqrt{3}q^{2}\frac{E(q^{8})^{2}E(q^{12})E(q^{48})^{2} }{E(q^{4})^{2}E(q^{16})E(q^{24})^{2}}. \end{equation}

Proof. Notice that $\omega ^{2}=\frac {\sqrt {3}}{2}+\frac {1}{2}\,\mathrm {i}$. Therefore,

(3.3)\begin{equation} \prod_{k=0}^{\infty} \displaystyle\frac{1}{(1-\sqrt{3}q^{4k+2}+q^{8k+4})} =\frac{E(q^{4})}{f(-\omega^{2}q^{2},-q^{2}/\omega^{2})} \end{equation}

where $f(a,\,b)$ is as defined in (2.4). It follows from the quintuple product identity [Reference Berndt5, (38.2), p. 80] that

(3.4)\begin{equation} \displaystyle\frac{E(q^{4})}{f(Bq^{2},q^{2}/B)} =\frac{1}{ f({-}B^{2},-q^{4}/B^{2})} (f(B^{3}q^{2},q^{10}/B^{3}) -B^{2}f(q^{2}/B^{3},B^{3}q^{10})). \end{equation}

Setting $B=-\omega ^{2}$ in (3.4), we deduce that

(3.5)\begin{equation} \displaystyle\frac{E(q^{4})}{f(-\omega^{2}q^{2},-q^{2}/\omega^{2})} =\frac{1}{ f(-\omega^{4},-q^{4}/\omega^{4})} (f(-\mathrm{i}\,q^{2},-q^{10}/\mathrm{i})-\omega^{4}f({-}q^{2}/\mathrm{i},-\mathrm{i}\,q^{10})). \end{equation}

By the fact that $\omega ^{4}=\frac {1}{2}+\frac {\sqrt {3}}{2}\,\mathrm {i}$,

\begin{align*} f(-\omega^{4},-q^{4}/\omega^{4})& =E(q^{4})(\omega^{4};q^{4})_\infty (q^{4}/\omega^{4};q^{4})_\infty\nonumber\\ & = (1-\omega^{4})E(q^{4}) \prod_{k=1}^{\infty}\left(1-\left(\omega^{4}+\displaystyle\frac{1}{\omega^{4}}\right) q^{4k}+q^{8k}\right)\nonumber\\ & = (1-\omega^{4})E(q^{4})\prod_{k=1}^{\infty}\frac{ 1+q^{12k} }{1+q^{4k}}\nonumber\\ & =(1-\omega^{4})\frac{E(q^{4})^{2} E(q^{24})}{E(q^{8})E(q^{12})}. \end{align*}

Therefore,

(3.6)\begin{equation} \displaystyle\frac{1}{f(-\omega^{4},-q^{4}/\omega^{4})} =\bigg(\frac{1}{2}+\frac{\sqrt{3}}{2}\,\mathrm{i}\bigg) \frac{E(q^{8})E(q^{12})}{E(q^{4})^{2} E(q^{24})}. \end{equation}

Taking $a=-\mathrm {i}\,q^{2}$ and $b=-q^{10}/\mathrm {i}$ in (2.4) yields

(3.7)\begin{align} f(-\mathrm{i}\,q^{2},-q^{10}/\mathrm{i})& =f({-}q^{16},-q^{32}) -\mathrm{i}\,q^{2} f({-}q^{8},-q^{40})\nonumber\\ & =E(q^{16})-\mathrm{i}\,q^{2}\displaystyle\frac{E(q^{8})E(q^{48})^{2} }{E(q^{16})E(q^{24})}. \end{align}

On the other hand, if we put $a=- q^{2}/\mathrm {i}$ and $b=-\mathrm {i}\,q^{10}$ in (2.4), then

(3.8)\begin{align} f({-}q^{2}/\mathrm{i},-\mathrm{i}\,q^{10})& =f({-}q^{16},-q^{32}) -(q^{2}/\mathrm{i}) f({-}q^{8},-q^{40})\nonumber\\ & =E(q^{16})+\mathrm{i}\,q^{2}\displaystyle\frac{E(q^{8})E(q^{48})^{2} }{E(q^{16})E(q^{24})}. \end{align}

Finally, (3.1) follows from (3.3) and (3.5)–(3.8). Also, replacing $q$ by $\mathrm {i}\,q$ in (3.1) yields (3.2).

Now, we prove Theorem 1.2.

Proof of Theorem 1.2 Utilizing (1.10), (1.11) and the fact that

\[ \displaystyle\sum_{j=0}^{23}\omega^{kj}= \begin{cases} 24, & \text{if }k\equiv 0 \pmod{24},\\ 0, & \text{if }k\not\equiv 0 \pmod{24}, \end{cases} \]

we arrive at

(3.9)\begin{align} \displaystyle\sum_{n=0}^{\infty} p(a,24;n)q^{n}& =\displaystyle\frac{1}{24}\sum_{j=0}^{23}\omega^{{-}aj}\sum_{n=0}^{\infty}\sum_{r={-}\infty}^{\infty} p(r;n)\omega^{jr} q^{n} \nonumber\\ & =\frac{1}{24}\frac{E(q^{2})^{2}}{E(q)E(q^{4})^{2} }\sum_{j=0}^{23}\omega^{{-}aj} G(\omega^{j},q), \end{align}

where $G(z,\,q)$ is as defined in (2.11). In light of (2.11) and (2.12),

(3.10)\begin{equation} G(\omega^{j},q)= \begin{cases} \displaystyle \displaystyle\frac{E(q^{4})^{2}}{E(q^{2})^{2}} , & \text{if }j\in\{0,12\},\\ \displaystyle \prod_{k=0}^{\infty} \displaystyle\frac{1}{(1-\sqrt{3}q^{4k+2}+q^{8k+4})} , & \text{if }j\in\{1,11,13,23\},\\ \displaystyle \frac{E(q^{4})^{2}E(q^{6})E(q^{24})}{E(q^{2})E(q^{8})E(q^{12})^{2}} , & \text{if }j\in\{2,10,14,22\},\\ \displaystyle \frac{E(q^{4})E(q^{16})}{E(q^{8})^{2}} , & \text{if }j\in\{3,9,15,21\},\\ \displaystyle \frac{E(q^{2})E(q^{12})}{E(q^{4})E(q^{6})} , & \text{if }j\in\{4,8,16,20\},\\ \displaystyle \prod_{k=0}^{\infty} \frac{1}{(1+\sqrt{3}q^{4k+2}+q^{8k+4})} , & \text{if }j\in\{5,7,17,19\},\\ \displaystyle \frac{E(q^{2})^{2}E(q^{8})^{2}}{E(q^{4})^{4}}, & \text{if }j\in\{6,18\}. \end{cases} \end{equation}

By (3.1), (3.2), (3.9) and (3.10),

(3.11)\begin{align} \displaystyle\sum_{n=0}^{\infty} p(a,24;n)q^{n} & = \displaystyle\frac{1}{24}\frac{E(q^{2})^{2}}{E(q)E(q^{4})^{2} } \Bigg\{(1+({-}1)^{a})\frac{E(q^{4})^{2} }{E(q^{2})^{2}}\nonumber\\ & \quad+(\omega^{{-}a}+\omega^{{-}11a}+\omega^{{-}13a}+\omega^{{-}23a})\nonumber\\ & \quad\times\left(\displaystyle\frac{E(q^{8})E(q^{12})E(q^{16})}{E(q^{4})^{2}E(q^{24}) }+\sqrt{3}q^{2}\frac{E(q^{8})^{2}E(q^{12})E(q^{48})^{2} }{E(q^{4})^{2}E(q^{16})E(q^{24})^{2}}\right) \nonumber\\ & \quad +(\omega^{{-}2a}+\omega^{{-}10a}+\omega^{{-}14a}+\omega^{{-}22a})\frac{E(q^{4})^{2}E(q^{6})E(q^{24}) }{E(q^{2})E(q^{8})E(q^{12})^{2} }\nonumber\\ & \quad +(\omega^{{-}3a}+\omega^{{-}9a}+\omega^{{-}15a}+\omega^{{-}21a})\frac{E(q^{4})E(q^{16}) }{E(q^{8})^{2} }\nonumber\\ & \quad +(\omega^{{-}4a}+\omega^{{-}8a}+\omega^{{-}16a}+\omega^{{-}20a})\frac{E(q^{2})E(q^{12}) }{E(q^{4})E(q^{6}) }\nonumber\\ & \quad+(\omega^{{-}5a}+\omega^{{-}7a}+\omega^{{-}17a}+\omega^{{-}19a})\nonumber\\ & \quad\times\left(\frac{E(q^{8})E(q^{12})E(q^{16})}{E(q^{4})^{2}E(q^{24}) }-\sqrt{3}q^{2}\frac{E(q^{8})^{2}E(q^{12})E(q^{48})^{2} }{E(q^{4})^{2}E(q^{16})E(q^{24})^{2}}\right) \nonumber\\ & \quad+(\mathrm{i}^{a}+(-\mathrm{i})^{a})\frac{E(q^{2})^{2}E(q^{8})^{2}}{E(q^{4})^{4} } \Bigg\}. \end{align}

Theorem 1.2 follows from (3.11) and the fact that $\omega = \frac {\sqrt {6}+\sqrt {2}}{4}+\frac {\sqrt {6} -\sqrt {2}}{4}\,\mathrm {i}$.

4. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 using Theorems 1.1 and 1.2 along with a result due to Sussman [Reference Sussman11].

In [Reference Sussman11], applying the standard circle method due to Rademacher [Reference Rademacher8], Sussman obtained an exact formula for $g(n)$, the coefficients in

(4.1)\begin{equation} \displaystyle\sum_{n\ge 0} g(n) q^{n}:=\prod_{j=1}^{J} E(q^{m_j})^{\delta_j}, \end{equation}

where $\mathbf {m}=(m_1,\,\ldots,\,m_J)$ is a sequence of distinct positive integers and $\mathbf {d}=(\delta _1,\,\ldots,\,\delta _J)$ is a sequence of non-zero integers such that $\sum \nolimits _{j=1}^{J} \delta _{j}<0$.

To state Sussman's result, we first fix some notation. Let $k$ be a positive integer. We define

\begin{align*} \Sigma & :={-}\displaystyle\frac{1}{2}\displaystyle\sum_{j=1}^{J} \delta_{j}, \quad \Omega:=\sum_{j=1}^{J} \delta_j m_j,\\ \Delta(k)& :={-}\displaystyle\sum_{j=1}^{J} \displaystyle\frac{\delta_j \gcd^{2}(m_j,k)}{m_j},\quad \Pi(k):= \prod_{j=1}^{J} \left(\frac{m_j}{\gcd(m_j,k)}\right)^{-\frac{\delta_j}{2}}. \end{align*}

Further, for any integer $h$ such that $\gcd (h,\,k)=1$, we define

\[ \omega_{h,k}:=\exp\left(-\pi \mathrm{i}\displaystyle\sum_{j=1}^{J} \delta_j\cdot s\left(\displaystyle\frac{m_j h}{\gcd(m_j,k)},\frac{k}{\gcd(m_j, k)}\right)\right), \]

where $s(d,\,c)$ is the Dedekind sum defined by

\[ s(d,c):=\displaystyle\sum_{n \bmod{c}} \left(\left(\displaystyle\frac{dn}{c}\right)\right)\left(\left(\frac{n}{c}\right)\right) \]

with

\[ ((x)):= \begin{cases} x-\lfloor x\rfloor -1/2 & \text{if }x\not\in \mathbb{Z},\\ 0 & \text{if }x\in \mathbb{Z}. \end{cases} \]

Let $L=\operatorname {lcm}(m_1,\,\ldots,\,m_J)$. We divide the set $\{1,\,2,\,\ldots,\,L\}$ into two disjoint subsets:

\begin{align*} \mathcal {L}_{{>}0}& :=\{1\le \ell \le L :\Delta(\ell)>0\},\\ \mathcal {L}_{\le 0}& :=\{1\le \ell \le L :\Delta(\ell)\le 0\}. \end{align*}

Theorem 4.1 Sussman

If $\Sigma > 0$ and the inequality

(4.2)\begin{equation} \min_{1\le j\le J}\left(\displaystyle\frac{\gcd^{2}(m_j,\ell)}{m_j}\right)\ge \frac{\Delta(\ell)}{24} \end{equation}

holds for all $1\le \ell \le L,$ then for positive integers $n>-\Omega /24,$

(4.3)\begin{align} g(n)& =2\pi \displaystyle\sum_{\ell\in \mathcal {L}_{{>}0}} \Pi(\ell) \left(\displaystyle\frac{24n+\Omega}{\Delta(\ell)}\right)^{-\frac{\Sigma+1}{2}}\nonumber\\ & \quad\ \times \sum_{\substack{k\ge 1\\k \equiv \ell \bmod{L}}} \frac{1}{k} I_{\Sigma+1}\left(\frac{\pi }{6k}\sqrt{\Delta(\ell)(24n+\Omega)}\right) \sum_{\substack{0\le h< k\\ \gcd(h,k)=1}} e^{-\frac{2\pi \mathrm{i} nh}{k}}\omega_{h,k}, \end{align}

where $I_s(x)$ is the modified Bessel function of the first kind.

Remark We also frequently make use of the asymptotic expansion of $I_s(x)$ (see [Reference Abramowitz and Stegun1, p. 377, (9.7.1)]): for fixed $s$, when $|\arg x|<\frac {\pi }{2}$,

(4.4)\begin{equation} I_{s}(x)\sim \displaystyle\frac{e^{x}}{\sqrt{2\pi x}}\left(1-\frac{4s^{2}-1}{8x}+\frac{(4s^{2}-1)(4s^{2}-9)}{2!(8x)^{2}}-\cdots\right). \end{equation}

Remark In [Reference Chern6], Chern considered the case where $\Sigma \le 0$ in (4.1) and obtained a similar asymptotic formula for $g(n)$.

Let us define, for $i=1,\,\ldots,\,5$,

\[ \displaystyle\sum_{n= 0}^{\infty}s_i(n)q^{n}=S_i(q), \]

where $S_i(q)$'s are as defined in Theorem 1.1. First, we know from a famous result due to Hardy and Ramanujan [Reference Hardy and Ramanujan7] that, as $n\to \infty$,

(4.5)\begin{equation} s_1(n)=p(n)\sim \displaystyle\frac{1}{4\cdot 3^{1/2}\cdot n}\exp\left(2\pi\sqrt{\frac{n}{6}}\right). \end{equation}

Next, we show that, as $n\to \infty$,

(4.6)\begin{align} s_2(n)& \sim \displaystyle\frac{43^{1/2}}{2^{5}\cdot 3^{1/2}\cdot n}\exp\left(\frac{\pi}{4}\sqrt{\frac{43n}{6}}\right), \end{align}
(4.7)\begin{align} s_3(n)& \sim \displaystyle\frac{7^{1/2}}{2^{3}\cdot 3^{1/2}\cdot n}\exp\left(\frac{\pi}{2}\sqrt{\frac{7n}{6}}\right), \end{align}
(4.8)\begin{align} s_4(n)& \sim \frac{13^{1/2}}{2^{3}\cdot 3^{1/2}\cdot n}({-}1)^{n}\cos\left(\frac{n\pi}{2}+\frac{\pi}{8}\right)\exp\left(\frac{\pi}{2}\sqrt{\frac{13n}{6}}\right), \end{align}
(4.9)\begin{align} s_5(n)& \sim \frac{43^{1/2}}{2^{11/2}\cdot 3^{1/2}\cdot n}\exp\left(\frac{\pi}{4}\sqrt{\frac{43n}{6}}\right). \end{align}

We only prove (4.6) and (4.8) as instances. The rest can be shown analogously by Sussman's result (4.3).

First, we show (4.6). In (4.1), let us put

\[ \mathbf{m}=(1, 2, 4, 8, 16, 32, 64),\quad \mathbf{d}=({-}1, 2, -3, 1, -2, 3, -1). \]

Thus, we have $\Sigma =\frac {1}{2}$ and $\Omega =-1$. Also, $L=64$. We compute that

\begin{align*} \mathcal {L}_{{>}0}& =\{1,3,4,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,\\ \quad & 25,27,28,29,31,33,35,36,37,39,40,41,43,44,45,\\ \quad & 47,48,49,51,52,53,55,56,57,59,60,61,63,64\}. \end{align*}

Next, we verify that assumption (4.2) is satisfied. Then, it can be computed that when $k=1$, the $I$-Bessel term has the largest order, which is

\[ I_{3/2}\left(\frac{\sqrt{43}\pi}{48}\sqrt{24n-1}\right). \]

Further, when $k=1$, we have

\[ \sum_{\substack{0\le h< k\\ \gcd(h,k)=1}} e^{-\frac{2\pi \mathrm{i} nh}{k}}\omega_{h,k}=1. \]

It follows from (4.3), with (4.4) utilized, that

\[ s_2(n)\sim \frac{43^{1/2}}{2^{5}\cdot 3^{1/2}\cdot n}\exp\left(\frac{\pi}{4}\sqrt{\frac{43n}{6}}\right). \]

For (4.8), we put

\[ \mathbf{m}=(1, 2, 4, 8),\quad \mathbf{d}=({-}1, 4, -6, 2) \]

in (4.1). Thus, $\Sigma =\frac {1}{2}$ and $\Omega =-1$. Further, $L=8$. We compute that

\[ \mathcal {L}_{{>}0}=\{1,3,4,5,7,8\}. \]

Next, we verify that assumption (4.2) is satisfied. Then, it can be computed that when $k=4$, the $I$-Bessel term has the largest order, which is

\[ I_{3/2}\left(\frac{\sqrt{13}\pi}{24}\sqrt{24n-1}\right). \]

Further, when $k=4$, we have

\[ \sum_{\substack{0\le h< k\\ \gcd(h,k)=1}} e^{-\frac{2\pi \mathrm{i} nh}{k}}\omega_{h,k}=2({-}1)^{n} \cos\left(\frac{n\pi}{2}+\frac{\pi}{8}\right). \]

It follows from (4.3), with (4.4) utilized, that

\[ s_4(n)\sim \frac{13^{1/2}}{2^{3}\cdot 3^{1/2}\cdot n}({-}1)^{n}\cos\left(\frac{n\pi}{2}+\frac{\pi}{8}\right)\exp\left(\frac{\pi}{2}\sqrt{\frac{13n}{6}}\right). \]

Notice that, for the exponential terms in (4.5)–(4.9), we have, numerically,

(4.10)\begin{align} & 2\pi\sqrt{\frac{1}{6}}=2.56\cdots,\quad \frac{\pi}{4}\sqrt{\frac{43}{6}}=2.10\cdots,\ \frac{\pi}{2}\sqrt{\frac{7}{6}}=1.69\cdots,\nonumber\\ & \frac{\pi}{2}\sqrt{\frac{13}{6}}=2.31\cdots,\quad \frac{\pi}{4}\sqrt{\frac{43}{6}}=2.10\cdots. \end{align}

Recall that, for any integer $i$ with $1\le i\le 4$, we have $p(2i,\,16,\,n)=p(16-2i,\,16,\,n)$. We conclude from the numerical calculations in (4.10) that

\[ p(2i,16;n)\sim \displaystyle\frac{s_1(n)}{8}=\frac{p(n)}{8} \]

as $n\to \infty$ for any integer $i$ with $0\le i\le 7$, and therefore (1.24) follows when $m=4$.

We also deduce from the numerical calculations in (4.10) that, for $0\le i<4$,

\[ p(4i,16; n)-p(4i+2,16; n)\sim \displaystyle\frac{s_4(n)}{4} \]

as $n\to \infty$. We know from (4.8) that

\[ s_4(n)\sim\begin{cases} \displaystyle\displaystyle\frac{13^{1/2}}{2^{3}\cdot 3^{1/2}\cdot n}\cos\left(\frac{\pi}{8}\right)\exp\left(\frac{\pi}{2}\sqrt{\frac{13n}{6}}\right) & \text{if }n\equiv 0 \pmod{4},\\ \displaystyle\frac{13^{1/2}}{2^{3}\cdot 3^{1/2}\cdot n}\sin\left(\frac{\pi}{8}\right)\exp\left(\frac{\pi}{2}\sqrt{\frac{13n}{6}}\right) & \text{if }n\equiv 1 \pmod{4},\\ \displaystyle-\frac{13^{1/2}}{2^{3}\cdot 3^{1/2}\cdot n}\cos\left(\frac{\pi}{8}\right)\exp\left(\frac{\pi}{2}\sqrt{\frac{13n}{6}}\right) & \text{if }n\equiv 2 \pmod{4},\\ \displaystyle-\frac{13^{1/2}}{2^{3}\cdot 3^{1/2}\cdot n}\sin\left(\frac{\pi}{8}\right)\exp\left(\frac{\pi}{2}\sqrt{\frac{13n}{6}}\right) & \text{if }n\equiv 3 \pmod{4}. \end{cases} \]

Hence, (1.26) and (1.27) hold when $m=4$. Finally, since

\[ \frac{\cos(\pi/8)}{\sin(\pi/8)}=1+\sqrt{2}, \]

we see that (1.25) is true when $m=4$.

Next, we prove Theorem 1.3 when $m=6$. Let us define, for $i=1,\,\ldots,\,7$,

\[ \displaystyle\sum_{n= 0}^{\infty} f_i(n)q^{n}=F_i(q), \]

where $F_i(q)$'s are as defined in Theorem 1.2. Applying Sussman's result (4.3), we have, as $n\to \infty$,

(4.11)\begin{align} f_1(n)& =p(n)\sim \displaystyle\frac{1}{4\cdot 3^{1/2}\cdot n}\exp\left(2\pi\sqrt{\frac{n}{6}}\right), \end{align}
(4.12)\begin{align} f_2(n)& \sim \displaystyle\frac{37^{1/2}}{2^{4}\cdot 3\cdot n}\exp\left(\frac{\pi}{6}\sqrt{\frac{37n}{2}}\right), \end{align}
(4.13)\begin{align} f_3(n)& \sim \frac{7^{1/2}}{2^{3}\cdot 3^{1/2}\cdot n}\exp\left(\frac{\pi}{2}\sqrt{\frac{7n}{6}}\right), \end{align}
(4.14)\begin{align} f_4(n)& \sim \frac{7^{1/2}}{2^{2}\cdot 3\cdot n}\exp\left(\frac{\pi}{3}\sqrt{\frac{7n}{2}}\right), \end{align}
(4.15)\begin{align} f_5(n)& \sim \frac{19^{1/2}}{2^{2}\cdot 3\cdot n}({-}1)^{n}\cos\left(\frac{n\pi}{2}+\frac{\pi}{8}\right)\exp\left(\frac{\pi}{6}\sqrt{\frac{19n}{2}}\right), \end{align}
(4.16)\begin{align} f_6(n)& \sim \frac{13^{1/2}}{2^{3}\cdot 3^{1/2}\cdot n}({-}1)^{n}\cos\left(\frac{n\pi}{2}+\frac{\pi}{8}\right)\exp\bigg(\frac{\pi}{2}\sqrt{\frac{13n}{6}}\bigg), \end{align}
(4.17)\begin{align} f_7(n)& \sim \frac{37^{1/2}}{2^{4}\cdot 3^{3/2}\cdot n}\exp\left(\frac{\pi}{6}\sqrt{\frac{37n}{2}}\right). \end{align}

Moreover, we notice that, for the exponential terms in (4.11)–(4.17), we have, numerically,

(4.18)\begin{align} & 2\pi\sqrt{\frac{1}{6}}=2.56\cdots,\quad \frac{\pi}{6}\sqrt{\frac{37}{2}}=2.25\cdots,\ \frac{\pi}{2}\sqrt{\frac{7}{6}}=1.69\cdots,\nonumber\\ & \frac{\pi}{3}\sqrt{\frac{7}{2}}=1.95\cdots,\quad \frac{\pi}{6}\sqrt{\frac{19}{2}}=1.61\cdots,\ \frac{\pi}{2}\sqrt{\frac{13}{6}}=2.31\cdots,\nonumber\\ & \frac{\pi}{6}\sqrt{\frac{37}{2}}=2.25\cdots. \end{align}

Recall that, for any integer $i$ with $1\le i\le 6$, we have $p(2i,\,24;n) =p(24-2i,\,24;n)$. We conclude from the numerical calculations in (4.18) that

\[ p(2i,24;n)\sim \displaystyle\frac{f_1(n)}{12}=\frac{p(n)}{12} \]

as $n\to \infty$ for any integer $i$ with $0\le i\le 11$, and therefore (1.24) follows when $m=6$. We also have, for $0\le i<6$,

\[ p(4i,24; n)-p(4i+2,24; n)\sim \displaystyle\frac{f_6(n)}{6} \]

as $n\to \infty$. Hence, in (1.25)–(1.27), the case of $m=6$ follows by arguments akin to those for the case of $m=4$. Therefore, the proof of Theorem 1.3 is completed.

5. Conclusion and conjectures

In this paper, we first established the generating functions of $p(r,\,m;n)$ with $m=16$ and $24$ by making use of theta function identities and then proved some inequalities for $p(r,\,m;n)$ based on their generating functions and Sussman's asymptotic formulas for quotients of Dedekind eta functions. According to the work of Berkovich and Garvan [Reference Berkovich and Garvan3], it would be appealing to find elementary proofs of Theorem 1.3 with the restriction of “$n$ sufficiently large” removed.

Moreover, based on our numerical calculations, we present the following two conjectures.

Conjecture 5.1 For any integer $0\leq i < m$ with $m$ an arbitrary positive integer, there always exists a positive integer $N(m,\,i)$ such that for all $n\geq N(m,\,i)$,

(5.1)\begin{align} & p(4i,4m;n)>p(4i+2,4m;n), \text{ if } n\equiv 0, 1\pmod{4}, \end{align}
(5.2)\begin{align} & p(4i,4m;n)< p(4i+2,4m;n), \text{ if } n\equiv 2, 3\pmod{4}, \end{align}
(5.3)\begin{align} & |p(4i,4m;2n)-p(4i+2,4m;2n)|> |p(4i,m;2n+1) -p(4i+2,m;2n+1)|. \end{align}

Conjecture 5.2 For any integer $0\leq k \leq m$ with $m$ an arbitrary positive integer,

(5.4)\begin{equation} \lim_{n\rightarrow\infty} \displaystyle\frac{p(2k,4m;n)}{p(n)}=\frac{1}{2m} \end{equation}

and

(5.5)\begin{equation} \lim_{n\rightarrow \infty}\displaystyle\frac{p(4k,4m;2n)-p(4k+2,4\,m ;2n)}{p(4k,4m;2n+1) -p(4k+2,4m;2n+1)} = 1+\sqrt{2}. \end{equation}

Acknowledgements

The authors cordially thank the anonymous referee for his/her helpful comments. The first, third and fourth authors were supported by the National Science Foundation of China (no. 11971203) and the Natural Science Foundation of Jiangsu Province of China (no. BK20180044). The second author was supported by a Killam Postdoctoral Fellowship from the Killam Trusts.

References

Abramowitz, M. and Stegun, I. A., eds. Handbook of mathematical functions with formulas, graphs, and mathematical tables (United States Department of Commerce, National Bureau of Standards, 10th printing, 1972).Google Scholar
Andrews, G. E., On a partition function of Richard Stanley, Electron. J. Combin. 11(2) (2004), 10. Research Paper 1.CrossRefGoogle Scholar
Berkovich, A. and Garvan, F. G., Dissecting the Stanley partition function, J. Combin. Theory Ser. A 112(2) (2005), 277291.CrossRefGoogle Scholar
Berkovich, A. and Garvan, F. G., On the Andrews-Stanley refinement of Ramanujan's partition congruence modulo 5 and generalizations, Trans. Amer. Math. Soc. 358(2) (2006), 703726.CrossRefGoogle Scholar
Berndt, B. C., Ramanujan's notebooks, Part III, (Springer, New York, 1991).CrossRefGoogle Scholar
Chern, S., Asymptotics for the Fourier coefficients of eta-quotients, J. Number Theory 199 (2019), 168191.CrossRefGoogle Scholar
Hardy, G. H. and Ramanujan, S., Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. (2) 17 (1918), 75115.CrossRefGoogle Scholar
Rademacher, H., On the partition function $p(n)$, Proc. London Math. Soc. (2) 43(4) (1937), 241254.Google Scholar
Stanley, R. P., Problem 10969, Amer. Math. Monthly 109(8) (2002), 760.CrossRefGoogle Scholar
Stanley, R. P., Some remarks on sign-balanced and maj-balanced posets, Adv. Appl. Math. 34(4) (2005), 880902.CrossRefGoogle Scholar
Sussman, E., Rademacher series for $\eta$-quotients, preprint (2017). Available at arXiv:1710.03415.Google Scholar
Swisher, H., Asymptotics and congruence properties for Stanley's partition function, and a note on a theorem of Koike, Ph.D. Thesis, University of Wisconsin-Madison (2005).Google Scholar
Swisher, H., The Andrews–Stanley partition function and $p(n)$: congruences, Proc. Amer. Math. Soc. 139(4) (2011), 11751185.CrossRefGoogle Scholar