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Abstract  Let O(7) denote the number of odd parts in an integer partition 7. In 2005, Stanley introduced
a new statistic srank(w) = O(w) — O(n’), where 7’ is the conjugate of . Let p(r, m;n) denote the number
of partitions of n with srank congruent to » modulo m. Generating function identities, congruences and
inequalities for p(0, 4;n) and p(2, 4;n) were then established by a number of mathematicians, including
Stanley, Andrews, Swisher, Berkovich and Garvan. Motivated by these works, we deduce some generating
functions and inequalities for p(r, m;n) with m =16 and 24. These results are refinements of some
inequalities due to Swisher.
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1. Introduction

Let m be an integer partition and « its conjugate. Stanley [9, 10] introduced a new
integral partition statistic

srank () = O(7w) — O(r'),

where O(7) denotes the number of odd parts in the partition 7. This statistic is called
the Stanley rank.
Let n > 1 and m > 2 be integers. For any integer r with 0 < r < m — 1, define

p(r,m;n) := #{xr|r is a partition of n with srank(w) =r (mod m)}. (1.1)

From the fact that

~

Il
S
2

Il

O(r')  (mod 2),
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Andrews—Stanley partition functions 121
it is easy to see that for n > 1,
p(n) = p(0,4;n) +p(2,4;n),
where p(n) is the number of partitions of n. Moreover, if m is even and r is odd, then
p(r,m;n) = 0.

Stanley [9, 10] also established the following generating function for p(0, 4;n) — p(2, 4;n):

S . . E(¢*)'B(¢®)?
Z(p(0,4,n) —p(2,4;n))¢" = W'

n=0

Here and throughout this paper,
= 1la=a

Following the work of Stanley, Andrews [2] then obtained the generating function for

p(0, 4;n):
- E(¢*)°E(q"%)°
p(0,4;5n)q" =
2 E(q)E(¢*)°E(¢*)*
Furthermore, he proved that for n > 0,
p(0,4;5n+4) = p(2,4;5n+4) =0 (mod 5), (1.2)

which is a refinement of the following famous congruence due to Ramanujan:
p(bn+4) =0 (mod 5).

At the end of his paper [2], Andrews asked for a partition statistic that would give a
combinatorial interpretation of (1.2) since his proof of (1.2) is analytic. Berkovich and
Garvan [4] later provided three such statistics and answered Andrews’ inquiry.

In 2010, Swisher [13] proved that (1.2) is just one of infinitely many similar congruences
satisfied by p(0, 4;n). In her Ph.D. thesis [12], Swisher also established the following
elegant results:

g 2085 1
n—oo  p(n) 2

and for sufficiently large n,

p(0,4;4n
p(0,4;4n +
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p(0,4;4n + 2)

)

(
JAdn +1), (1.
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Berkovich and Garvan [3] also gave elementary proofs of (1.3)—(1.7) with the restriction
of “n sufficiently large” removed. Further, Berkovich and Garvan presented a handful of
new results, including

p(0,4;2n) — p(2,4;2n)
1 —142 1.8
W p(0, 420 + 1) —p(2ds2n 1) V2 (1.8)

and for n > 1,

In this paper, we establish the generating functions for p(r, m;n) with m = 16 and 24.
It should be pointed out that if we define

p(k;n) := #{m|r is a partition of n with srank(w) = k}, (1.9)

then in view of (1.1) and (1.9),

plromin) = > p(k;n). (1.10)
k=r (mod m)
It follows from [4, (2.8) and (2.9)] that

fe’e] [e'e] . Zk . E(q2)2
2 2 pkmt = po e @ (L.11)

n=0k=—o00

where the ¢g-Pochhammer symbol is defined as usual by

o0

()00 1= H(l —aq").

n=0
From (1.11), we observe that
p(k;n) = p(—k;n)
and then from (1.10),
p(r,m;n) = p(m —r,m;n).
Therefore, we merely list the generating functions for p(r, m;n) with m € {16, 24} and
0<r< %

Theorem 1.1. We have

ip(o, 16;n)q" = SléQ) n 522(61) n SsiQ) n 54éQ)7 (1.12)
n=0
S p2 16y = 50 50 50 (1.13)
n=0

i D(4,16:7)g" = Sléq) _ S34£q) N &éq)’ (1.14)
n=0
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Andrews—Stanley partition functions 123

ip((i, 16;n)q" = Slé(I) - S4éq) - 552((1), (1.15)
n=0
ip(& 16;n)q" = SlS(Q) - 822((]) + Siiq) + 548(q) (1.16)
n=0
where
1 _ E(®)E(P)E(G*?)? _ E(¢*)’E(q"%)
D=5 9= BB BB Y T BB EER
E(¢*)'E(¢%)? L E(@®)*E(®)E(¢™)
4@ = FBEy 0 = BQEG PR
Theorem 1.2. We have
ip(o’% n)q" = F11(2Q) L F2?E(J) n F3é¢1) n F4éQ) . F5é(1) L Ffli(;])’ (1.17)
S ooty = 0 0BG B B (118

S paosme = B0 | B0 BQ Bl B RGO

ip(&% g = F11(2Q) B F4é61) N Fséq) ~ Fi(QQ)’ (1.20)
il’(&% )" = F11(2q) B Fzéq) N Fséq) B in(zq) B F51(2q) N F61(2q)’ (1.21)
> piao 24 = Al 0 - B0 0 12
:019(12’24; g = F11(2q) Fzs(q) Fséq) N F4éq) F5éq) N Fi(zq)’ (1.23)
where
sy = DELEOEIN g PP
RO~ e PO B R O BB
Fr(q) = ¢* Eéii;%ijﬁ;%?:ﬁ;gijg2
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Remark. Noticing that
p(r;m;n) = p(r,2m;n) + p(m +r,2m;n),

one may therefore obtain the generating functions for p(r, m;n) with m € {6, 8, 12} with
the assistance of Theorems 1.1 and 1.2.

In light of Theorems 1.1 and 1.2, we prove the following results which are refinements
of (1.3)—(1.7).

Theorem 1.3. Let m € {4, 6} and i be an integer with 0 < i <m — 1. Then

p(2i,4m;n) 1

lim ———————~ = — 1.24
and
41,4m; 2n) — p(4e + 2,4m; 2
hm p( 1, 215 n) p( 1+ 5 AT TL) _ 1+\/§ (125)

n—oo p(4i,4m;2n + 1) — p(4i 4+ 2,4m;2n + 1)
Also, for sufficiently large n,

p(4i,4m;n) > p(4i + 2,4m;n), ifn=0,1 (mod 4), (1.26)

p(4i,dm;n) < p(4i + 2,4m;n), ifn=2,3 (mod 4). (1.27)

2. Proof of Theorem 1.1

In this section, we always set ¢ = €™/, In order to prove Theorem 1.1, we first establish
a lemma.

Lemma 2.1. We have

M 1 __ B@)E(¢*)? E(¢*)E(¢*)
k[[o (1 — /24 +2 4 g8k+4) " E(¢Y)E(q'%)2E(¢%%) +V2¢? B EG) (2.1)
and
2 1 __ B@E(@¢”) E(¢*)E(¢*)
kl;[() (1 + v2¢%+2 4 g8k+4) — E(¢*)E(¢16)2E(¢%) - \/iqu(q“)E(qu)' (2.2)
Proof. Noticing that ¢(? = g(l + 1), we have
> 1 _ T (L V242 4 g3
kl;IO (1- \/§q4k+2 + gBk+4) - z.cl;[o (1 + ¢16k+8)
E(o®)E (32
— PO L R 6, (23)
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where Ramanujan’s general theta function is given by
F(,) 1= (a3 ab) o (~b; ab)oo (ab; ab)
It follows from Entry 30 (ii) and (iii) on page 46 of Berndt’s book [5] that
f(a,b) = f(a®b,ab®) + af(b/a,a’b?). (2.4)
Taking a = (%¢? and b = ¢*/¢? in (2.4) yields
F(C,a*/¢%) = (% /¢ + CaP F(CTH ™). (2.5)

By the fact that ¢* = i, we have

3212
F(M%,q%/¢h) = (-16% 0" (1% ¢"0) o E(¢'°) = EE(ZIM)) (2.6)
and
16 (64
FCHE) = (50 (i ) Bl ) = - BCEED o)
7*?)

Making use of (2.5)(2.7) and the fact that ¢2 = ¥2(1 4 i), we arrive at

f(C2q2,q2/C2) — E(q32)2 + \/§q2 E(qlﬁ)E(q&l). (28)

E(¢%) E(q%?)
Now, (2.1) follows from (2.3) and (2.8). Also, replacing ¢ by i¢ in (2.1) leads to (2.2). O
Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Employing (1.10), (1.11) and the fact that

ic’”‘— 16, ifk=0 (mod 16), 2.9)
= 10, ifk#0 (mod 16), ’

we have, for 0 < a < 15,

Ca]ZZ jrn

n=0r=—oo

(oo}
> p(a,16;n)q
n=0

E(q2)2 Z —aj j
= ?W ;C G(¢7,q), (2.10)
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where
1

(22¢%4") o (4% /2% ¢*) o

Glzrq) = (2.11)
It is easy to check that for &k, j > 0,
(1 — R gHht2)(1 — 442 ¢20) = 1 — (¢2 4 ¢~2)gh+2 | Bh+d (2.12)

In light of (2.11) and (2.12),

if j € {0,8},

E(
I ! . ifj € {1,7,9,15},
o ( _ \/§q4k+2 + q8k+4)

1
(¢")E(¢")
E(q®)?

&

G(¢7,q) = : if j € {2,6,10, 14}, (2.13)

S 1

, if j €4{3,5,11,13},
;};[0 (1 4 \/§q4k+2 + q8k+4> { }
E(¢*)*E(¢®)?

if j € {4,12}.

Using (2.1), (2.2), (2.10) and (2.13), we find that

o 1 E 2)\2
nz:;)p(a, 16;71)(]” = IESE((])(;()Q4)2 {(1 + (71)Q)E(q2)2

Theorem 1.1 follows from (2.14) and the fact that ¢ = ¥ 2;\@ + 22_\/5 i. O

3. Proof of Theorem 1.2
In this section, we prove Theorem 1.2. Throughout our proof, we always write w = e™/12,
We first prove the following lemma.
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Lemma 3.1. We have

- 1 _ E(¢®)E(¢")E(¢") 2 E(¢%)*E(¢")E(¢")?
U = = maeen Y mareameer Y
and
= 1 _ E(¢®)E(¢"*)E(¢") 2 E(¢°)*E(¢"?)E(¢*)?
H (1+\/§q4k+2 +q8k+4) - E(q4) (q24) \/gq E(q4)2E(q16)E(q24)2' (3.2)
Proof. Notice that w? = § + %i. Therefore,
ﬁ ! — (') (3.3)

iy (1= VBg+2 4 g3ty f(—w?q?, —¢?/w?)

where f(a, b) is as defined in (2.4). It follows from the quintuple product identity
[5, (38.2), p. 80] that

EQ) 1
f(B¢?,¢*/B) — f(—B?,—¢*/B?)

Setting B = —w? in (3.4), we deduce that

(f(B*¢*,¢"°/B%) = B*f(¢*/B*, B¢')).  (3.4)

L ! 1 s 2 10 /2 1(]
Tt T ™ T e~ i),

4 _ 1 4 V3
By the fact that w® = 5 + 51,

f=w*, —=q* Jw?) = E(¢") (@ ") oo (¢* /s 4o

=(1—w4)E(q4)ﬁ<1—<w + l)q +q° )

k=1
0 14+ 12k
== [T T
_ E(q")*E(¢*")
= 0D BB
Therefore,
1 _ (1 V3 ) E(¢*)B(q") 56)
ot =gt~ \2 "2 ) B |
Taking a = —ig¢? and b = —¢'°/i in (2.4) yields
f=id? =" /i) = f(=4"°, =¢*) =1 f (=4, —¢"")
_ - 2 B(¢*)E(q")?
= E(q16) - IQZW. (37)
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On the other hand, if we put a = —¢?/i and b = —i¢' in (2.4), then

F(=d*/i,-1¢"%) = f(=4"°,—¢**) — (/) F(—¢®, —¢"°)
» B(¢®)E(¢")?

= E(q"°) +iq B E(gY)

(3.8)

Finally, (3.1) follows from (3.3) and (3.5)—(3.8). Also, replacing ¢ by iq in (3.1) yields
(3.2). O

Now, we prove Theorem 1.2.

Proof of Theorem 1.2. Utilizing (1.10), (1.11) and the fact that

i"’: b J24 ifk=0 (mod 24),
w =
= 0, ifk#£0 (mod 24),

we arrive at

o0

23 00 %)
Zp((l, 24, n)q” = 2714 Zw_aj Z Z p(T; n)wjrqn
j=0

n=0 n=0r=—oo
1 E(¢)? i —aigy, g
= i Famras 2w GWq), (3.9)
24 E(q)B(¢") =

where G(z, q) is as defined in (2.11). In light of (2.11) and (2.12),

if j € {0,12},

if j € {1,11,13,23},

1
gggiigéﬁjgéi’:g , if j € {2,10,14,22},

G(w’,q) = E(£g§§316)7 it j € {3,9,15,21}, (3.10)
]?E((Z?)]?E((le)) , if j € {4,8,16,20},
kl;[o (1+\/§q4k1+2+q8k+4), if j € {5,7,17,19},
E(¢*)*E(¢®)?

if j 18}.
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By (3.1), (3.2), (3.9) and (3.10),

1 B o Elg')?
2020 = 5 g e {(1 MRV

4 (w—a +w—11a _’_w—13a +w—23a>

E(¢®)E(¢"*)E(¢") 2 E(¢°)*E(¢")E(¢*)?
) ( E(q*)*E(g**) Vi E(q4)2E(q16)E(q24)2>

—2a —10a —14a —22a E(q4)2E(q6)E(q24)
HT T T B B Bl
+ (w—Sa 4% 415 _21G)E(§2qu§glﬁ)

—4a —8a —16a —20a E(QQ)E(qlz)
+ (w +w M tw +w )E(q4)E(q6)

=+ (w—5a + w—?a 4 w—l?a + w—lga)

><(1“3((18)E(q”)E(qlﬁ) \/ngE(qS)QE(qu)E(q“)Q)

E(q*)?E(¢*) E(q*)?E(q"0)E(q*)?
o o E(@*)*E(¢%)?
+ (1" + ()Y Bl (3.11)
Theorem 1.2 follows from (3.11) and the fact that w = */6'2‘/5 SRS O

4. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 using Theorems 1.1 and 1.2 along with a result
due to Sussman [11].

In [11], applying the standard circle method due to Rademacher [8], Sussman obtained
an exact formula for g(n), the coefficients in

J
> gm)g™ =[] E(a™)%, (4.1)
n>0 j=1
where m = (mq, ..., my) is a sequence of distinct positive integers and d = (1, ..., d7)

is a sequence of non-zero integers such that ijl d; < 0.
To state Sussman’s result, we first fix some notation. Let k& be a positive integer. We

define
1 J
222—526j, Q= Z(Sjmj,
j=1 j=1
J 2 J _%
dj ged”(my, k) ( M ) 3
A(k) == — do L (k) = —
0 == = ®) = 1 gomy 9
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Further, for any integer h such that ged(h, k) = 1, we define

J
m;h k
Wh, | = €Xp —7ri§ 6--5( J , > ,
" 7 " \ged(my. k) ged(m;, k)

where s(d, ¢) is the Dedekind sum defined by

o= ¥ (=) (@)

n mod ¢

with
— —1/2 if Z
(@)= {07 Im Yz Hed 2
0 ifz € Z.
Let L =lem(my, ..., my). We divide the set {1, 2, ..., L} into two disjoint subsets:

Lo ={1<¢<L:A({) >0},
Egoz{lgfgLA(f)SO}

Theorem 4.1 (Sussman). If ¥ > 0 and the inequality

min (ng2(mj’£)> > A;f) (4.2)

holds for all 1 < ¢ < L, then for positive integers n > —$)/24,

leLso
1 ™ _ 2minh
DD ST (@\/A(é)(%ln—k(l)) S e T (4.3)
k>1 0<h<k
k=¢ mod L ged(h,k)=1

where Is(x) is the modified Bessel function of the first kind.

Remark. We also frequently make use of the asymptotic expansion of Is(z) (see
(1, p. 377, (9.7.1)]): for fixed s, when |argz| < 7,

e’ 452 — 1 (4s5® —1)(4s2 - 9)
Iy(z) ~ Tora (1 - + 21322 —- > . (4.4)

Remark. In [6], Chern considered the case where ¥ < 0in (4.1) and obtained a similar
asymptotic formula for g(n).
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Let us define, fori =1, ..., 5,

oo

Z si(n)q™ = Si(q),

n=0

where S;(q)’s are as defined in Theorem 1.1. First, we know from a famous result due to
Hardy and Ramanujan [7] that, as n — oo,

s1(n) = p(n) ~ m exp (277\/@ . (4.5)

Next, we show that, as n — oo,

sa(n) ~ %e}(p (Z 4‘2”) , (4.6)
sz(n) ~ %exp (g 7(?) , (4.7)
sdn)N/Zsiiﬁjrx—ly%ms(iﬁﬁ—g)exp<g- 12"), (4.8)
s5(n) ~ % exp <4 4?(;71) ‘ (4.9)

We only prove (4.6) and (4.8) as instances. The rest can be shown analogously by
Sussman’s result (4.3).
First, we show (4.6). In (4.1), let us put
(

m = (1,2,4,8,16,32,64), d=(-1,2,-3,1,-2,3,—1).

Thus, we have ¥ = % and 2 = —1. Also, L = 64. We compute that

Lo0={1,3,4,5,7,8,9,11,12,13,15,16,17, 19,20, 21, 23, 24,
25,27, 28,29, 31,33, 35, 36, 37, 39, 40, 41, 43, 44, 45,
47,48,49, 51,52, 53,55, 56,57, 59, 60, 61, 63, 64}.

Next, we verify that assumption (4.2) is satisfied. Then, it can be computed that when
k =1, the I-Bessel term has the largest order, which is

Iy (‘rﬁ V2an )

Further, when k = 1, we have

_ 2rinh
E e ko wpk = 1.

0<h<k
ged(h,k)=1
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It follows from (4.3), with (4.4) utilized, that
s2(n) 43'72 exp | T /330
N TYE R W

m=(1,2,4,8), d=(-1,4,-6,2)
n (4.1). Thus, ¥ = 3 and Q

For (4.8), we put

—1. Further, L = 8. We compute that
L-o=11,3,4,5,7,8}.

Next, we verify that assumption (4.2) is satisfied. Then, it can be computed that when
k = 4, the I-Bessel term has the largest order, which is

val
13/2 <Zfﬂ-\/ 24n — 1) .
Further, when k = 4, we have
Z e~ %Iiﬂ"hwh r=2(—1)"cos (E + E) .
’ 2 8
0<h<k
ged(h,k)=1

Tt follows from (4.3), with (4.4) utilized, that

131/2 " nmtom T [13n
s4(n) ~ m(—l) cos (7—|—§> exp | 5\ 5 |-

Notice that, for the exponential terms in (4.5)—(4.9), we have, numerically,

1 x [43 x [T
o]t =956.... /2 _910... /L _169...
7r\/; - VG 0--0 gy =109
T /13 T /43

2931, T2 _9q0....
Ve = 1V s 0

(4.10)
Recall that, for any integer ¢ with 1 <14 < 4, we have p(2i, 16, n) = p(16 — 2i, 16, n).
We conclude from the numerical calculations in (4.10) that
, s1(n) _ p(n)
24,16;n) ~ ——= = —=
p(2i,16;m) ~ 22 = 2

as n — oo for any integer ¢ with 0 <4 <7, and therefore (1.24) follows when m = 4.
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We also deduce from the numerical calculations in (4.10) that, for 0 <i < 4,
- - s4(n)
p(4i,16;n) — p(4i + 2,16;n) ~ —=

as n — oo. We know from (4.8) that

131/2

1
35312 5, ¢ (g) exp (;T\ / ?) ifn=0 (mod 4),
. . n
131/2 /13
m Sin (%) exXp <g 6n> lf n = 1 (mod 4),
131/2 /13
—W COS (%) exp <g 6n> lf n=2 (mod 4),
. . n
131/2 /13
@3z, sin (g) exp (g 6n> ifn=3 (mod 4).
. . n

Hence, (1.26) and (1.27) hold when m = 4. Finally, since

sa(n) ~

cos(m/8)
sin(7/8) 1+v2,

we see that (1.25) is true when m = 4.
Next, we prove Theorem 1.3 when m = 6. Let us define, for i =1, ..., 7,

> fin)g" = Fi(q),
n=0

where Fj;(q)’s are as defined in Theorem 1.2. Applying Sussman’s result (4.3), we have,

as n — 00,
1 n

fi(n) =p(n) ~ T3, P 27 6 (4.11)
371/2 T [3Tn

~or o o =\ 5 4.12

fa(n) 24-3~nexp<6 2>7 e

71/2 T [Tn

fa(n) ~ 53312, P (2 6) . (4.13)
71/2 m [Tn

~ o3 o o 2\ 5 4.14

faln) 22-3~nexp<3 2>’ )

191/2 nTto T [19n
~—(=1)" — 4 = — ) — 4.1
Fo(n) ~ g ()" cos (5 +8)exp<6\/ . ) (4.15)
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131/2 " nmwom T [13n
o) ~ g (1) cos (T + 5 ) exp (2\/ 6>’
371/2 T [3Tn
Jrlm) ~ o g o <6\/ 2> |

(4.16)

(4.17)

Moreover, we notice that, for the exponential terms in (4.11)—(4.17), we have, numerically,

1 T |37 T |7

2 — =256 —/—=—=225---, —4/==1.69---
7r\/g © 6\ 2 2V 6 ’
T |7 T /19 T /13

2/l =195... 2 =161l . =4/ 2 =931...
3\/; 95 o6V 2 6 "2V 6 3 ’
T |37

—4/—=—=225---.

6V 2 g

(4.18)

Recall that, for any integer ¢ with 1 < i <6, we have p(2i, 24;n) = p(24 — 2i, 24;n).

We conclude from the numerical calculations in (4.18) that

p(24,24;n) ~ f11(;1) = %Z)

as n — oo for any integer ¢ with 0 <14 < 11, and therefore (1.24) follows when m = 6. We

also have, for 0 <7 < 6,

p(4i,24;n) — p(4i + 2,24;n) ~ @

as n — 00. Hence, in (1.25)—(1.27), the case of m = 6 follows by arguments akin to those

for the case of m = 4. Therefore, the proof of Theorem 1.3 is completed.

5. Conclusion and conjectures

In this paper, we first established the generating functions of p(r, m;n) with m =16
and 24 by making use of theta function identities and then proved some inequalities for
p(r, m;n) based on their generating functions and Sussman’s asymptotic formulas for
quotients of Dedekind eta functions. According to the work of Berkovich and Garvan [3],
it would be appealing to find elementary proofs of Theorem 1.3 with the restriction of

“n sufficiently large” removed.

Moreover, based on our numerical calculations, we present the following two

conjectures.

Conjecture 5.1. For any integer 0 < ¢ < m with m an arbitrary positive integer, there

always exists a positive integer N(m, i) such that for all n > N(m, i),
p(4i,4m;n) > p(4di + 2,4m;n), if n=0,1 (mod 4),
p(4i,4m;n) < p(4di + 2,4m;n), if n=2,3 (mod 4),
Ip(44,4m; 2n) — p(4i + 2,4m; 2n)| > [p(4i,m;2n + 1) — p(4i + 2,m; 2n + 1)
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Conjecture 5.2. For any integer 0 < k < m with m an arbitrary positive integer,

p(2k,4m;n) 1

lim 2\ L 4
il p(n) 2m (54
and
4k. 4m:2n) — p(4 2,4m;?2

i
noo p(4k, 4m; 2n + 1) — p(4k + 2, 4m; 2n + 1)
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