Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-02-05T18:07:55.982Z Has data issue: false hasContentIssue false

On the structure of non-negative integer sets which have identical representation functions

Published online by Cambridge University Press:  03 February 2025

Cui-Fang Sun*
Affiliation:
School of Mathematics and Statistics, Anhui Normal University, Wuhu, Anhui, 241002, P.R. China
Hao Pan
Affiliation:
School of Mathematics and Statistics, Anhui Normal University, Wuhu, Anhui, 241002, P.R. China Department of Basic Courses, Lu’an Vocational Technical College, Lu’an, Anhui, 237001, P.R. China
*
Corresponding author: Cui-Fang Sun, email: cuifangsun@163.com
Rights & Permissions [Opens in a new window]

Abstract

Let $\mathbb{N}$ be the set of all non-negative integers. For any integer r and m, let $r+m\mathbb{N}=\{r+mk: k\in\mathbb{N}\}$. For $S\subseteq \mathbb{N}$ and $n\in \mathbb{N}$, let $R_{S}(n)$ denote the number of solutions of the equation $n=s+s'$ with $s, s'\in S$ and $s \lt s'$. Let $r_{1}, r_{2}, m$ be integers with $0 \lt r_{1} \lt r_{2} \lt m$ and $2\mid r_{1}$. In this paper, we prove that there exist two sets C and D with $C\cup D=\mathbb{N}$ and $C\cap D=(r_{1}+m\mathbb{N})\cup (r_{2}+m\mathbb{N})$ such that $R_{C}(n)=R_{D}(n)$ for all $n\in\mathbb{N}$ if and only if there exists a positive integer l such that $r_{1}=2^{2l+1}-2, r_{2}=2^{2l+1}-1, m=2^{2l+2}-2$.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

1. Introduction

Let $\mathbb{N}$ be the set of all non-negative integers. For any integer r and m, let $r+m\mathbb{N}=\{r+mk: k\in\mathbb{N}\}$. Let A be the set of all non-negative integers which contain an even number of digits 1 in their binary representations and $B=\mathbb{N}\backslash A$. The set A is called Thue–Morse sequence. For any positive integer l, let $A_{l}=A\cap [0, 2^{l}-1]$ and $B_{l}=B\cap [0, 2^{l}-1]$. For $S\subseteq \mathbb{N}$ and $n\in \mathbb{N}$, let the representation function $R_{S}(n)$ denote the number of solutions of the equation $s+s'=n$ with $s, s'\in S$ and $s \lt s'$. Sárközy asked whether there exist two subsets $C, D\subseteq \mathbb{N}$ with $|(C\cup D)\backslash (C\cap D)|=\infty$ such that $R_{C}(n)=R_{D}(n)$ for all sufficiently large integers n. By using the Thue–Morse sequence, Dombi [Reference Dombi6] answered Sárközy’s problem affirmatively. Later, Lev [Reference Lev10], Sándor [Reference Sándor12] and Tang [Reference Tang17] proved this result by different methods. Partitions of non-negative integers and their corresponding representation functions have been extensively studied by many authors. The related results can be found in [Reference Chen and Tang4, Reference Chen and Wang5, Reference Jiao, Sándor, Yang and Zhou7Reference Kiss and Sándor9, Reference Sándor12Reference Tang17, Reference Yang and Chen19].

In 2012, Yu and Tang [Reference Yu and Tang20] began to focus on partitions of non-negative integers with the intersection not empty. They studied the intersection of two sets is an arithmetic progression and posed the following conjecture:

Conjecture 1.1.

Let $m\in\mathbb{N}$ and $R\subset \{0, 1, \ldots, m-1\}$. If $C\cup D=\mathbb{N}$ and $C\cap D=\{r+km: k\in\mathbb{N}, r\in R\}$, then $R_{C}(n)=R_{D}(n)$ cannot hold for all sufficiently large n.

In 2016, Tang [Reference Tang18] obtained the following theorem.

Theorem A [Reference Tang18, Theorem 1]

Let m be an integer with $m\geq 2$. If $C\cup D=\mathbb{N}$ and $C\cap D=m\mathbb{N}$, then $R_{C}(n)=R_{D}(n)$ cannot hold for all large enough integers n.

In 20l6, Chen and Lev [Reference Chen and Lev3] disproved Conjecture 1.1 by the following result.

Theorem B [Reference Chen and Lev3, Theorem 1]

Let l be a positive integer. There exist two sets C and D with $C\cup D=\mathbb{N}$ and $C\cap D=(2^{2l}-1)+(2^{2l+1}-1)\mathbb{N}$ such that $R_{C}(n)=R_{D}(n)$ for every positive integer n.

In [Reference Chen and Lev3], Chen and Lev also proposed the following problem.

Problem 1.2.

Given $R_{C}(n)=R_{D}(n)$ for every positive integer n, $C\cup D=\mathbb{N}$ and $C\cap D=r+m\mathbb{N}$ with $r\geq 0$ and $m\geq 2$, must there exist an integer $l\geq 1$ such that $r=2^{2l}-1, m=2^{2l+1}-1$?

Afterwards, Li and Tang [Reference Li and Tang11], Chen, Tang and Yang [Reference Chen, Tang and Yang2] solved Problem 1.2 under the condition $0\leq r \lt m$. In 2021, Chen and Chen [Reference Chen and Chen1] solved Problem 1.2 affirmatively.

Theorem C [Reference Chen and Chen1, Theorem 1.1]

Let $m\geq 2$ and $r\geq 0$ be two integers and let C and D be two sets with $C\cup D=\mathbb{N}$ and $C\cap D=r+m\mathbb{N}$ such that $R_{C}(n)=R_{D}(n)$ for every positive integer n. Then there exists a positive integer l such that $r=2^{2l}-1$ and $m=2^{2l+1}-1$.

Let $r_{1}, r_{2}, m$ be integers with $0 \lt r_{1} \lt r_{2} \lt m$. In this paper, we focus on partitions of non-negative integers into two sets $C, D$ with $C\,\cup\,D=\mathbb{N}$ and $C\,\cap\,D=(r_{1}\,+\,m\mathbb{N})\cup (r_{2}\,+\,m\mathbb{N})$ such that $R_{C}(n)=R_{D}(n)$ for all $n\in\mathbb{N}$ and obtain the following result.

Theorem 1.3. Let $r_{1}, r_{2}, m$ be integers with $0 \lt r_{1} \lt r_{2} \lt m$ and $2\mid r_{1}$. Then there exist two sets C and D with $C\cup D=\mathbb{N}$ and $C\cap D=(r_{1}+m\mathbb{N})\cup (r_{2}+m\mathbb{N})$ such that $R_{C}(n)=R_{D}(n)$ for all $n\in\mathbb{N}$ if and only if there exists a positive integer l such that $r_{1}=2^{2l+1}-2, r_{2}=2^{2l+1}-1, m=2^{2l+2}-2$.

Motivated by Theorems B and C, we propose the following conjecture for further research.

Conjecture 1.4.

Let $r_{1}, r_{2}, m$ be integers with $0 \lt r_{1} \lt r_{2} \lt m$ and $2\nmid r_{1}$. Then there exist two sets C and D with $C\cup D=\mathbb{N}$ and $C\cap D=(r_{1}+m\mathbb{N})\cup (r_{2}+m\mathbb{N})$ such that $R_{C}(n)=R_{D}(n)$ for all $n\in \mathbb{N}$ if and only if there exists a positive integer l such that $r_{1}=2^{2l}-1, r_{2}=2^{2l+1}+2^{2l}-2, m=2^{2l+2}-2$.

Throughout this paper, let $f(x)=a_{0}+a_{1}x+\cdots+a_{n}x^{n}\in\mathbb{Z}[x]$ and for $m\leq n$, define

\begin{equation*}(f(x))_{m}=a_{0}+a_{1}x +\cdots+a_{m}x^{m}.\end{equation*}

For $C, D\subseteq \mathbb{N}$ and $n\in \mathbb{N}$, let $R_{C, D}(n)$ be the number of solutions of $n=c+d$ with $c\in C$ and $d\in D$. Let $C+D=\{c+d: c\in C, d\in D\}$. Let C(x) be the set of integers in C which are less than or equal to x. The characteristic function of C is denoted by

\begin{equation*}\chi_{C}(n)=\begin{cases}1, &n\in C,\\ 0, & n\not\in C. \end{cases}\end{equation*}

2. Some lemmas

Lemma 2.1. [Reference Chen and Lev3, Lemma 1]

Suppose that $C_{0}, D_{0}\subseteq \mathbb{N}$ satisfy $R_{C_{0}}(n)=R_{D_{0}}(n)$ for all $n\in \mathbb{N}$, and that m is a non-negative integer with $m \notin (C_{0}-D_{0})\cup(D_{0}-C_{0})$. Then, letting

\begin{equation*}C_{1}:=C_{0}\cup (m+D_{0}) \text{and } D_{1}:=D_{0}\cup (m+C_{0}),\end{equation*}

we have $R_{C_{1}}(n)=R_{D_{1}}(n)$ for all $n\in \mathbb{N}$ and furthermore

  1. (i) $C_{1}\cup D_{1}=(C_{0}\cup D_{0})\cup (m+C_{0}\cup D_{0})$;

  2. (ii) $C_{1}\cap D_{1}\supseteq(C_{0}\cap D_{0})\cup (m+C_{0}\cap D_{0})$, the union being disjoint.

Moreover, if $m\notin (C_{0}-C_{0})\cup (D_{0}-D_{0})$, then also in (i) the union is disjoint, and in (ii) the inclusion is in fact an equality. In particular, if $C_{0}\cup D_{0}=[0,m-1]$, then $C_{1}\cup D_{1}=[0,2m-1]$, and if C 0 and D 0 indeed partition the interval $[0, m-1]$, then C 1 and D 1 partition the interval $[0, 2m-1]$.

Lemma 2.2. [Reference Kiss and Sándor8, Claim 1]

Let $0 \lt r_{1} \lt \cdots \lt r_{s}\leq m$ be integers. Then there exists at most one pair of sets (C, D) such that $C\cup D=[0, m], 0\in C, C\cap D=\{r_{1}, \ldots, r_{s}\}$ and $R_{C}( n)=R_{D}(n)$ for every $n \leq m$.

Lemma 2.3. [Reference Kiss and Sándor8, Claim 3]

If for some positive integer M, the integers $M-1, M-2, M-4, M-8, \ldots, M-2^{\lceil \log_{2}M\rceil-1}$ are all contained in the set A, then $\lceil \log_{2}M\rceil$ is odd and $M=2^{\lceil \log_{2}M\rceil}-1$.

Lemma 2.4. [Reference Kiss and Sándor8, Claim 4]

If for some positive integer M, the integers $M-1, M-2, M-4, M-8, \ldots, M-2^{\lceil \log_{2}M\rceil-1}$ are all contained in the set B, then $\lceil \log_{2}M\rceil$ is even and $M=2^{\lceil \log_{2}M\rceil}-1$.

Lemma 2.5. [Reference Kiss and Sándor8, Theorem 3]

Let C and D be sets of non-negative integers such that $C\cup D=[0, m], C\cap D=\emptyset$ and $0\in C$. Then $R_{C}(n)=R_{D}(n)$ for every positive integer n if and only if there exists a positive integer l such that $C=A_{l}$ and $D=B_{l}$.

3. Proofs

Proof of Theorem 1.3. (Sufficiency). For any given positive integer l, let

(3.1)\begin{equation} m_{i}=\left\{\begin{array}{ll} 2^{i+1}, & 0\leq i\leq 2l-1,\\ 2^{i+1}-2, & i=2l,\\ 2^{i+1}-2^{i-2l}, & i\geq 2l+1. \end{array}\right. \end{equation}

For given sets $C_{0}=\{0\}, D_{0}=\{1\}$, define

(3.2)\begin{equation} C_{i}=C_{i-1}\cup (m_{i-1}+D_{i-1}), \quad D_{i}=D_{i-1}\cup (m_{i-1}+C_{i-1}),\quad i=1, 2, \ldots \end{equation}

and

(3.3)\begin{equation} C=\bigcup_{i\in\mathbb{N}}C_{i}, \qquad\qquad D=\bigcup_{i\in\mathbb{N}}D_{i}. \end{equation}

It is clear that C 0 and D 0 partition the interval $[0, m_{0}-1]$ and

\begin{equation*}m_{0}=2\notin (C_{0}-D_{0})\cup(D_{0}-C_{0})\cup (C_{0}-C_{0})\cup (D_{0}-D_{0})\end{equation*}

and $R_{C_{0}}(n)=R_{D_{0}}(n)$ for all $n\in \mathbb{N}$ (both representation functions are identically equal to 0). Applying Lemma 2.1 inductively $2l-1$ times, we can deduce that for any $i\in [0, 2l-1]$, $R_{C_{i}}(n)=R_{D_{i}}(n)$ for all $n\in\mathbb{N}$, the sets Ci and Di partition the interval $[0, m_{i}-1]$ and

\begin{equation*}m_{i}=2^{i+1}\notin (C_{i}-D_{i})\cup(D_{i}-C_{i})\cup (C_{i}-C_{i})\cup (D_{i}-D_{i}).\end{equation*}

In particular, $R_{C_{2l-1}}(n)=R_{D_{2l-1}}(n)$ for all $n\in \mathbb{N}$, the sets $C_{2l-1}$ and $D_{2l-1}$ partition the interval $[0, m_{2l-1}-1]=[0, 2^{2l}-1]$ and

\begin{equation*}m_{2l-1}=2^{2l}\notin (C_{2l-1}-D_{2l-1})\cup(D_{2l-1}-C_{2l-1})\cup (C_{2l-1}-C_{2l-1})\cup (D_{2l-1}-D_{2l-1}).\end{equation*}

By Lemma 2.1, we have $R_{C_{2l}}(n)=R_{D_{2l}}(n)$ for all $n\in \mathbb{N}$, the sets $C_{2l}$ and $D_{2l}$ partition the interval $[0, 2m_{2l-1}-1]=[0, 2^{2l+1}-1]=[0, m_{2l}+1]$. In addition, it is easily seen that $\{0, m_{2l}\}\subseteq C_{2l}$ and $\{1, m_{2l}+1\}\subseteq D_{2l}$. Then

\begin{equation*}m_{2l}\not\in (C_{2l}-D_{2l})\cup (D_{2l}-C_{2l}), \quad m_{2l}\in (C_{2l}-C_{2l})\cup (D_{2l}-D_{2l}).\end{equation*}

By Lemma 2.1, we have $R_{C_{2l+1}}(n)=R_{D_{2l+1}}(n)$ for all $n\in \mathbb{N}$ and

\begin{align*} C_{2l+1}\cup D_{2l+1}&= [0, 2m_{2l}+1]=[0, m_{2l+1}-1],\\ C_{2l+1}\cap D_{2l+1}&=(C_{2l}\cup (m_{2l}+D_{2l}))\cap (D_{2l}\cup(m_{2l}+C_{2l}))\\ &=(C_{2l}\cap D_{2l})\cup (C_{2l}\cap (m_{2l}+C_{2l}))\cup (D_{2l}\cap (m_{2l}+D_{2l}))\\ &\,\quad\cup (m_{2l}+C_{2l}\cap D_{2l})\\ &=\{m_{2l},m_{2l}+1\}. \end{align*}

Applying again Lemma 2.1, we can conclude that $R_{C_{i}}(n)=R_{D_{i}}(n)$ for all $n\in \mathbb{N}$, $C_{i}\cup D_{i}=[0, m_{i}-1]$ and $C_{i}\cap D_{i}=\{m_{2l}, m_{2l}+1\}+\{0, m_{2l+1}, \ldots, (2^{i-2l}-1)m_{2l+1}\}$ for each $i\geq 2l+1$.

Therefore, by the definitions of C and D in (3.1)–(3.3), we have $R_{C}(n)=R_{D}(n)$ for all $n\in \mathbb{N}$, $C\cup D=\mathbb{N}$ and

\begin{equation*}C\cap D=\{m_{2l}, m_{2l}+1\}+m_{2l+1}\mathbb{N}=(r_{1}+m\mathbb{N})\cup (r_{2}+m\mathbb{N}).\end{equation*}

(Necessity). To prove the necessity of Theorem 1.3, we need the following three claims.

Claim 1.

Given $0 \lt r_{1} \lt r_{2}\leq m$, there exists at most one pair of sets (C, D) such that $C\cup D=\mathbb{N}$, $C\cap D=(r_{1}+m\mathbb{N})\cup (r_{2}+m\mathbb{N})$ and $R_{C}(n)=R_{D}(n)$ for all $n\in\mathbb{N}$.

Proof of Claim 1

Assume that there exist at least two pairs of sets (C, D) and $(C', D')$ which satisfy the conditions

\begin{equation*} C\cup D=\mathbb{N}, C\cap D=(r_{1}+m\mathbb{N})\cup (r_{2}+m\mathbb{N}), R_{C}(n)=R_{D}(n) \,\text{for all } n\in\mathbb{N},\end{equation*}
\begin{equation*} C'\cup D'=\mathbb{N}, C'\cap D'=(r_{1}+m\mathbb{N})\cup (r_{2}+m\mathbb{N}), R_{C'}(n)=R_{D'}(n) \,\text{for all } n\in\mathbb{N}.\end{equation*}

We may assume that $0\in C\cap C'$. Let k be the smallest positive integer such that $\chi_{C}(k)\neq\chi_{C'}(k)$. Write

\begin{equation*}\big((r_{1}+m\mathbb{N})\cup (r_{2}+m\mathbb{N})\big)\cap [0, k]=\{t_{1}, \ldots, t_{s}\},\end{equation*}
\begin{equation*}C_{1}=C\cap [0, k],\;\; D_{1}=D\cap [0, k],\end{equation*}
\begin{equation*}\quad\!\!\! C_{2}=C'\cap [0, k],\;\; D_{2}=D'\cap [0, k].\end{equation*}

Then

(3.4)\begin{equation} C_{1}\cup D_{1}=C_{2}\cup D_{2}=[0, k], \end{equation}
(3.5)\begin{equation} \qquad\,\,\,\, C_{1}\cap D_{1}=C_{2}\cap D_{2}=\{t_{1}, \ldots, t_{s}\}, \end{equation}
(3.6)\begin{equation} \qquad\,\,\,\,\chi_{C_{1}}(k)\neq \chi_{C_{2}}(k),\;\; 0\in C_{1}\cap C_{2}. \end{equation}

For any integer $n\in [0, k]$, by the hypothesis, we have

(3.7)\begin{align} R_{C_{1}}(n)&=|\{(c, c'): c \lt c'\leq n, c, c'\in C_{1}, c+c'=n\}|\nonumber\\ &=R_{C}(n)=R_{D}(n)=R_{D_{1}}(n), \end{align}
(3.8)\begin{align} R_{C_{2}}(n)&=|\{(c, c'): c \lt c'\leq n, c, c'\in C_{2}, c+c'=n\}|\nonumber\\ &=R_{C'}(n)=R_{D'}(n)=R_{D_{2}}(n). \end{align}

Thus there exist two pairs of sets $(C_{1}, D_{1})$ and $(C_{2}, D_{2})$ satisfying (3.4)–(3.8). By Lemma 2.2, this is impossible. This completes the proof of Claim 1.

Claim 2.

Let $r_{1}, r_{2}, m$ be integers with $0 \lt r_{1} \lt r_{2} \lt r_{1}+r_{2}\leq m$ and $2\mid r_{1}$. Let C and D be sets of non-negative integers such that $C\cup D=[0, m]$, $C\cap D=\{r_{1}, r_{2}\}$ and $0\in C$. If $R_{C}(n)=R_{D}(n)$ for any integer $n\in [0, m]$, then there exists a positive integer l such that $r_{1}=2^{2l+1}-2, r_{2}=2^{2l+1}-1$.

Proof of Claim 2

Let

(3.9)\begin{equation} p_{C}(x)=\sum\limits_{i=0}^{m}\chi_{C}(i)x^{i}, \;\; p_{D}(x)=\sum\limits_{i=0}^{m}\chi_{D}(i)x^{i}. \end{equation}

Then

(3.10)\begin{equation} \frac{1}{2}(p_{C}(x)^{2}-p_{C}(x^{2}))=\sum_{n=0}^{\infty} R_{C}(n)x^{n}, \;\; \frac{1}{2}(p_{D}(x)^{2}-p_{D}(x^{2}))=\sum_{n=0}^{\infty} R_{D}(n)x^{n}. \end{equation}

Since $R_{C}(n)=R_{D}(n)$ for any integer $n\in [0, m]$, we have

(3.11)\begin{equation} \bigg(\sum_{n=0}^{\infty} R_{C}(n)x^{n}\bigg)_{m}=\bigg(\sum_{n=0}^{\infty} R_{D}(n)x^{n}\bigg)_{m}. \end{equation}

By (3.9)–(3.11), we have

\begin{align*} \bigg(\frac{1}{2}(p_{C}(x)^{2}-p_{C}(x^{2}))\bigg)_{m}&=\bigg(\sum_{n=0}^{\infty} R_{C}(n)x^{n}\bigg)_{m}=\bigg(\sum_{n=0}^{\infty} R_{D}(n)x^{n}\bigg)_{m}\\ &=\bigg(\frac{1}{2}(p_{D}(x)^{2}-p_{D}(x^{2}))\bigg)_{m}.\end{align*}

Noting that $C\cup D=[0, m]$, $C\cap D=\{r_{1}, r_{2}\}$, we have

\begin{equation*} p_{D}(x)=\frac{1-x^{m+1}}{1-x}-p_{C}(x)+x^{r_{1}}+x^{r_{2}}. \end{equation*}

Then

\begin{align*}\big(p_{C}(x)^{2}-p_{C}(x^{2})\big)_{m} &=\bigg(\bigg(\frac{1-x^{m+1}}{1-x}-p_{C}(x)+x^{r_{1}}+x^{r_{2}}\bigg)^{2}\\ &\,\,\quad-\,\bigg(\frac{1-x^{2m+2}}{1-x^{2}}-p_{C}(x^{2})+x^{2r_{1}}+x^{2r_{2}}\bigg)\bigg)_{m}.\end{align*}

Thus

(3.12)\begin{equation} \begin{array}{rcl} \big(2p_{C}(x^{2})\big)_{m}&=& \bigg(\frac{1-x^{2m+2}}{1-x^{2}}+2p_{C}(x)x^{r_{1}}+2p_{C}(x)x^{r_{2}}+2p_{C}(x)\frac{1-x^{m+1}}{1-x}\\ && -\bigg(\frac{1-x^{m+1}}{1-x}\bigg)^{2}-2x^{r_{1}}\frac{1-x^{m+1}}{1-x}-2x^{r_{2}}\frac{1-x^{m+1}}{1-x}-2x^{r_{1}+r_{2}}\bigg)_{m}. \end{array} \end{equation}

An easy calculation shows that $r_{1}\geq 6$, $\{0, 3, 5, 6\}\subset C$ and $\{1, 2, 4, 7\}\subset D$.

In order to prove $r_{2}=r_{1}+1$, we suppose that $r_{2}\geq r_{1}+2$ and we will show that this leads to a contradiction.

The coefficient of $x^{r_{1}-1}$ in (3.12) is $0=2\sum\limits_{i=0}^{r_{1}-1}\chi_{C}(i)-r_{1}$. Since $r_{1}\in C$, we have $\chi_{C}(r_{1})=1$. Then $2\sum\limits_{i=0}^{r_{1}}\chi_{C}(i)=r_{1}+2$. The coefficient of $x^{r_{1}}$ in (3.12) is $2\chi_{C}\big(\frac{r_{1}}{2}\big)=2\sum\limits_{i=0}^{r_{1}}\chi_{C}(i)-r_{1}=2$. Then $\chi_{C}\big(\frac{r_{1}}{2}\big)=1$. The coefficient of $x^{r_{1}+1}$ in (3.12) is $0=2\sum\limits_{i=0}^{r_{1}+1}\chi_{C}(i)-r_{1}-4=2\chi_{C}(r_{1}+1)-2$. Then $\chi_{C}(r_{1}+1)=1$. The coefficient of $x^{r_{1}+2}$ in (3.12) is $2\chi_{C}\big(\frac{r_{1}+2}{2}\big)=2\sum\limits_{i=0}^{r_{1}+2}\chi_{C}(i)-r_{1}-4$. Then $\chi_{C}\big(\frac{r_{1}+2}{2}\big)=\chi_{C}(r_{1}+2)$. If $r_{2}=r_{1}+2$, then $\chi_{C}(r_{1}+2)=1$. Comparing the coefficients of $x^{r_{1}+s}$ with $s\in \{3, 4, 5\}$ on the both sides of (3.12), we have

\begin{equation*} \begin{array}{l} 0=2\sum\limits_{i=0}^{r_{1}+3}\chi_{C}(i)-r_{1}-6,\\ 2\chi_{C}\bigg(\frac{r_{1}+4}{2}\bigg)=2\sum\limits_{i=0}^{r_{1}+4}\chi_{C}(i)-r_{1}-8,\\ 0=2\sum\limits_{i=0}^{r_{1}+5}\chi_{C}(i)-r_{1}-6. \end{array} \end{equation*}

Then $\chi_{C}(r_{1}+3)=0$, $\chi_{C}(r_{1}+4)=1$ and $\chi_{C}(r_{1}+5)=-1$, a contradiction. Thus $r_{2}\geq r_{1}+3$. The coefficient of $x^{r_{1}+3}$ in (3.12) is

\begin{equation*} 0=2\sum\limits_{i=0}^{r_{1}+3}\chi_{C}(i)-r_{1}-4=2\chi_{C}(r_{1}+2)+2\chi_{C}(r_{1}+3).\end{equation*}

Then $\chi_{C}(r_{1}+2)=\chi_{C}(r_{1}+3)=0$. Thus $\chi_{C}\big(\frac{r_{1}+2}{2}\big)=0$ and $r_{2}\geq r_{1}+4$. The coefficient of $x^{r_{1}+4}$ in (3.12) is

\begin{equation*}2\chi_{C}\bigg(\frac{r_{1}+4}{2}\bigg)=2\sum\limits_{i=0}^{r_{1}+4}\chi_{C}(i)-r_{1}-6=2\chi_{C}(r_{1}+4)-2.\end{equation*}

Then $\chi_{C}(r_{1}+4)=1$, $\chi_{C}\big(\frac{r_{1}+4}{2}\big)=0$ and $2\sum\limits_{i=0}^{r_{1}+4}\chi_{C}(i)=r_{1}+6$. By Lemma 2.2, we have

(3.13)\begin{equation} C\cap [0, r_{1}-1]=A\cap [0, r_{1}-1], \quad D\cap [0, r_{1}-1]=B\cap [0, r_{1}-1]. \end{equation}

Since $\chi_{C}\big(\frac{r_{1}+2}{2}\big)=\chi_{C}\big(\frac{r_{1}+4}{2}\big)$ and $\frac{r_{1}+4}{2}\leq r_{1}-1$, by (3.13) and the definition of A, we have $r_{1}\equiv 0\pmod 4$. It follows that $r_{1}\geq 8$ and $\chi_{C}\big(\frac{r_{1}+6}{2}\big)=1$.

Let k be a positive even integer such that $r_{1}\leq k \lt k+1 \lt \min\{r_{2}, 2r_{1}\}\leq m$. Comparing the coefficients of x k and $x^{k+1}$ on the both sides of (3.12) respectively, we have

\begin{equation*} 2\chi_{C}\bigg(\frac{k}{2}\bigg)=2\chi_{C}(k-r_{1})+2\sum\limits_{i=0}^{k}\chi_{C}(i)-k-2,\end{equation*}
\begin{equation*} 0=2\chi_{C}(k+1-r_{1})+2\sum\limits_{i=0}^{k+1}\chi_{C}(i)-k-4.\end{equation*}

Subtracting the above two equalities and dividing by 2 we can get

(3.14)\begin{equation} \chi_{C}\bigg(\frac{k}{2}\bigg)=\chi_{C}(k-r_{1})-\chi_{C}(k+1-r_{1})-\chi_{C}(k+1)+1. \end{equation}

Since $k+1-r_{1} \lt r_{1}, k-r_{1}$ is even, by (3.13), we have

\begin{equation*}\chi_{C}(k-r_{1})+\chi_{C}(k+1-r_{1})=1.\end{equation*}

If $\chi_{C}(k-r_{1})=0$, then $\chi_{C}(k+1-r_{1})=1$. By (3.14), we get $\chi_{C}(\frac{k}{2})=0$. If $\chi_{C}(k-r_{1})=1$, then $\chi_{C}(k+1-r_{1})=0$. By (3.14), we get $\chi_{C}(\frac{k}{2})=1$. Thus

(3.15)\begin{equation} \chi_{C}(k-r_{1})=\chi_{C}\bigg(\frac{k}{2}\bigg). \end{equation}

If $\min\{r_{2}, 2r_{1}\} \gt 2r_{1}-1$, then choose $k=2r_{1}-2^{i+1}$ with $i\geq 0$ in (3.15), we have

\begin{equation*}\chi_{C}(r_{1}-2^{i+1})=\chi_{C}(r_{1}-2^{i}).\end{equation*}

Then

\begin{equation*}\chi_{C}(r_{1}-1)=\chi_{C}(r_{1}-2)=\chi_{C}(r_{1}-4)=\cdots=\chi_{C}(r_{1}-2^{\lceil\log_{2}r_{1}\rceil-1}).\end{equation*}

By Lemmas 2.3 and 2.4, we have $r_{1}=2^{\lceil\log_{2}r_{1}\rceil}-1$, which contradicts $2\mid r_{1}$.

If $r_{2}=2r_{1}-1$, then compare the coefficients of $x^{r_{2}}$ and $x^{r_{2}-1}$ on the both sides of (3.12) respectively, we have

\begin{equation*}0=2\chi_{C}(r_{1}-1)+2\sum\limits_{i=0}^{r_{2}}\chi_{C}(i)-r_{2}-3=2\chi_{C}(r_{1}-1)+2\sum\limits_{i=0}^{r_{2}-1}\chi_{C}(i)-r_{2}-1,\end{equation*}
\begin{equation*}2\chi_{C}(r_{1}-1)=2\chi_{C}(r_{1}-2)+2\sum\limits_{i=0}^{r_{2}-1}\chi_{C}(i)-r_{2}-1.\end{equation*}

Then $2\chi_{C}(r_{1}-1)=\chi_{C}(r_{1}-2)$. It follows that $\chi_{C}(r_{1}-2)=\chi_{C}(r_{1}-1)=0$, which contradicts $\chi_{C}(r_{1}-2)+\chi_{C}(r_{1}-1)=1$. Thus $r_{2}\leq 2r_{1}-2$.

Let k be a non-negative integer such that $2r_{1}\leq 2r_{1}+k \lt 2r_{1}+k+1 \lt r_{1}+r_{2}\leq m$. If k is even, then compare the coefficients of $x^{2r_{1}+s}$ with $s\in \{k, k+1\}$ on the both sides of (3.12), we have

\begin{equation*} \begin{array}{l} 2\chi_{C}\bigg(\frac{2r_{1}+k}{2}\bigg)=2\chi_{C}(r_{1}+k)+2\chi_{C}(2r_{1}+k-r_{2})+2\sum\limits_{i=0}^{2r_{1}+k}\chi_{C}(i)-2r_{1}-k-4,\\ 0=2\chi_{C}(r_{1}+k+1)+2\chi_{C}(2r_{1}+k+1-r_{2})+2\sum\limits_{i=0}^{2r_{1}+k+1}\chi_{C}(i)-2r_{1}-k-6. \end{array} \end{equation*}

Subtracting the above two equalities and dividing by 2 we can get

(3.16)\begin{align} \chi_{C}\bigg(\frac{2r_{1}+k}{2}\bigg)&=\chi_{C}(r_{1}+k)+\chi_{C}(2r_{1}+k-r_{2})-\chi_{C}(2r_{1}+k+1)\nonumber\\ &\quad-\chi_{C}(r_{1}+k+1)-\chi_{C}(2r_{1}+k+1-r_{2})+1. \end{align}

If k is odd, then compare the coefficients of $x^{2r_{1}+s}$ with $s\in \{k, k+1\}$ on the both sides of (3.12), we have

\begin{equation*} 0=2\chi_{C}(r_{1}+k)+2\chi_{C}(2r_{1}+k-r_{2})+2\sum\limits_{i=0}^{2r_{1}+k}\chi_{C}(i)-2r_{1}-k-5,\end{equation*}
\begin{equation*} 2\chi_{C}\bigg(\frac{2r_{1}+k+1}{2}\bigg)=2\chi_{C}(r_{1}+k+1)+2\chi_{C}(2r_{1}+k+1-r_{2})+2\sum\limits_{i=0}^{2r_{1}+k+1}\chi_{C}(i)-2r_{1}-k-5.\end{equation*}

Subtracting the above two equalities and dividing by 2 we can get

(3.17)\begin{align} \chi_{C}\bigg(\frac{2r_{1}+k+1}{2}\bigg)&=\chi_{C}(r_{1}+k+1)+\chi_{C}(2r_{1}+k+1-r_{2})+\chi_{C}(2r_{1}+k+1)\nonumber\\ &\quad-\chi_{C}(r_{1}+k)-\chi_{C}(2r_{1}+k-r_{2}). \end{align}

If r 2 is even, then choose k = 0 and k = 2 in (3.16) respectively, we have

\begin{equation*} \chi_{C}(r_{1})=\chi_{C}(r_{1})+\chi_{C}(2r_{1}-r_{2})-\chi_{C}(2r_{1}+1)-\chi_{C}(r_{1}+1)-\chi_{C}(2r_{1}+1-r_{2})+1,\end{equation*}
\begin{equation*} \chi_{C}(r_{1}+1)=\chi_{C}(r_{1}+2)+\chi_{C}(2r_{1}+2-r_{2})-\chi_{C}(2r_{1}+3)-\chi_{C}(r_{1}+3)-\chi_{C}(2r_{1}+3-r_{2})+1.\end{equation*}

Then

\begin{equation*} \chi_{C}(2r_{1}-r_{2})-\chi_{C}(2r_{1}+1)-\chi_{C}(2r_{1}+1-r_{2})=0,\end{equation*}
\begin{equation*} \chi_{C}(2r_{1}+2-r_{2})-\chi_{C}(2r_{1}+3)-\chi_{C}(2r_{1}+3-r_{2})=0.\end{equation*}

By (3.13), we have $\chi_{C}(2r_{1}-r_{2})+\chi_{C}(2r_{1}+1-r_{2})=1$ and $\chi_{C}(2r_{1}+2-r_{2})+\chi_{C}(2r_{1}+3-r_{2})=1$. Then $\chi_{C}(2r_{1}-r_{2})=1$ and $\chi_{C}(2r_{1}+2-r_{2})=1$. It follows that $r_{2}\equiv 2\pmod 4$. The coefficient of $x^{r_{2}}$ in (3.12) is

\begin{equation*} 2\chi_{C}\bigg(\frac{r_{2}}{2}\bigg)=2\chi_{C}(r_{2}-r_{1})+2\sum\limits_{i=0}^{r_{2}}\chi_{C}(i)-r_{2}-2\end{equation*}

and the coefficient of $x^{r_{2}+1}$ in (3.12) is

\begin{equation*} 0=2\chi_{C}(r_{2}+1-r_{1})+2\sum\limits_{i=0}^{r_{2}+1}\chi_{C}(i)-r_{2}-6.\end{equation*}

Then

\begin{equation*} \chi_{C}\bigg(\frac{r_{2}}{2}\bigg)=\chi_{C}(r_{2}-r_{1})-\chi_{C}(r_{2}+1-r_{1})-\chi_{C}(r_{2}+1)+2.\end{equation*}

By $\chi_{C}(r_{2}-r_{1})+\chi_{C}(r_{2}+1-r_{1})=1$, we have $\chi_{C}(r_{2}-r_{1})=0$, $\chi_{C}(r_{2}+1-r_{1})=1$. By $r_{1}\equiv 0\pmod 4$ and $r_{2}\equiv 2\pmod 4$, we have $\chi_{C}(r_{2}-1-r_{1})=0$, $\chi_{C}(r_{2}-2-r_{1})=1$. The coefficient of $x^{r_{2}-1}$ in (3.12) is

\begin{equation*} 0=2\chi_{C}(r_{2}-1-r_{1})+2\sum\limits_{i=0}^{r_{2}-1}\chi_{C}(i)-r_{2}-2.\end{equation*}

Then $2\sum\limits_{i=0}^{r_{2}-1}\chi_{C}(i)=r_{2}+2$. It follows that $2\sum\limits_{i=0}^{r_{2}}\chi_{C}(i)=r_{2}+4$ and $\chi_{C}\big(\frac{r_{2}}{2}\big)=1$. The coefficient of $x^{r_{2}-2}$ in (3.12) is

\begin{equation*} 2\chi_{C}\bigg(\frac{r_{2}-2}{2}\bigg)=2\chi_{C}(r_{2}-2-r_{1})+2\sum\limits_{i=0}^{r_{2}-2}\chi_{C}(i)-r_{2}.\end{equation*}

Then $\chi_{C}\big(\frac{r_{2}-2}{2}\big)=2-\chi_{C}(r_{2}-1)$. Thus $\chi_{C}\big(\frac{r_{2}-2}{2}\big)=\chi_{C}(r_{2}-1)=1$. By (3.13) and $\chi_{C}\big(\frac{r_{2}-2}{2}\big)=\chi_{C}\big(\frac{r_{2}}{2}\big)=1$, we have $r_{2}\equiv 0\pmod 4$, a contradiction.

If r 2 is odd, then $r_{1}+5\leq r_{2}\leq 2r_{1}-3$. The coefficient of $x^{r_{1}+5}$ in (3.12) is

\begin{equation*}0=2\sum\limits_{i=0}^{r_{1}+5}\chi_{C}(i)-r_{1}-6=2\chi_{C}(r_{1}+5).\end{equation*}

Then $\chi_{C}(r_{1}+5)=0$ and so $r_{2}\geq r_{1}+7$. The coefficient of $x^{r_{1}+6}$ in (3.12) is

\begin{equation*}2\chi_{C}\big(\frac{r_{1}+6}{2}\big)=2\sum\limits_{i=0}^{r_{1}+6}\chi_{C}(i)-r_{1}-6=2\chi_{C}(r_{1}+6).\end{equation*}

Then $\chi_{C}(r_{1}+6)=\chi_{C}\big(\frac{r_{1}+6}{2}\big)=1$. By choosing k = 3 and k = 5 in (3.17) respectively, we have

\begin{equation*} \chi_{C}(r_{1}+2)=\chi_{C}(r_{1}+4)+\chi_{C}(2r_{1}+4-r_{2})+\chi_{C}(2r_{1}+4)-\chi_{C}(r_{1}+3)-\chi_{C}(2r_{1}+3-r_{2}),\end{equation*}
\begin{equation*} \chi_{C}(r_{1}+3)=\chi_{C}(r_{1}+6)+\chi_{C}(2r_{1}+6-r_{2})+\chi_{C}(2r_{1}+6)-\chi_{C}(r_{1}+5)-\chi_{C}(2r_{1}+5-r_{2}).\end{equation*}

Then

\begin{equation*}\chi_{C}(2r_{1}+4-r_{2})+\chi_{C}(2r_{1}+4)-\chi_{C}(2r_{1}+3-r_{2})+1=0, \end{equation*}
\begin{equation*}\chi_{C}(2r_{1}+6-r_{2})+\chi_{C}(2r_{1}+6)-\chi_{C}(2r_{1}+5-r_{2})+1=0. \end{equation*}

By (3.13), we have $\chi_{C}(2r_{1}+4-r_{2})+\chi_{C}(2r_{1}+3-r_{2})=1$ and $\chi_{C}(2r_{1}+6-r_{2})+\chi_{C}(2r_{1}+5-r_{2})=1$. Then $\chi_{C}(2r_{1}+3-r_{2})=\chi_{C}(2r_{1}+5-r_{2})=1$. Applying again (3.13), we have $r_{2}\equiv 1\pmod 4$. The coefficient of $x^{2r_{1}-2}$ in (3.12) is

\begin{equation*} 2\chi_{C}(r_{1}-1)=2\chi_{C}(r_{1}-2)+2\chi_{C}(2r_{1}-2-r_{2})+2\sum\limits_{i=0}^{2r_{1}-2}\chi_{C}(i)-2r_{1}-2\end{equation*}

and the coefficient of $x^{2r_{1}-1}$ in (3.12) is

\begin{equation*} 0=2\chi_{C}(r_{1}-1)+2\chi_{C}(2r_{1}-1-r_{2})+2\sum\limits_{i=0}^{2r_{1}-1}\chi_{C}(i)-2r_{1}-4.\end{equation*}

Subtracting the above two equalities and dividing by 2 we can obtain

\begin{equation*} 2\chi_{C}(r_{1}-1)=1+\chi_{C}(r_{1}-2)+\chi_{C}(2r_{1}-2-r_{2})-\chi_{C}(2r_{1}-1)-\chi_{C}(2r_{1}-1-r_{2}).\end{equation*}

Noting that $\chi_{C}(r_{1}-2)+\chi_{C}(r_{1}-1)=1$ and $\chi_{C}(2r_{1}-2-r_{2})=\chi_{C}(2r_{1}-1-r_{2})$, we have $3\chi_{C}(r_{1}-1)=2-\chi_{C}(2r_{1}-1)$. However, it is impossible. Therefore $r_{2}=r_{1}+1$.

The remainder of the proof is similar to the proof of [Reference Sun and Pan13, Theorem 1.1]. For the sake of completeness we give the details.

Let k be a positive even integer with $r_{2} \lt k \lt k+1 \lt 2r_{1} \lt r_{1}+r_{2}\leq m$. Comparing the coefficients of $x^{k-1}, x^{k}$ and $x^{k+1}$ on the both sides of (3.12) respectively, we have

\begin{equation*} 0=2\chi_{C}(k-1-r_{1})+2\chi_{C}(k-1-r_{2})+2\sum\limits_{i=0}^{k-1}\chi_{C}(i)-k-4,\end{equation*}
\begin{equation*} 2\chi_{C}\bigg(\frac{k}{2}\bigg)=2\chi_{C}(k-r_{1})+2\chi_{C}(k-r_{2})+2\sum\limits_{i=0}^{k}\chi_{C}(i)-k-4,\end{equation*}
\begin{equation*} 0=2\chi_{C}(k+1-r_{1})+2\chi_{C}(k+1-r_{2})+2\sum\limits_{i=0}^{k+1}\chi_{C}(i)-k-6.\end{equation*}

Calculating the above three equalities, we have

(3.18)\begin{equation} \chi_{C}\bigg(\frac{k}{2}\bigg)=\chi_{C}(k-r_{1})-\chi_{C}(k-1-r_{2})+\chi_{C}(k), \end{equation}
(3.19)\begin{equation} \chi_{C}\bigg(\frac{k}{2}\bigg)=\chi_{C}(k-r_{2})-\chi_{C}(k+1-r_{1})-\chi_{C}(k+1)+1. \end{equation}

By choosing $k=2r_{1}-2$ in (3.19), we have

\begin{equation*} 2\chi_{C}(r_{1}-1)=\chi_{C}(r_{1}-3)-\chi_{C}(2r_{1}-1)+1. \end{equation*}

Then $\chi_{C}(r_{1}-1)=\chi_{C}(r_{1}-3)$. Thus $r_{1}\equiv 2\pmod 4$ and $r_{2}\equiv 3\pmod 4$.

If $k-1-r_{2}\equiv 0\pmod 4$, then $k-r_{1}\equiv 2\pmod 4$ and $k\equiv 0\pmod 4$. Thus

\begin{equation*}\chi_{C}\bigg(\frac{k-1-r_{2}}{2}\bigg)+\chi_{C}\bigg(\frac{k-r_{1}}{2}\bigg)=1.\end{equation*}

Hence

\begin{equation*}\chi_{C}(k-1-r_{2})+\chi_{C}(k-r_{1})=1.\end{equation*}

If $\chi_{C}(k-1-r_{2})=0$, then $\chi_{C}(k-r_{1})=1$. By (3.18), we have $\chi_{C}(\frac{k}{2})=1$. If $\chi_{C}(k-1-r_{2})=1$, then $\chi_{C}(k-r_{1})=0$. By (3.18), we have $\chi_{C}(\frac{k}{2})=0$. Thus $\chi_{C}\big(\frac{k}{2}\big)=\chi_{C}(k-r_{1})$ and $\chi_{C}\big(\frac{k}{2}\big)+\chi_{C}(k-1-r_{2})=1$. Noting that $\chi_{C}(k-1-r_{2})+\chi_{C}(k-r_{2})=1$, we have $\chi_{C}\big(\frac{k}{2}\big)=\chi_{C}(k-r_{2})$.

If $k-1-r_{2}\equiv 2\pmod 4$, then $k-r_{1}\equiv 0\pmod 4$ and $k\equiv 2\pmod 4$. By (3.18), we have

\begin{equation*} \chi_{C}\bigg(\frac{k-2}{2}\bigg)=\chi_{C}(k-2-r_{1})-\chi_{C}(k-3-r_{2})+\chi_{C}(k-2).\end{equation*}

Then $\chi_{C}\big(\frac{k-2}{2}\big)=\chi_{C}(k-2-r_{1})$. Noting that $\chi_{C}\big(\frac{k-2}{2}\big)+\chi_{C}\big(\frac{k}{2}\big)=1$ and $\chi_{C}(k-1-r_{2})+\chi_{C}(k-r_{2})=1$, we have $\chi_{C}\big(\frac{k}{2}\big)=\chi_{C}(k-r_{2})$.

As a result, we can obtain $\chi_{C}\big(\frac{k}{2}\big)=\chi_{C}(k-r_{2})$. Put $k=2r_{2}-2^{i+1}$ with $i\geq 0$. Then $\chi_{C}(r_{2}-2^{i})=\chi_{C}(r_{2}-2^{i+1})$. Thus

\begin{equation*}1=\chi_{C}(r_{1})=\chi_{C}(r_{2}-1)=\chi_{C}(r_{2}-2)=\chi_{C}(r_{2}-4)=\cdots=\chi_{C}(r_{2}-2^{\lceil\log_{2}r_{2}\rceil-1}).\end{equation*}

By Lemma 2.3, we have $r_{1}=2^{2l+1}-2$ and $r_{2}=2^{2l+1}-1$ for some positive integer l.

This completes the proof of Claim 2.

Claim 3.

Let l be a positive integer and let $E, F$ be two sets of non-negative integers with $E\cup F=[0, 3 \cdot 2^{2l+1}-4], 0\in E$ and $E\cap F=\{2^{2l+1}-2, 2^{2l+1}-1\}$. Then $R_{E}(n)=R_{F}(n)$ for any integer $n\in [0, 3\cdot 2^{2l+1}-4]$ if and only if

\begin{align*} E &= A_{2l+1}\cup (2^{2l+1}-2+B_{2l+1})\cup (2^{2l+2}-2+(B_{2l+1} \cap [0, 2^{2l+1}-3]))\cup \{3\cdot 2^{2l+1}-4\},\\ F &= B_{2l+1}\cup (2^{2l+1}-2+A_{2l+1})\cup (2^{2l+2}-2+(A_{2l+1}\cap [0, 2^{2l+1}-3])). \end{align*}

Proof of Claim 3.

We first prove the sufficiency of Claim 3. It is easy to verify that $E\cup F=[0, 3 \cdot 2^{2l+1}-4]$, $0\in E$ and $E\cap F=\{2^{2l+1}-2, 2^{2l+1}-1\}$.

If $n\in [0, 2^{2l+2}-3]$, then

\begin{align*} R_{E}(n)&= R_{A_{2l+1}}(n)+R_{A_{2l+1}, 2^{2l+1}-2+B_{2l+1}}(n)+R_{2^{2l+1}-2+B_{2l+1}}(n)\\ &= R_{A_{2l+1}}(n)+ R_{A_{2l+1}, B_{2l+1}}(n-(2^{2l+1}-2))+R_{B_{2l+1}}(n-2(2^{2l+1}-2)) \end{align*}

and

\begin{align*} R_{F}(n)&= R_{B_{2l+1}}(n)+R_{2^{2l+1}-2+A_{2l+1}, B_{2l+1}}(n)+R_{2^{2l+1}-2+A_{2l+1}}(n)\\ &= R_{B_{2l+1}}(n)+ R_{A_{2l+1}, B_{2l+1}}(n-(2^{2l+1}-2))+R_{A_{2l+1}}(n-2(2^{2l+1}-2)). \end{align*}

By Lemma 2.5, for all $k\in\mathbb{N}$, we have $R_{A_{2l+1}}(k)=R_{B_{2l+1}}(k)$. Then $R_{E}(n)=R_{F}(n)$.

If $n\in [2^{2l+2}-2, 3\cdot 2^{2l+1}-5]$, then

\begin{align*} R_{E}(n)&= R_{A_{2l+1}, 2^{2l+1}-2+B_{2l+1}}(n)+R_{2^{2l+1}-2+B_{2l+1}}(n)\\ &\quad+\,R_{A_{2l+1}, 2^{2l+2}-2+(B_{2l+1}\cap [0, 2^{2l+1}-3])}(n)\\ &= R_{A_{2l+1}, B_{2l+1}}(n-(2^{2l+1}-2))+R_{B_{2l+1}}(n-2(2^{2l+1}-2))\\ &\quad+\,R_{A_{2l+1}, B_{2l+1}}(n-(2^{2l+2}-2)) \end{align*}

and

\begin{align*} R_{F}(n)&= R_{B_{2l+1}, 2^{2l+1}-2+A_{2l+1}}(n)+R_{2^{2l+1}-2+A_{2l+1}}(n)\\ &\quad+\,R_{B_{2l+1}, 2^{2l+2}-2+(A_{2l+1}\cap [0, 2^{2l+1}-3])}(n)\\ &=R_{B_{2l+1}, A_{2l+1}}(n-(2^{2l+1}-2))+R_{A_{2l+1}}(n-2(2^{2l+1}-2))\\ &\quad+\,R_{B_{2l+1}, A_{2l+1}}(n-(2^{2l+2}-2)). \end{align*}

By Lemma 2.5, $R_{A_{2l+1}}(k)=R_{B_{2l+1}}(k)$ holds for all $k\in\mathbb{N}$ and then $R_{E}(n)=R_{F}(n)$.

By $3\cdot 2^{2l+1}-4=(2^{2l+1}-2)+(2^{2l+2}-2)$ in D, we have

\begin{equation*} R_{C}(3\cdot 2^{2l+1}-4)=1+R_{B_{2l+1}}(2^{2l+1})+R_{A_{2l+1}, B_{2l+1}}(2^{2l+1}-2)\end{equation*}

and

\begin{equation*} R_{D}(3\cdot 2^{2l+1}-4)=1+R_{A_{2l+1}}(2^{2l+1})+R_{B_{2l+1}, A_{2l+1}}(2^{2l+1}-2).\end{equation*}

Thus $R_{C}(3\cdot 2^{2l+1}-4)=R_{D}(3\cdot 2^{2l+1}-4)$.

The necessity of Claim 3 follows from Lemma 2.2 and the sufficiency of Claim 3.

This completes the proof of Claim 3.

Now let

\begin{equation*}C_{1}=C\cap [0, m-1+r_{1}], \quad D_{1}=D\cap [0, m-1+r_{1}].\end{equation*}

Then

\begin{equation*}C_{1}\cup D_{1}=[0, m-1+r_{1}], \quad C_{1}\cap D_{1}=\{r_{1}, r_{2}\}.\end{equation*}

Moreover, for any integer $n\in [0, m-1+r_{1}]$, we have

\begin{align*} R_{C_{1}}(n)&= |\{(c, c'): c \lt c'\leq n, c, c'\in C_{1}, c+c'=n\}|\\ &= |\{(c, c'): c \lt c'\leq n, c, c'\in C, c+c'=n\}|\\ &= R_{C}(n), \end{align*}
\begin{align*} R_{D_{1}}(n)&= |\{(d, d'): d \lt d'\leq n, d, d' \in D_{1}, d+d'=n\}|\\ &= |\{(d, d'): d \lt d'\leq n, d, d' \in D, d+d'=n\}|\\ &= R_{D}(n). \end{align*}

Thus for any integer $n\in [0, m-1+r_{1}]$, we have

\begin{equation*}R_{C_{1}}(n)=R_{C}(n)=R_{D}(n)=R_{D_{1}}(n).\end{equation*}

Noting that $r_{2}\leq m-1$, we see that $r_{1}+r_{2}\leq m-1+r_{1}$. By Claim 2, there exists a positive integer l such that $r_{1}=2^{2l+1}-2, r_{2}=2^{2l+1}-1$.

Let E and F be as in Claim 3. If $m\geq 2^{2l+2}-1$ and $0\in C$, then $m-1+r_{1}\geq 3\cdot 2^{2l+1}-4$ and

\begin{equation*} C(3\cdot 2^{2l+1}-4)\cup D(3\cdot 2^{2l+1}-4)=[0, 3\cdot 2^{2l+1}-4],\end{equation*}
\begin{equation*} C(3\cdot 2^{2l+1}-4)\cap D(3\cdot 2^{2l+1}-4)=\{2^{2l+1}-2, 2^{2l+1}-1\}.\end{equation*}

Moreover, $R_{C(3 \cdot 2^{2l+1}-4)}(n)=R_{C}(n)=R_{D}(n)=R_{D(3 \cdot 2^{2l+1}-4)}(n)$ for all $n\in [0, 3 \cdot 2^{2l+1}-4]$. By Lemma 2.2, we have

\begin{equation*} C(3\cdot 2^{2l+1}-4)= E,\quad D(3\cdot 2^{2l+1}-4)=F.\end{equation*}

By

\begin{equation*} R_{C}(3\cdot 2^{2l+1}-3)=\chi_{C}(3\cdot 2^{2l+1}-3)+R_{A_{2l+1}, B_{2l+1}}(2^{2l+1}-1)+R_{B_{2l+1}}(2^{2l+1}+1)-1,\end{equation*}
\begin{equation*} R_{D}(3\cdot 2^{2l+1}-3)=R_{B_{2l+1}, A_{2l+1}}(2^{2l+1}-1)+R_{A_{2l+1}}(2^{2l+1}+1)-1,\end{equation*}

we know that $R_{C}(3\cdot 2^{2l+1}-3)=R_{D}(3\cdot 2^{2l+1}-3)$ if and only if $\chi_{C}(3\cdot 2^{2l+1}-3)=0$, that is, $3\cdot 2^{2l+1}-3 \in D$. Noting that $2^{2l+1}-2\in A_{2l+1}, 2^{2l+1}-1\in B_{2l+1}$, $3\cdot 2^{2l+1}-2=(2^{2l+1}-1)+(2^{2l+2}-1)$ in C and $3\cdot 2^{2l+1}-2=1+(3\cdot 2^{2l+1}-3)$ in D, we obtain

\begin{align*} R_{C}(3\cdot 2^{2l+1}-2)&=1+\chi_{C}(3\cdot 2^{2l+1}-2)+R_{A_{2l+1}, B_{2l+1}}(2^{2l+1})+R_{B_{2l+1}}(2^{2l+1}+2)\\ &\quad-\,\chi_{A_{2l+1}}(3\cdot 2^{2l+1}-2-(2^{2l+2}-2+2^{2l+1}-1))\\ &=1+\chi_{C}(3\cdot 2^{2l+1}-2)+R_{A_{2l+1}, B_{2l+1}}(2^{2l+1})+R_{B_{2l+1}}(2^{2l+1}+2) \end{align*}

and

\begin{align*} R_{D}(3\cdot 2^{2l+1}-2)&= 1+R_{B_{2l+1}, A_{2l+1}}(2^{2l+1})+R_{A_{2l+1}}(2^{2l+1}+2)\\ &\quad-\,\chi_{B_{2l+1}}(3\cdot 2^{2l+1}-2-(2^{2l+2}-2+2^{2l+1}-2))\\ &= R_{B_{2l+1}, A_{2l+1}}(2^{2l+1})+R_{A_{2l+1}}(2^{2l+1}+2). \end{align*}

Thus by Lemma 2.5, we have $R_{C}(3\cdot 2^{2l+1}-2) \gt R_{D}(3\cdot 2^{2l+1}-2)$, which is impossible. Therefore $m\leq 2^{2l+2}-2$.

Now we assume that $2^{2l+1} \leq m\leq 2^{2l+2}-3$ and $0\in C$. Let

\begin{equation*}M=r_{1}+m=2^{2l+1}-2+m.\end{equation*}

Since $2^{2l+2}-2\leq M\leq 3\cdot 2^{2l+1}-5$, by Lemma 2.2, we have

(3.20)\begin{equation} E(M)\cup F(M)=[0, M], \quad E(M)\cap F(M)=\{2^{2l+1}-2, 2^{2l+1}-1\}, \end{equation}
(3.21)\begin{equation} R_{E(M)}(n)=R_{E}(n)=R_{F}(n)=R_{F(M)}(n) \,\text{for any integer } n\in [0, M]. \end{equation}

Moreover,

(3.22)\begin{equation} C(M) \cup D(M-1)=[0, M],\quad C(M) \cap D(M-1)=\{2^{2l+1}-2, 2^{2l+1}-1\}. \end{equation}

Since $R_{C}(n)=R_{D}(n)$ for all $n\in\mathbb{N}$ and $0\not\in D$, we have

(3.23)\begin{equation} R_{C(M)}(n)=R_{C}(n)=R_{D}(n)=R_{D(M-1)}(n) \end{equation}

for any integer $n\in [0, M]$. By (3.20)–(3.23) and Lemma 2.2, we have

(3.24)\begin{equation} C(M)=E(M), \quad D(M-1)=F(M). \end{equation}

Then $\chi_{E}(M)=1$, $\chi_{F}(M)=0$.

By $2^{2l+1}-3\in A_{2l+1}$, we have $3\,\cdot\,2^{2l+1}-5\in F$. Then $M \lt 3\,\cdot\,2^{2l+1}-5$. If $\chi_{E}(M+1)=1$, then $\chi_{F}(M+1)=0$ and $C(M+1)=E(M+1), D(M+1)=F(M+1)\cup \{M, M+1\}$. Thus

\begin{align*} R_{C}(M+1)&= |\{(c, c'): 0\leq c \lt c'\leq M+1, c, c'\in C, c+c'=M+1\}|\\ &= |\{(c, c'): 0\leq c \lt c'\leq M+1, c, c'\in C(M+1), c+c'=M+1\}|\\ &= R_{E(M+1)}(M+1) \end{align*}

and

\begin{align*} R_{D}(M+1)&= |\{(d, d'): 1\leq d \lt d'\leq M+1, d, d'\in D, d+d'=M+1\}|\\ &= |\{(d, d'): 1\leq d \lt d'\leq M+1, d, d'\in D(M+1), d+d'=M+1\}|\\ &= 1+|\{(d, d'): 1\leq d \lt d'\leq M+1, d, d'\in F(M+1), d+d'=M+1\}|\\ &= 1+R_{F(M+1)}(M+1). \end{align*}

By Claim 3, we have $R_{E(M+1)}(M+1)=R_{F(M+1)}(M+1)$. Then $R_{C}(M+1)\neq R_{D}(M+1)$, a contradiction. Thus $\chi_{E}(M+1)=0$ and $\chi_{F}(M+1)=1$.

Let t be an arbitrary positive integer such that $M \lt M+t \lt M+t+1\leq 3\cdot 2^{2l+1}-4$. Then $1\leq t\leq 2^{2l+1}-3$. Define the sets S and T by

\begin{equation*}S=(E\cap C)(M+t)\cup (F(M+t)\backslash D(M+t)),\end{equation*}
\begin{equation*}T=(F\cap D)(M+t)\cup (E(M+t)\backslash C(M+t)).\end{equation*}

Noting that

\begin{equation*}E(M+t)\cup F(M+t)=[0, M+t]=(C(M+t)\backslash \{M+1\})\cup (D(M+t)\backslash \{M\}),\end{equation*}
\begin{equation*}E(M+t)\cap F(M+t)=\{2^{2l+1}-2, 2^{2l+1}-1\},\end{equation*}

we have

\begin{equation*}S\subseteq C(M+t)\backslash \{M+1\}, \quad T\subseteq D(M+t)\backslash \{M\},\end{equation*}
\begin{equation*}S\cup T=(C(M+t)\backslash \{M+1\})\cup (D(M+t)\backslash \{M\}),\end{equation*}
\begin{equation*}S\cap T=\{2^{2l+1}-2, 2^{2l+1}-1\}=(C(M+t)\backslash \{M+1\})\cap (D(M+t)\backslash \{M\}).\end{equation*}

Then

\begin{equation*}|S|+|T|=|S\cup T|+|S\cap T|=|C(M+t)\backslash \{M+1\}|+|D(M+t)\backslash \{M\}|.\end{equation*}

It follows that

(3.25)\begin{equation} S=C(M+t)\backslash \{M+1\}, \quad T=D(M+t)\backslash \{M\}. \end{equation}

For $M+t\leq n\leq 3\cdot 2^{2l+1}-4$, let

\begin{align*} N_{1}(t, n)&= R_{E(2^{2l+1}-3), E(M+t)\backslash C(M+t)}(n),\\ N_{2}(t, n)&= R_{F(2^{2l+1}-3), E(M+t)\backslash C(M+t)}(n),\\ N_{3}(t, n)&= R_{E(2^{2l+1}-3), F(M+t)\backslash D(M+t)}(n),\\ N_{4}(t, n)&= R_{F(2^{2l+1}-3), F(M+t)\backslash D(M+t)}(n). \end{align*}

We claim that

(3.26)\begin{equation} |E(M+t)\backslash C(M+t)|=N_{1}(t, n)+N_{2}(t, n), \end{equation}
(3.27)\begin{equation} |F(M+t)\backslash D(M+t)|=N_{3}(t, n)+N_{4}(t, n). \end{equation}

In fact, if $E(M+t)\backslash C(M+t)=\emptyset$, then $N_{1}(t, n)=N_{2}(t, n)=0$; if

\begin{equation*}E(M+t)\backslash C(M+t)=\{c_{1}, \ldots, c_{u}\}\end{equation*}

for some positive integer u, then by (3.24), we have $c_{i}\geq M+1$ and so $0\leq n-c_{i}\leq 2^{2l+1}-3$ for $i\in [1, u]$. In view of

\begin{equation*}E(2^{2l+1}-3)\cup F(2^{2l+1}-3)=[0, 2^{2l+1}-3], \quad E(2^{2l+1}-3)\cap F(2^{2l+1}-3)=\emptyset,\end{equation*}

we have

\begin{equation*}N_{1}(t, n)+N_{2}(t, n)=\sum\limits_{i=1}^{u}\chi_{E(2^{2l+1}-3)}(n-c_{i})+\sum\limits_{i=1}^{u}\chi_{F(2^{2l+1}-3)}(n-c_{i})=u.\end{equation*}

Thus (3.26) holds. Similarly, we can deduce (3.27) holds.

By $M+t \lt 3\cdot 2^{2l+1}-4 \lt 2^{2l+3}-4\leq 2M$, we can obtain

\begin{align*} R_{E(M+t)}(n)&=R_{(E\cap C)(M+t)}(n)+R_{E(2^{2l+1}-3), E(M+t)\backslash C(M+t)}(n)\nonumber\\ &=R_{(E\cap C)(M+t)}(n)+N_{1}(t, n).\end{align*}

By (3.24) and (3.25), we have

(3.28)\begin{align} R_{C(M+t)}(n)&= R_{C(M+t)\backslash \{M+1\}}(n)+\chi_{C(M+t)\backslash \{M+1\}}(n-M-1)\nonumber\\ &= R_{(E\cap C)(M+t)}(n)+R_{E(2^{2l+1}-3), F(M+t)\backslash D(M+t)}(n)+\chi_{E}(n-M-1)\nonumber\\ &= R_{E(M+t)}(n)-N_{1}(t, n)+N_{3}(t, n)+\chi_{E}(n-M-1). \end{align}

Similarly, we can get

(3.29)\begin{align} R_{D(M+t)}(n)&=R_{D(M+t)\backslash \{M\}}(n)+\chi_{D(M+t)\backslash \{M\}}(n-M)\nonumber\\ &=R_{(F\cap D)(M+t)}(n)+R_{F(2^{2l+1}-3), E(M+t)\backslash C(M+t)}(n)+\chi_{F}(n-M)\nonumber\\ &=R_{F(M+t)}(n)-N_{4}(t, n)+N_{2}(t, n)+\chi_{F}(n-M). \end{align}

By choosing $n=M+t$ and $n=M+t+1$ in (3.28) respectively, we have

(3.30)\begin{equation} R_{C(M+t)}(M+t)=R_{E(M+t)}(M+t)-N_{1}(t, M+t)+N_{3}(t, M+t)+\chi_{E}(t-1) \end{equation}

and

(3.31)\begin{align} R_{C(M+t+1)}(M+t+1)&= R_{C(M+t)}(M+t+1)+\chi_{C}(M+t+1\nonumber)\\ &=R_{E(M+t+1)}(M+t+1)-\chi_{E}(M+t+1)-N_{1}(t, M+t+1) \nonumber\\ &\quad+\,N_{3}(t, M+t+1)+\chi_{E}(t)+\chi_{C}(M+t+1). \end{align}

By choosing $n=M+t$ and $n=M+t+1$ in (3.29) respectively, we have

(3.32)\begin{equation} R_{D(M+t)}(M+t)=R_{F(M+t)}(M+t)-N_{4}(t, M+t)+N_{2}(t, M+t)+\chi_{F}(t) \end{equation}

and

(3.33)\begin{align} R_{D(M+t+1)}(M+t+1)&= R_{D(M+t)}(M+t+1)\nonumber\\ &=R_{F(M+t+1)}(M+t+1)-N_{4}(t, M+t+1) \nonumber\\ &\quad+\,N_{2}(t, M+t+1)+\chi_{F}(t+1). \end{align}

Note that $R_{C(n)}(n)=R_{D(n)}(n)$ and $R_{E(n)}(n)=R_{F(n)}(n)$. By (3.30)–(3.33), we have

\begin{equation*} N_{1}(t, M+t)+N_{2}(t, M+t)+\chi_{F}(t)=N_{3}(t, M+t)+N_{4}(t, M+t)+\chi_{E}(t-1)\end{equation*}

and

\begin{align*} & N_{1}(t, M+t+1)+N_{2}(t, M+t+1)+\chi_{E}(M+t+1)+\chi_{F}(t+1)\\ &=\ N_{3}(t, M+t+1)+N_{4}(t, M+t+1)+\chi_{E}(t)+\chi_{C}(M+t+1). \end{align*}

By (3.26) and (3.27), we have

\begin{equation*} |E(M+t)\backslash C(M+t)|+\chi_{F}(t)=|F(M+t)\backslash D(M+t)|+\chi_{E}(t-1)\end{equation*}

and

\begin{align*} & |E(M+t)\backslash C(M+t)|+\chi_{E}(M+t+1)+\chi_{F}(t+1)\\ &=\ |F(M+t)\backslash D(M+t)|+\chi_{E}(t)+\chi_{C}(M+t+1). \end{align*}

Then

(3.34)\begin{equation} \chi_{F}(t)+\chi_{E}(t)+\chi_{C}(M+t+1)=\chi_{E}(t-1)+\chi_{E}(M+t+1)+\chi_{F}(t+1). \end{equation}

If M is even, then we can write

\begin{equation*}M=(2^{2l+2}-2)+\sum\limits_{i=1}^{2l}b_{i}2^{i},\end{equation*}

where $b_{i}\in \{0, 1\}$. It follows from $\chi_{F}(M)=0$ that $\chi_{B_{2l+1}}\big(\sum\limits_{i=1}^{2l}b_{i}2^{i}\big)=1$. By choosing $M+t+1=3\cdot 2^{2l+1}-4$ in (3.34), we see that t is odd and

\begin{equation*}\chi_{F}(t+1)=\chi_{F}\big(2^{21+1}-2-\sum\limits_{i=1}^{2l}b_{i}2^{i}\big)=\chi_{B_{2l+1}}\big(\sum\limits_{i=1}^{2l}(1-b_{i})2^{i}\big)=1.\end{equation*}

Then $\chi_{E}(t+1)=0$. It follows from $\chi_{F}(t)+\chi_{E}(t)=1$ and $\chi_{E}(3\cdot 2^{2l+1}-4)=1$ that $\chi_{E}(t-1)=0$ and $\chi_{F}(t-1)=1$. Since $\chi_{E}(t-1)+\chi_{E}(t)=1$, we have $\chi_{E}(t)=1$ and $\chi_{F}(t)=0$. Noting that $\chi_{E}(t-1)=\chi_{E}(t+1)$, we have $t\equiv 3\pmod 4$ and so $t\geq 3$. Then $\chi_{E}(t-2)=0$. By choosing $M+(t-1)+1=3\cdot 2^{2l+1}-5$ in (3.34), we have

\begin{equation*}\chi_{F}(t-1)+\chi_{E}(t-1)+\chi_{C}(M+(t-1)+1)=\chi_{E}(t-2)+\chi_{E}(M+(t-1)+1)+\chi_{F}(t).\end{equation*}

It follows from $\chi_{E}(M+(t-1)+1)=\chi_{E}(3\cdot 2^{2l+1}-5)=0$ that $\chi_{C}(M+(t-1)+1)=-1$, which is clearly false.

If M is odd, then we can write

\begin{equation*}M=(2^{2l+2}-2)+\sum\limits_{i=0}^{f}2^{i}+\sum\limits_{i=f+2}^{2l}b_{i}2^{i},\end{equation*}

where $f\in\{0, 1, \ldots, 2l-1\}$ and $b_{i}\in \{0, 1\}$. It follows from $\chi_{E}(M+1)=0$ and $\chi_{F}(M)=0$ that

\begin{equation*}\chi_{A_{2l+1}}\bigg(2^{f+1}+\sum\limits_{i=f+2}^{2l}b_{i}2^{i}\bigg)=1, \quad \chi_{B_{2l+1}}\bigg(\sum\limits_{i=0}^{f}2^{i}+\sum\limits_{i=f+2}^{2l}b_{i}2^{i}\bigg)=1.\end{equation*}

Then f is odd. By choosing $M+t+1=3\cdot 2^{2l+1}-4$ in (3.34), we see that t is even and

\begin{equation*}\chi_{F}(t+1)=\chi_{F}\bigg(2^{21+1}-2-\sum\limits_{i=0}^{f}2^{i}-\sum\limits_{i=f+2}^{2l}b_{i}2^{i}\bigg)=\chi_{B_{2l+1}}\big(2^{f+1}-1+\sum\limits_{i=f+2}^{2l}(1-b_{i})2^{i}\big)=1.\end{equation*}

Then $\chi_{E}(t+1)=0$ and $\chi_{F}(t)=0$. Thus $\chi_{E}(t)=1$. It follows from $\chi_{E}(3\cdot 2^{2l+1}-4)=1$ that $\chi_{E}(t-1)=0$ and $\chi_{F}(t-1)=1$. Since $\chi_{E}(t-1)=\chi_{E}(t+1)$, we have $t\equiv 0\pmod 4$ and so $t\geq 4$. Then $\chi_{E}(t-2)=\chi_{E}(t-3)=1$ and $\chi_{F}(t-2)=0$. By choosing $M+(t-2)+1=3\cdot 2^{2l+1}-6$ in (3.34), we have

\begin{equation*}\chi_{F}(t-2)+\chi_{E}(t-2)+\chi_{C}(M+(t-2)+1)=\chi_{E}(t-3)+\chi_{E}(M+(t-2)+1)+\chi_{F}(t-1).\end{equation*}

It follows from $\chi_{E}(M+(t-2)+1)=\chi_{E}(3\cdot 2^{2l+1}-6)=1$ that $\chi_{C}(M+(t-2)+1)=2$, which is also impossible. Therefore $m=2^{2l+2}-2$.

This completes the proof of Theorem 1.3.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12371003).

References

Chen, S. Q. and Chen, Y. G., Integer sets with identical representation functions II, European J. Combin. 94 (2021), .CrossRefGoogle Scholar
Chen, S. Q., Tang, M. and Yang, Q. H., On a problem of Chen and Lev, Bull. Aust. Math. Soc. 99 (2019), 1522.CrossRefGoogle Scholar
Chen, Y. G. and Lev, V. F., Integer sets with identical representation functions, Integers 16 (2016), .Google Scholar
Chen, Y. G. and Tang, M., Partitions of natural numbers with the same representation functions, J. Number Theory 129 (2009), 26892695.CrossRefGoogle Scholar
Chen, Y. G. and Wang, B., On additive properties of two special sequences, Acta Arith. 110 (2003), 299303.CrossRefGoogle Scholar
Dombi, G., Additive properties of certain sets, Acta Arith. 103 (2002), 137146.CrossRefGoogle Scholar
Jiao, K. J., Sándor, C., Yang, Q. H. and Zhou, J. Y., On integer sets with the same representation functions, Bull. Aust. Math. Soc. 106 (2022), 224235.CrossRefGoogle Scholar
Kiss, S. Z. and Sándor, C., Partitions of the set of nonnegative integers with the same representation functions, Discrete Math. 340 (2017), 11541161.CrossRefGoogle Scholar
Kiss, S. Z. and Sándor, C., On the structure of sets which have coinciding representation functions, Integers 19 (2019), .Google Scholar
Lev, V. F., Reconstructing integer sets from their representation functions, Electron. J. Combin. 11 (2004), .CrossRefGoogle Scholar
Li, J. W. and Tang, M., Partitions of the set of nonnegative integers with the same representation functions, Bull. Aust. Math. Soc. 97 (2018), 200206.CrossRefGoogle Scholar
Sándor, C., Partitions of natural numbers and their representation functions, Integers 4 (2004), .Google Scholar
Sun, C. F. and Pan, H., Partitions of finite nonnegative integer sets with identical representation functions, Bull. Iranian Math. Soc. 49 (2023), .CrossRefGoogle Scholar
Sun, C. F., On finite nonnegative integer sets with identical representation functions, Ramanujan J. 65 (2024), 429445.CrossRefGoogle Scholar
Tang, M. and Chen, S. Q., On a problem of partitions of the set of nonnegative integers with the same representation functions, Discrete Math. 341 (2018), 30753078.CrossRefGoogle Scholar
Tang, M. and Li, J. W., On the structure of some sets which have the same representation functions, Period. Math. Hungar. 77 (2018), 232236.CrossRefGoogle Scholar
Tang, M., Partitions of the set of natural numbers and their representation functions, Discrete Math. 308 (2008), 26142616.CrossRefGoogle Scholar
Tang, M., Partitions of natural numbers and their representation functions, Chinese Ann. Math. Ser. A 37 (2016), 4146, For English version, see Chinese J. Contemp. Math. 37 (2016), 39–44.Google Scholar
Yang, Q. H. and Chen, Y. G., Partitions of natural numbers with the same representation functions, J. Number Theory 132 (2012), 30473055.CrossRefGoogle Scholar
Yu, W. and Tang, M., A note on partitions of natural numbers and their representation functions, Integers 12 (2012), .Google Scholar