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Abstract Let N be the set of all non-negative integers. For any integer r and m, let r + mN = {r + mk :
k € N}. For S C N and n € N, let Rg(n) denote the number of solutions of the equation n = s + s’
with s,s’ € S and s < s'. Let r1,r2, m be integers with 0 < 71 < r2 < m and 2 | r1. In this paper,
we prove that there exist two sets C' and D with CUD = N and CN D = (r1 + mN) U (r2 + mN)
such that Ro(n) = Rp(n) for all n € N if and only if there exists a positive integer [ such that
ry = 2241 9 py = 22l41 ] 4y = 22042 _ 9
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1. Introduction

Let N be the set of all non-negative integers. For any integer r and m, let »r + mN =
{r+ mk : k € N}. Let A be the set of all non-negative integers which contain an
even number of digits 1 in their binary representations and B = N\A. The set A is
called Thue-Morse sequence. For any positive integer I, let A, = AN [0,2! — 1] and
By =BnJ0,2! —1]. For S C N and n € N, let the representation function Rg(n) denote
the number of solutions of the equation s + s’ = n with s,s’ € S and s < s’. Sarkozy
asked whether there exist two subsets C, D C N with |[(C' U D)\(C N D)| = oo such that
Rc(n) = Rp(n) for all sufficiently large integers n. By using the Thue—Morse sequence,
Dombi [6] answered Sérkozy’s problem affirmatively. Later, Lev [10], Sdndor [12] and
Tang [17] proved this result by different methods. Partitions of non-negative integers
and their corresponding representation functions have been extensively studied by many
authors. The related results can be found in [4, 5, 7-9, 12-17, 19].

In 2012, Yu and Tang [20] began to focus on partitions of non-negative integers with
the intersection not empty. They studied the intersection of two sets is an arithmetic
progression and posed the following conjecture:
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2 C. Sun and H. Pan

Conjecture 1.1. Letm € N and R C {0,1,....m—1}. IfCUD =Nand CND =
{r+km:keN,r € R}, then Rc(n) = Rp(n) cannot hold for all sufficiently large n.

In 2016, Tang [18] obtained the following theorem.

Theorem A [18, Theorem 1]. Let m be an integer with m > 2. If CUD =N and
C'ND =mN, then Rc(n) = Rp(n) cannot hold for all large enough integers n.

In 2016, Chen and Lev [3] disproved Conjecture 1.1 by the following result.

Theorem B [3, Theorem 1]. Let [ be a positive integer. There exist two sets C and
D with CUD =N and CN D = (22 — 1) + (2241 — 1)N such that Rc(n) = Rp(n) for
every positive integer n.

In [3], Chen and Lev also proposed the following problem.

Problem 1.2. Given Rc(n) = Rp(n) for every positive integer n, C U D = N and
CND=r+mN withr >0 and m > 2, must there exist an integer | > 1 such that
r=92 _1,m =22+ _ 12

Afterwards, Li and Tang [11], Chen, Tang and Yang [2] solved Problem 1.2 under the
condition 0 < r < m. In 2021, Chen and Chen [1] solved Problem 1.2 affirmatively.

Theorem C [1, Theorem 1.1]. Let m > 2 and r > 0 be two integers and let C and
D be two sets with CUD =N and C N D = r+ mN such that Rc(n) = Rp(n) for
every positive integer n. Then there exists a positive integer | such that r = 22! — 1 and
m =22+ — 1.

Let 71,72, m be integers with 0 < r; < 79 < m. In this paper, we focus on partitions
of non-negative integers into two sets C, D with C U D =Nand C N D = (r; + mN)U
(ro + mN) such that Re(n) = Rp(n) for all n € N and obtain the following result.

Theorem 1.3. Let r1,7m9,m be integers with 0 < 1 < ro < m and 2 | r1. Then there
exist two sets C and D with CUD =N and C N D = (ry + mN) U (rg + mN) such that
Rc(n) = Rp(n) for all n € N if and only if there exists a positive integer | such that
ry = 2241 _ 2,1y = 92l+1 _ 1,m= 22l+2 _ 9.

Motivated by Theorems B and C, we propose the following conjecture for further
research.

Conjecture 1.4. Let 1,79, m be integers with 0 < r; < ro < m and 2 t r1. Then
there exist two sets C and D with CUD =N and CN D = (ry + mN) U (ro + mN) such
that Rc(n) = Rp(n) for alln € N if and only if there exists a positive integer | such that
ry = 22[ _ 1a7“2 — 22l+1 + 22l _ 27m — 22l+2 9.

Throughout this paper, let f(z) = ag+ a1z + - - - + apa™ € Z[z] and for m < n, define
(f(@)m =ao+ a1z + -+ apz™.

For C,D C Nand n € N, let R, p(n) be the number of solutions of n = ¢c+d withc € C
andd € D.Let C+ D ={c+d:ce C,de D}. Let C(z) be the set of integers in C
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which are less than or equal to . The characteristic function of C is denoted by

1, nedC,

xc(n) =
0, n¢gC.

2. Some lemmas

Lemma 2.1. [3, Lemma 1]. Suppose that Co, Dy C N satisfy Ro,(n) = Rp,(n) for
all m € N, and that m is a non-negative integer with m ¢ (Co — Do) U (Do — Cp). Then,
letting

Ci:=CyU (m + Do)and Dy :=DyuU (m + Co),
we have Rc,(n) = Rp,(n) for alln € N and furthermore

(1) CiuD, = (Co @] Do) U (m—|— CoU DQ),‘
(ii) C1N Dy 2 (CoNDy)U(m+ CyNn Dy), the union being disjoint.

Moreover, if m ¢ (Co — Co) U (Dg — Dy), then also in (i) the union is disjoint, and
in (ii) the inclusion is in fact an equality. In particular, if Co U Dy = [0,m — 1], then
C1UD; =[0,2m — 1], and if Cy and Dy indeed partition the interval [0,m — 1], then C;
and Dy partition the interval [0,2m — 1].

Lemma 2.2. [8, Claim 1]. Let0 <7y <--- <1y < m be integers. Then there exists
at most one pair of sets (C, D) such that CUD =[0,m],0€ C,CND = {ry,...,rs} and
Re(n) = Rp(n) for every n < m.

Lemma 2.3. [8, Claim 3]. If for some positive integer M, the integers M — 1, M —
2, M —4,M—8, ..., M—202MI=1 gre ]l contained in the set A, then [logy, M is odd
and M = 2Mog2 M1 _ 1

Lemma 2.4. [8, Claim 4]. If for some positive integer M, the integers M — 1, M —
2, M —4,M—8,...,M—2M82MI=1 qre qll contained in the set B, then [logy M is even
and M = 2/ee2 M1 _ 1,

Lemma 2.5. [8, Theorem 3]. Let C and D be sets of non-negative integers such
that CUD = [0,m],CND =0 and 0 € C. Then Rc(n) = Rp(n) for every positive
integer n if and only if there exists a positive integer | such that C = A; and D = By.

3. Proofs

Proof of Theorem 1.3. (Sufficiency). For any given positive integer I, let

20+ 0<i<2l—1,
m; = q 21— 2 i=2l, (3.1)
il 2l > 90 4 1.
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For given sets Cy = {0}, Dy = {1}, define

C;=Ci-1U(mi—1+ Di—1), D;=D;1U(mi—1+Ci—1), i=1,2,... (3.2)
and
c=\Ja, D=|JD (3.3)
ieN ieN

It is clear that Cy and Dy partition the interval [0, mg — 1] and
m0:2¢ (CO_DO)U(DO_CO)U(CO—CO)U(DO_DO)

and R¢,(n) = Rp,(n) for alln € N (both representation functions are identically equal to
0). Applying Lemma 2.1 inductively 2/ —1 times, we can deduce that for any i € [0,2]—1],
Rg,;(n) = Rp,(n) for all n € N, the sets C; and D; partition the interval [0,m; — 1] and

m; = 201 ¢ (C; — D;)U(D; — C;) U (C; — C;) U (D; — D;).

In particular, Ro,, (n) = Rp,, ,(n) for all n € N, the sets Cy 1 and Dy partition
the interval [0,mg_1 — 1] = [0,2% — 1] and

mai—1 =22 ¢ (Co—1 — Day—1) U (Dy—1 — Cy—1) U (Coy—1 — Cy—1) U (Dgy—1 — Doy_1).

By Lemma 2.1, we have Rc,,(n) = Rp,,(n) for all n € N, the sets Cy and Dy partition
the interval [0,2mg—1 — 1] = [0,22+1 — 1] = [0,m9 + 1]. In addition, it is easily seen
that {0,mq;} C Cq and {1, mg; + 1} C Dy;. Then

may & (Cot — Do) U (Do — Cop), mo € (Cop — Cop) U (Do — D).

By Lemma 2.1, we have Rc,, , (n) = Rp,, ,(n) for all n € N and

Cory1 U Dajq1 = [0,2myg + 1] = [0,mgr41 — 1],
Co141 N Do = (Coy U (Mg + Do) N (Do U (Mg + Cyp))
= (C9 N Dy) U (Co N (magg + Cop)) U (Day N (Mo + Do)
U (ma + C N Dy)
= {mag;, mo; + 1}.

Applying again Lemma 2.1, we can conclude that Rc,(n) = Rp,(n) for all n € N,
Ci U D1 = [0, m; — 1] and Cl N Dl = {’IHQI, mo; + 1} + {0, mor41y.. (2i72l — 1)m21+1} for
each 1 > 2l + 1.

Therefore, by the definitions of C' and D in (3.1)—(3.3), we have Rc(n) = Rp(n) for
allne N, CUD =N and

C N D = {mg;, my + 1} + mg 1N = (ry +mN) U (r + mN).

(Necessity). To prove the necessity of Theorem 1.3, we need the following three claims.
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Claim 1. Given 0 < r1 < ro < m, there exists at most one pair of sets (C, D) such
that CUD =N, CND = (ri + mN) U (ry + mN) and Rc(n) = Rp(n) for alln € N.

Proof of Claim 1. Assume that there exist at least two pairs of sets (C, D) and
(C’, D) which satisfy the conditions

CUD=N,CND=(ri +mN)U (ro + mN), Re(n) = Rp(n) for all n € N,
C'UD'=N,C"'NnD" = (r; + mN) U (ro + mN), Rer(n) = Rpr(n) for all n € N.

We may assume that 0 € C N C’. Let k be the smallest positive integer such that
xe (k) # xer (k). Write

((r1 + mN) U (ro + mN)) N [0, k] = {t1,..., L},
Ci=Cn [O,k], D, =Dn [O,k],

Co=0C"nN [O,k'], Dy, =D'n [O,k]

Then
Cl U D1 = 02 U D2 = [0, k], (34)
ClﬂD1:CQQD2:{t1,...,ts}7 (35)
Xcy (k) # xcy(k), 0€CinCs. (3.6)

For any integer n € [0, k], by the hypothesis, we have

Rcy(n) = {(c, ) :e < <n,e,d € Cr,e+ ¢ =n}
= Rc(n) = Rp(n) = Rp, (n), (3.7)

Rey,(n) = (e, ) :e < <n,e,d € Cy,c+ ¢ =n}
= Reor(n) = Rp/(n) = Rpy(n). (3.8)

Thus there exist two pairs of sets (C1,D;) and (Cs, D) satisfying (3.4)—(3.8). By
Lemma 2.2, this is impossible. This completes the proof of Claim 1. 0

Claim 2. Let ri,r3,m be integers with 0 <1 <re <ri+1r2 <m and 2 | ry. Let C
and D be sets of non-negative integers such that C U D = [0,m], C N D = {ry,r2} and
0 € C. If Ro(n) = Rp(n) for any integer n € [0,m], then there exists a positive integer
I such that ry = 22+ — 2 py = 22041 _ 1,
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Proof of Claim 2. Let

po(r) =Y xo(@)r', pp() = xpli)a’
=0 =0
Then
%(pc( )? = po(z ZRC )", ;pD( )? = polx ZRD

Since Ro(n) = Rp(n) for any integer n € [0, m], we have

(ni_o:oRc(n)x")m - <7§:0Rp(n)x")m.
By (3.9)-(3.11), we have
(0e? - pe) - (ZRC ) = (S rotwer)
= (;(I?D(ff)2 —pD(m2)>>m~

Noting that C U D = [0,m], C N D = {ry,r2}, we have

1 _ Q?"H—l
PD(QU) = H_ — pc(x) + 2"+ 2"
Then
2 2 1—gmtl 2
(po(@)” = pc (%), = <(1$ —pe(z) + z" +xr2>
1— m2m-i—2 ) ) .
— (T —polet) et 2)) .
( 1—a? m
Thus
2m+-2 mtl

(2pc (), = (ll—avJFQPC( )z + 2pe ()22 + 2po ()

2
_<1—zm+1> _gpridma™l o pp1ogmtl mm)

1—x 1 1
m

An easy calculation shows that r; > 6, {0,3,5,6} C C and {1,2,4,7} C D.

(3.10)

(3.11)

(3.12)

In order to prove ro = r1 + 1, we suppose that ro > r1 + 2 and we will show that this

leads to a contradiction.
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r1—1
The coefficient of 217! in (3.12) is 0 = 2 Y xc(i) — r1. Since r; € C, we

1
have xc(r1) = 1. Then 2> xc(i) = r1 + 2. The coefficient of 2™ in (3.12) is

i=0
T
2xc () =23 xc(i) = r1 = 2. Then x¢ (%) = 1. The coefficient of 271+ in (3.12) is
i=0
T1+1
0=2 5 xc(i)—r1—4=2xc(r1 +1) — 2. Then xc(r1 +1) = 1. The coefficient of
=0

2172 in (3.12) is 2xc(2) = 2 2 xc(i) —r1 — 4. Then xc(™52) = xc(r +2). If

ro =11 + 2, then xo(r1 +2) = 1. Comparlng the coefficients of z"17* with s € {3,4,5}
on the both sides of (3.12), we have

r1+3
0=2 > xcl(i) —ri—6,
i=0
44 T1+4
2xc <T1 ) =2 > xc(i) —r — 8,
i=0
r1+5
0=25 xc(i)—r —6.
i=0
Then xc(r1 +3) = 0, xe¢(r1 +4) = 1 and x¢(r1 +5) = —1, a contradiction. Thus

ro > r1 + 3. The coefficient of ™73 in (3.12) is
7‘1-‘1-3

0=2Y xc(i) —r —4=2xc(r1 +2) + 2xc(r1 +3).

Then xco(r1 +2) = xo(r1 +3) = 0. Thus XC(TH_Q) =0 and ry > r1 + 4. The coefficient
of z"174 in (3.12) is

r1+4
r1+4 .
2Xc<1 >2Z><c ) —r1—6=2xc(r +4) -2

2
=0
14 Tt
Then xc(r1+4) =1, xe (=) =0and 2 Y. xc(i) =1 + 6. By Lemma 2.2, we have
=0
Cﬁ[O,rl—l]:Aﬂ[O,rl—l], Dﬂ[O,rl—l]:Bﬂ[O,rl—l]. (313)

Since xc (25— nt2 ) = XC(T1+4) and ﬂ < r; — 1, by (3.13) and the definition of A, we
have r;1 =0 (mod 4). Tt follows that 1 > 8 and XC(THG) =1.

Let k£ be a positive even integer such that 11 < k < k+ 1 < min{ry,2r;} < m.
Comparing the coefficients of z¥ and z**! on the both sides of (3.12) respectively, we
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have
1 k
2xc (2> =2xc(k—r1)+ 2;><c(i) —k—2,
k+1
OZQXC(]C—Fl—Tl)-‘rQZXC(i) —k—4.
i=0

Subtracting the above two equalities and dividing by 2 we can get

k

XC(Q) — ek — ) — xolk+1—r1) - xe(k +1) + 1. (3.14)

Since k+ 1 —r; <71,k —rq is even, by (3.13), we have
xclk—r)+xclk+1—7r)=1.
If xo(k—r1) = 0, then xc(k+1—r1) = 1. By (3.14), we get xc (%) = 0. If xo(k—r1) = 1,

then xc(k+1—r1) = 0. By (3.14), we get xc(%) = 1. Thus

xc(k—r1)=xc <§> (3.15)
If min{ry, 2r1} > 2r; — 1, then choose k = 2r; — 27! with i > 0 in (3.15), we have
xo(r = 27) = xo(r - 2°).
Then
Xc(ri—1) = xe(r —2) = xo(r —4) = -+ = xo(ry — 2Mog2ml=1),
By Lemmas 2.3 and 2.4, we have r; = 2/1°82711 — 1 which contradicts 2 | 71.

If 1o = 2r; — 1, then compare the coefficients of ™2 and x"2~! on the both sides
of (3.12) respectively, we have

72 rog—1
0=2xc(r1 —1)+2) xc(i) —ra=3=2xc(r —1)+2 Y xc(i) —r2 — 1,
=0 i=0
ro—1
2xc(r1 —1) =2xco(r1 —2) +2 Z xc(i) —ry — 1.
1=0

Then 2xc(r1 — 1) = xco(r1 — 2). It follows that xc(r1 — 2) = xc(r1 — 1) = 0, which
contradicts xco(r1 —2) + xc(r1 — 1) = 1. Thus ro < 2rq — 2.
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Let k£ be a non-negative integer such that 2r; < 2r; +k<2ri+k+1<r; +172 <m.
If k is even, then compare the coefficients of 2%"17% with s € {k, k + 1} on the both sides
of (3.12), we have

2ry +k
2XC(27~12+k> =2xc(r +k)+2xc(2ri+k—r2)+2 3> xcl(i) —2rm —k—4,
2'r1+ki:10

0=2xc(ri+k+1)+2xc(2r1+k+1—r)+2 >  xc()—2ri—k—6.
i=0

Subtracting the above two equalities and dividing by 2 we can get

2r1 + k
Xc< 12 >=Xc(7"1+k)+xc(2r1+k—rz)—><c(2r1+k+1)

—xc(ri+k+1)—xc@ri+k+1—1ry) + 1. (3.16)

If k is odd, then compare the coefficients of #2"1+¢ with s € {k, k + 1} on the both sides
of (3.12), we have

2r1+k
0= 2)(0(7"1 + k?) + 2Xc(2T‘1 +k— 7"2) +2 Z Xc(i) —2r1 —k— 5,
1=0
2T1+k+1
2ri +k+1 .
2xc <12> = QXC(Tl+/{:+1)+2XC(2T1+I€—|—1—7"2)+2 Z Xc(l)—QTl—k—E).
=0

Subtracting the above two equalities and dividing by 2 we can get

(2T1+k+1
Xc|\——%——

5 )—Xc(rl—|—k—|—1)—|—x(;(2r1+k+1—r2)+Xc(2r1—|—k—|—1)

—xc(r1 +k) —xc(@r1 + k —ra). (3.17)
If 75 is even, then choose k=0 and k=2 in (3.16) respectively, we have
xc(r1) = xc(r1) + xc(2r1 —r2) = xc(@r1 +1) = xe(r1 +1) = xe(2r + 1 —=7r2) + 1,
xc(ri+1) = xc(ri+2)+xc(2ri+2-r2) —xc(2r1+3) —xc(r1+3) —xc(2ri1+3—r2) +1.
Then
Xo(2r—r2) = xc(2ri+1) = xc(2ri +1—1r2) =0,
Xc(2r1 +2 —1r3) — xc(2r1 +3) — xc(2r1 +3 —rq) = 0.

By (3.13), we have x¢(2r1 —r2) + xc(2r1 +1—1r2) = 1 and xc(2r1 +2 —12) + xc(2r1 +
3 —ry) = 1. Then x¢(2r1 —r2) = 1 and x¢(2r1 + 2 —r2) = 1. It follows that ry = 2
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(mod 4). The coefficient of 2”2 in (3.12) is

2
T .
2xc (;) = ZXC(TQ — 7"1) +2 iio Xc(l) — 19 — 2

and the coefficient of x™2%! in (3.12) is

7‘2+l
0=2xc(ra+1-11)+2 Y xc(i)—ra—6.
=0
Then
T
Xc (;) =xc(r2—7r1) —xc(ra+1—71) — xo(r2 +1) + 2.

By xc(re —r1) + xc(ra+1—r1) =1, we have x¢(ro — 1) =0, xc(re +1—71) = 1. By
r1 =0 (mod 4) and r2 = 2 (mod 4), we have xg(re —1—1r1) =0, xg(re —2—1r1) = 1.
The coefficient of 2271 in (3.12) is

rog—1
0=2xc(ra—1—17r1)+2 22: xc (i) —rq — 2.
i=0
Then 2?{:1 xc (i) = ro + 2. It follows that 2 32: xc(i) = r2 +4 and xc(%2) = 1. The
coefﬁcierl;(z)f 27272 in (3.12) is ~
ro — 2 27
2Xc( 5 ) =2xc(ra—2—mr1)+2 ; xc (i) —ra.

Then XC(TQQ_Q) =2 — xc(ra — 1). Thus Xc(%) = xc(rs — 1) = 1. By (3.13) and
Xc(y) =xc(%) =1, we have r; = 0 (mod 4), a contradiction.

If 75 is odd, then r; + 5 < ry < 2r; — 3. The coefficient of 271 7° in (3.12) is

r1+5
0=2Y xc(i) = —6=2xc(r1 +5).
=0

Then xco(r1 +5) = 0 and so ro > r1 + 7. The coefficient of 27176 in (3.12) is

r1+6
r1+6 . .
2xe(75—) =2 Y xeli) = — 6= 2xc(r1 +6).
1=0
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Then xc(r1 +6) = Xc(rlgﬁ) = 1. By choosing k=3 and k =5 in (3.17) respectively, we

have

xc(r1+2) =xc(ri+4)+xc(2r1+4—r2) +xc(2ri1+4) — xc(r1+3) — xc(2r1 +3 —12),
xc(r1+3) = xc(r1+6)+xc(2r1 +6 —72) + xc(2r1 +6) — xc(r1 +5) — xc(2r1 +5 —12).

Then

Xc(2’l“1 +4— 7‘2) =+ Xc(2’l“1 + 4) — Xc(27“1 +3 - TQ) +1=0,
Xc(2r1 +6 —r2) + xc(2r1 +6) —xc(2r1 +5—12) + 1 =0.
By (3.13), we have xc(2r1 +4 —r2) + xc(2r1 +3 —1r2) = 1 and xc(2r; +6 — o) +

Xc(2r1 +5 —ry) = 1. Then xc(2r1 +3 —1r2) = xc(2r1 +5 — r2) = 1. Applying again
(3.13), we have 7, = 1 (mod 4). The coefficient of 22712 in (3.12) is

27"1—2
2xc(r1 = 1) =2xc(r1 —2) + 2xc(2r —2—=r2) +2 > xco(i) = 2r — 2
=0
and the coefficient of z?"171 in (3.12) is
27"1—1
0=2xc(r —1)+2xc(2r1 —1—72) +2 Y xc(i) —2r — 4.
=0

Subtracting the above two equalities and dividing by 2 we can obtain
2xc(r1 — 1) =14+ xc(r1 —2) + xc(2r1 =2 —1r2) — xc(2r1 — 1) — xc(2r1 — 1 —r2).

Noting that xc(r1 —2) + xc(r1 — 1) = 1 and xc(2r1 — 2 —12) = xc(2r1 — 1 — ra), we
have 3xc(r1 — 1) = 2 — x¢(2r1 — 1). However, it is impossible. Therefore ro = r; + 1.
The remainder of the proof is similar to the proof of [13, Theorem 1.1]. For the sake
of completeness we give the details.
Let k be a positive even integer with ro < k < k+ 1 < 2ry < r1 +ro < m. Comparing
the coefficients of x*~1, z¥ and 2**1 on the both sides of (3.12) respectively, we have

k—1
0=2xc(k—1-r)+2xc(k—1—-r)+2) xc(i)—k—4,
=0

k

k .
2xc (2) =2xc(k = 1)+ 2xe(k —12) +2) xc() —k -4,
1=0

k+1

0=2xc(k+1—r1)+2xc(k+1—72)+2> xc(i) —k—6.
1=0
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Calculating the above three equalities, we have

Xc@ — xolk = 1) = xo(k =1 = 13) + xc(k), (3.18)
Xc(l;) — xolk —12) = xo(k+1 1) = xelk+ 1)+ 1. (3.19)

By choosing k = 2r; — 2 in (3.19), we have
2xc(r —1)=xc(r1 —3) = xc(2r1 — 1)+ 1

Then xc(r1 — 1) = xc(r1 — 3). Thus 1 =2 (mod 4) and 79
Ifk—1—7ry=0 (mod 4), then k — 7 =2 (mod 4) and k

k—l—T‘g + k—’l’l o
Xc -5 Xc B) =

3 (mod 4).
0 (mod 4). Thus

—_

Hence

xclk—1—=r9)+xc(k—11)=1.

If xc(k—1—rg) = 0, then xc(k—r1) = 1. By (3. 18) we have xco (%) = 1. If xo (k—1—73) =
1, then xc(k —r1) = 0. By (3.18), we have xc(%) = 0. Thus xc¢ (%) = xc(k — 1) and
xc(5) + xo(k — 1 —ry) = 1. Noting that xo(k — 1 —72) + xo(k —r2) = 1, we have

xc(5) = xe(k —72).
Ifk—1—7ry =2 (mod 4), then k —r; =0 (mod 4) and k =2 (mod 4). By (3.18), we
have

Xc (k22> = XC(k -2 - ’r’1) — Xc(k’ -3 - 7‘2) + Xc(k — 2).

Then XC( 2) = xc(k — 2 — ). Noting that XC(]“Q;Q) + XC(%) =1and xo(k—1-—
r2) + xc(k —r2) = 1, we have Xc(g) = xc(k —r2).

As a result, we can obtain XC(%) xc(k —rg). Put k = 2ry — 2071 with 4 > 0. Then
xc(ra —2Y) = xo(re — 21H1). Thus

1=xc(r1) =xc(rs — 1) = xa(r2 = 2) = xc(ra — 4) = -+ = xc(rp — 2/08272171),

By Lemma 2.3, we have 71 = 22*1 — 2 and ry = 221 — 1 for some positive integer 1.
This completes the proof of Claim 2. g

Claim 3. Let [ be a positive integer and let E, F be two sets of non-negative integers
with EUF =[0,3-22%1 —4),0 € E and ENF = {22+ —2 2241 _ 1}, Then Rg(n) =
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Rp(n) for any integer n € [0,3 - 22141 — 4] if and only if
E= Ay U@ — 24 Byy) U (2842 — 24 (Byp 1 N[0,22F —3])) U {322+ — 4},
F = Bojiq U221 — 24 Agyyq) U (22172 — 24 (A1 N[0, 2271 — 3))).

Proof of Claim 3. We first prove the sufficiency of Claim 3. It is easy to verify that
EUF=[0,3-22"1 — 4], 0€ E and ENF = {22+l —2 22+1 _ 1},
If n € [0,22%2 — 3], then
Rp(n) = Ry, (n) + Ragy1 2241221y 4 (n) + Ro2tt1 _a4py) ., (n)

= Rag (0) + Ragy By (00— (221 —2)) + Rp, ,(n— 2(22H1 _ 2))

and

Rp (n) = R32l+1 (n) + R22l+172+A2l+1*32l+1 (TL) + R22l+172+A21+1 (n)
= Rpy, (n) + Rag | By (n— (2271 = 2)) + Ray, | (n = 2(2° = 2)).
By Lemma 2.5, for all k € N, we have Ra,, (k) = Rp,, (k). Then Rg(n) = Rp(n).
If n € [224+2 —2,3. 2241 _ 5] then
Rp(n) = RA21+1’22l+1*2+321+1 (n) + R221+1*2+B2z+1 ()
+ RAQZH,22l+272+(321+1m[0,22l+173]) (n)
= Ry, 1 Byyy (0 — (221 =2)) + Rp,, | (n —2(2%%! - 2))

+ Ray 1By (= (222 —2))

and

RBr(n) = Ry 22412y (n) + Rozir gy ay,, (n)
+ R321+1»22H2—2+(A21+1m[07221+1_3])(n)
= Rpyyy Agyr (0= (27 =2)) + Ry (n =222 - 2))
+ Rle+1»A21+1 (n— (22l+2 —2)).

By Lemma 2.5, Ra,, (k) = Rp,, (k) holds for all k € N and then Rg(n) = Rp(n).
By 3. 22+1 — 4 = (2241 —2) + (2242 — 2) in D, we have

Reo(3- 921+1 _ ) =1+ RB2I+1(221+1) + RA21+1’521+1(22I+1 —9)

and
(22l+1 _ 2)

204+1 _ 20+1
Rp(3-2 —4) =14 Ra, ,(277) + Rpy 1,49,

Thus Rco(3 - 224 —4) = Rp(3 - 22141 — 4).
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The necessity of Claim 3 follows from Lemma 2.2 and the sufficiency of Claim 3.
This completes the proof of Claim 3. g

Now let
Ci=Cn0m—14r], Di=DnN[0,m—1+rmr)].
Then
CiUDy =[0,m—14r], CiNDy={r,r}
Moreover, for any integer n € [0, m — 1 4 r1], we have

Rey(n) = {(e,d) e < <n,e,d € Cre+ ¢ =n}
=H{(c,d):c<d <n,e,d €Coe+ =n}
:Rc(n)v

Rp,(n) = |{(d,d) :d <d' <n,d,d € Dy,d+d = n}]
={(d,d):d<d <n.d.d €D d+d =n}
Thus for any integer n € [0,m — 1 4 r1], we have
Re, (n) = Rc(n) = Rp(n) = Rp, (n).
Noting that ro < m — 1, we see that r; + 73 < m — 1+ r;. By Claim 2, there exists a
positive integer [ such that r; = 92l+1 _ 2,19 = 921+1 _ 1.
Let E and F be as in Claim 3. If m > 22%2 -1 and 0 € C, then m—1+7; > 3.22+1 4
and
0(3 . 221+1 _ 4) U D(3 A 22l+1 _ 4) — [0,3 . 22[+1 _ 4]7
C(3 . 22l+1 _ 4) N D(3 . 22l+1 _ 4) — {22l+1 _ 2,22l+1 o 1}

Moreover, R 302141 _gy(n) = Ro(n) = Rp(n) = Rpza2141_4(n) for all n € [0,3 -
2241 _ 4], By Lemma 2.2, we have

C(3-22" —4)=F, D(3-22' —4)=F.
By

Ro(3-2°71 =3) = x0(3- 22 = 3) + Ray, | By, (2T = 1) + Rpy, (2771 1) — 1,

Rp(3-2%"1 =3) = Rpy ) 4y, (27 = 1) + Ray, (271 4+ 1) - 1,
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we know that Rg(3- 22+ —3) = Rp(3- 2241 — 3) if and only if yco(3 - 22+ — 3) =0,
that is, 3-2%"*1 —3 € D. Noting that 221 —2 € Ay 1,22t —1 € By, 3-2%F1 2=
(22141 — 1) 4+ (2242 — 1) in C and 3- 22+ —2 =1+ (3-22*! —3) in D, we obtain

Ro(3-271 = 2) = 14 xo(3- 2% = 2) + Rayy, By, (221) + R,y (2271 4 2)
~ XAgiq (3-2%F1 —2— (2212 —2 4 2%F1 1))
=14 xc(3-2241 —2) 4 RA21+11321+1(22Z+1) n RBQZ+1(221+1 +2)

and

Rp(3-22+1 —9) =14 RB2l+1:A25+1(22l+1) n RA2l+l(22z+1 +2)
— XBy, (3" 92+l 9 _ (9242 _ 9 4 9241 _ 9))

= RB21+17A2l+1 (22+1) + RA2l+1 (2°71 +2).

Thus by Lemma 2.5, we have Rc(3 - 22+ —2) > Rp(3-22+! — 2) which is impossible.
Therefore m < 224+2 — 2,
Now we assume that 2241 < m < 2242 _ 3 and 0 € C. Let

M=r+m=22"—_24m.

Since 2272 —2 < M < 3-2?+1 _ 5 by Lemma 2.2, we have

E(M)UF(M)=1[0,M], E(M)nNF(M)={22 -2 2%+ 1}, (3.20)
Rpon(n) = Rg(n) = Rp(n) = Rpy(n) for any integer n € [0, M]. (3.21)
Moreover,

C(MY)UD(M —1)=[0,M], C(M)ND(M —1)= {28+t —2 221 _ 1} (3.22)
Since Rc(n) = Rp(n) for all n € N and 0 € D, we have
Rory(n) = Re(n) = Rp(n) = Rp—1)(n) (3.23)
for any integer n € [0, M]. By (3.20)—(3.23) and Lemma 2.2, we have
C(M)=E(M), DM—-1)=F(M). (3.24)
Then yp(M) =1, xr(M) = 0.

By 221 -3 € Ay, 1, wehave 3-22F1 -5 € F. Then M < 3-2%+1 -5 If yp(M+1) = 1,
then xp(M +1) =0 and C(M +1) = E(M + 1), D(M + 1) = F(M +1) U {M, M +1}.
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Thus

Re(M+1)=|{(c,d):0<c<d <M+1,¢,d €Cioc+c =M+ 1}
=l(e,d):0<e<d <M+1,c,d € C(M+1),c+c =M+1}|
= Rpy1)(M +1)

and

Rp(M +1)=|{(d,d):1<d<d <M+1,d,d € D,d+d =M +1}|
=N(d,d):1<d<d <M+1,d,d € DIM+1),d+d =M + 1}|
=1+|{(d,d):1<d<d <M+1,dd eFM+1),d+d =M +1}|
:1+RF(M+1)(M+1).

By Claim 3, we have Rg(ar41)(M+1) = Rp(a41)(M+1). Then Ro(M+1) # Rp(M+1),
a contradiction. Thus xg(M +1) =0 and xp(M +1) = 1.
Let t be an arbitrary positive integer such that M < M +t < M +t+4+1 < 3-22+1 4,
Then 1 <t < 2%+ _ 3. Define the sets S and T by
S=(ENC)(M+t)U (F(M+t)\D(M +1)),
T=(FND)(M+t)U(EM+t)\C(M +1)).
Noting that
EM+t)UF(M +1t)=[0,M +t] = (C(M + t)\{M + 1}) U (D(M + t)\{M}),
E(M +t)NF(M +t) = {221 —2 2211 _ 1},
we have
SCCM+t)\{M+1}, TCDM+t)\{M},
SUT = (C(M +t)\{M +1}) U (D(M + t)\{M}),
SNT = {221 — 2,22 — 1} = (C(M + t)\{M +1}) N (D(M + t)\{M}).
Then
IS|+|T|=|SUT|+|SNT| = |C(M+t)\{M +1}| + |D(M + t)\{M}|.
It follows that

S=C(M+t)\{M~+1}, T=D(M+t)\{M}. (3.25)
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For M +t<n <322+ _ 4 let

Ni(t,n) = Rpo2it1_3) purencsn (M)
Na(t,n) = F(22l+1 3),E(M+t) \C(M+t)(n)’
N3(t,n) = Rpo2it1_3) p(aen e+ ()
Na(t;n) = Rp20+1_3) p(ar\par) ()
We claim that
|E(M + t)\C(M +t)| = Ni(t,n) + Na(t,n), (3.26)
|F(M + t)\D(M +t)| = N3(t,n) + Nu(t,n). (3.27)

In fact, if E(M +¢t)\C(M +t) =0, then Ny(¢t,n) = Na(t,n) = 0; if
EM+t)\C(M +t)={c1,...,cu}

for some positive integer u, then by (3.24), we have ¢; > M+1andso 0 < n—c¢; < 02l+1_3
for i € [1, u]. In view of

E(22l+1 o 3) U F(22l+1 o 3) _ [07 221+1 o 3], E(22l+1 _ 3) N F(22l+1 _ 3) — @7
we have
u
Ni(t,n) + Na(t, n) ZXE<22Z+1 5 (=) + D Xpat1 g (n—c) =u.
i=1

Thus (3.26) holds. Similarly, we can deduce (3.27) holds.
By M +t<3-2241 4 <2243 _ 4 < 2M, we can obtain

Rpt)(n) = Rpncy v+t (n) + Rppaie1 g porroncarn ()
= R(proy(v+e)(n) + Ni(t,n).

y (3.24) and (3.25), we have

Reovge)(n) = Rouyonfm+13 (1) + Xeupo\ {1y (n — M — 1)
= Renoy+e) () + RE(221+1—3),F(M+t)\D(M+t)(n) +xe(n—M—1)
= Rp(u+)(n) — Ni(t,n) + N3(t,n) + xg(n — M —1). (3.28)

Similarly, we can get

Rpu+e)(n) = Rpuep (i (n) + Xpvo fary (n — M)
= Rpap)(ar+6)(n) + RF(22l+173),E(M+t)\C(M+t)(n) +xr(n— M)
= RF(M+t)(n) —N4(t,n) +N2(t,n) +XF(n—M). (329)
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By choosing n =M + ¢ and n = M + ¢+ 1 in (3.28) respectively, we have

Reusny(M +t) = Rp(usn (M +t) — Ni(t, M +t) + N3(t, M +t) + xg(t — 1) (3.30)

and

Roryesy(M +t+1) = Rouyoy (M +t+1) + xe(M +t+1)

= Rpmstey(M +t4+1) = xp(M +t4+1) = Ni(t, M + 1+ 1)

+ N3(t,M +t+1)+ xe(t) +xc(M +t+1).

By choosing n = M +¢ and n = M 4+t + 1 in (3.29) respectively, we have

Rpmsny (M +1t) = Rpaqe) (M 4 t) — Ny(t, M +t) + No(t, M +t) + xr ()

and

Rpyiry(M +t+1) = Rpqo (M +t+1)

= Rp(mtt+1)(M +t+1) — Ny(t, M +t + 1)

+ No(t,M +t+1)+ xp(t+1).

(3.31)

(3.32)

(3.33)

Note that RC(n) (n) = RD(n) (n) and RE(n) (n) = RF(n) (n). By (3.30)—(3.33), we have

Ni(t,M +1t) + No(t, M +1t)+ xr(t) = N3(t, M +t) + Na(t, M +t) + xpg(t — 1)

and

Ni(t, M +t+1)+ No(t, M+t + 1)+ xg(M+t+1)+xp(t+1)
= N3(t, M +t+1)+ Ny(t, M +t+ 1)+ xp(t) + xc(M +t+1).

By (3.26) and (3.27), we have
[E(M +t\C(M + )| + xr(t) = [F(M +)\D(M +t)] + x5(t - 1)
and

|[E(M +t)\C(M +t)| +xe(M+t+1)+ xp(t+1)
= |F(M 4+ t\D(M +t)|+ xp(t) + xc(M +t+1).

Then

xrt)+xet)+xc(M+t+1)=xgt—1)+xe(M+t+1)+xp(t+1).

If M is even, then we can write

21
M = (2272 —2) + ) ;2"
i=1
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2
where b; € {0,1}. It follows from xr(M) = 0 that XB2Z+1( > b;2Y) = 1. By choosing
i=1
M+t+1=3-22+1 —4in (3.34), we see that ¢ is odd and

21

Xp(t+1) = xp (227 — Zb 2') = XBy (Z(l —b)2') = 1.

i=1

Then xg(t + 1) = 0. It follows from xr(t) + xp(t) = 1 and xg(3 - 22! —4) = 1 that
Xe(t—1)=0and xp(t —1) = 1. Since xg(t — 1) + xg(t) = 1, we have xg(t) = 1 and

Xr(t) = 0. Noting that xg(t—1) = xg(t+1), we have t =3 (mod 4) and so ¢ > 3. Then
XE( 2) = 0. By choosing M + (t — 1) +1 =3 - 22+ —5in (3.34), we have

Xp(t—=1)+xe(t—1)+xc(M+({t-1)+1)=xelt—-2)+xe(M+(t—-1)+1)+xr(t).

It follows from g (M +(t—1)+1) = xg(3-22+!1 —5) = 0 that xc(M +(t—1)+1) = —1,
which is clearly false.
If M is odd, then we can write

2l
M = (222 — +Z2’ > b2

i=f4+2

where f € {0,1,...,2l—1} and b; € {0,1}. It follows from xg(M+1) =0 and xp(M) =0
that

21 f 21
XAgiq1 (2f+1 + Z bi2l) =L XByi, (ZQZ + Z bizl) =1
i=0

i=f+2 i=f+2
Then f is odd. By choosing M +¢+1 = 3-22*1 — 4 in (3.34), we see that ¢ is even and

f 21

2l
xr(t+1) =xr (221+1—2_22i_ Z bi?i) = XBai41 (2f+1_1+ Z (1-b:)2") = 1.

i=0 i=F+2 i=f+2

Then xg(t+1) = 0 and xr(t) = 0. Thus xg(t) = 1. It follows from yg(3 22! —4) =1
that xg(t —1) = 0 and xp(t — 1) = 1. Since xg(t — 1) = xg(t + 1), we have t = 0
(mod 4) and so t > 4. Then xg(t —2) = xg(t —3) =1 and xr(t — 2) = 0. By choosing
M+ (t—2)+1=3-22+1 —6in (3.34), we have

XF(E=2)+xE(t—2)+xc(M+(t—2)+1) = xp(t—3)+xe(M+(t—2)+1) +xp(t—1).

It follows from xg(M + (t —2) +1) = xg(3-22+1 —6) = 1 that xc(M + (t —2)+1) = 2,
which is also impossible. Therefore m = 22+2 — 2.
This completes the proof of Theorem 1.3.
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