ON THE STRUCTURE OF NON-NEGATIVE INTEGER SETS WHICH HAVE IDENTICAL REPRESENTATION FUNCTIONS

CUI-FANG SUN¹ (D) AND HAO PAN^{1,2}

¹School of Mathematics and Statistics, Anhui Normal University, Wuhu, Anhui, 241002, P.R. China ²Department of Basic Courses, Lu'an Vocational Technical College, Lu'an, Anhui, 237001, P.R. China

Corresponding author: Cui-Fang Sun, email: cuifangsun@163.com

(Received 27 November 2023)

Abstract Let \mathbb{N} be the set of all non-negative integers. For any integer r and m, let $r + m\mathbb{N} = \{r + mk : k \in \mathbb{N}\}$. For $S \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, let $R_S(n)$ denote the number of solutions of the equation n = s + s' with $s, s' \in S$ and s < s'. Let r_1, r_2, m be integers with $0 < r_1 < r_2 < m$ and $2 \mid r_1$. In this paper, we prove that there exist two sets C and D with $C \cup D = \mathbb{N}$ and $C \cap D = (r_1 + m\mathbb{N}) \cup (r_2 + m\mathbb{N})$ such that $R_C(n) = R_D(n)$ for all $n \in \mathbb{N}$ if and only if there exists a positive integer l such that $r_1 = 2^{2l+1} - 2, r_2 = 2^{2l+1} - 1, m = 2^{2l+2} - 2$.

Keywords: Sárközy's problem; representation function; Thue–Morse sequence

2020 Mathematics subject classification: Primary 11B34; 11B83

1. Introduction

Let N be the set of all non-negative integers. For any integer r and m, let $r + m\mathbb{N} = \{r + mk : k \in \mathbb{N}\}$. Let A be the set of all non-negative integers which contain an even number of digits 1 in their binary representations and $B = \mathbb{N}\setminus A$. The set A is called Thue–Morse sequence. For any positive integer l, let $A_l = A \cap [0, 2^l - 1]$ and $B_l = B \cap [0, 2^l - 1]$. For $S \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, let the representation function $R_S(n)$ denote the number of solutions of the equation s + s' = n with $s, s' \in S$ and s < s'. Sárközy asked whether there exist two subsets $C, D \subseteq \mathbb{N}$ with $|(C \cup D) \setminus (C \cap D)| = \infty$ such that $R_C(n) = R_D(n)$ for all sufficiently large integers n. By using the Thue–Morse sequence, Dombi [6] answered Sárközy's problem affirmatively. Later, Lev [10], Sándor [12] and Tang [17] proved this result by different methods. Partitions of non-negative integers and their corresponding representation functions have been extensively studied by many authors. The related results can be found in [4, 5, 7–9, 12–17, 19].

In 2012, Yu and Tang [20] began to focus on partitions of non-negative integers with the intersection not empty. They studied the intersection of two sets is an arithmetic progression and posed the following conjecture:

© The Author(s), 2025. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Conjecture 1.1. Let $m \in \mathbb{N}$ and $R \subset \{0, 1, ..., m-1\}$. If $C \cup D = \mathbb{N}$ and $C \cap D = \{r + km : k \in \mathbb{N}, r \in R\}$, then $R_C(n) = R_D(n)$ cannot hold for all sufficiently large n.

In 2016, Tang [18] obtained the following theorem.

Theorem A [18, Theorem 1]. Let *m* be an integer with $m \ge 2$. If $C \cup D = \mathbb{N}$ and $C \cap D = m\mathbb{N}$, then $R_C(n) = R_D(n)$ cannot hold for all large enough integers *n*.

In 2016, Chen and Lev [3] disproved Conjecture 1.1 by the following result.

Theorem B [3, Theorem 1]. Let *l* be a positive integer. There exist two sets *C* and *D* with $C \cup D = \mathbb{N}$ and $C \cap D = (2^{2l} - 1) + (2^{2l+1} - 1)\mathbb{N}$ such that $R_C(n) = R_D(n)$ for every positive integer *n*.

In [3], Chen and Lev also proposed the following problem.

Problem 1.2. Given $R_C(n) = R_D(n)$ for every positive integer $n, C \cup D = \mathbb{N}$ and $C \cap D = r + m\mathbb{N}$ with $r \ge 0$ and $m \ge 2$, must there exist an integer $l \ge 1$ such that $r = 2^{2l} - 1, m = 2^{2l+1} - 1$?

Afterwards, Li and Tang [11], Chen, Tang and Yang [2] solved Problem 1.2 under the condition $0 \le r < m$. In 2021, Chen and Chen [1] solved Problem 1.2 affirmatively.

Theorem C [1, **Theorem 1.1**]. Let $m \ge 2$ and $r \ge 0$ be two integers and let C and D be two sets with $C \cup D = \mathbb{N}$ and $C \cap D = r + m\mathbb{N}$ such that $R_C(n) = R_D(n)$ for every positive integer n. Then there exists a positive integer l such that $r = 2^{2l} - 1$ and $m = 2^{2l+1} - 1$.

Let r_1, r_2, m be integers with $0 < r_1 < r_2 < m$. In this paper, we focus on partitions of non-negative integers into two sets C, D with $C \cup D = \mathbb{N}$ and $C \cap D = (r_1 + m\mathbb{N}) \cup (r_2 + m\mathbb{N})$ such that $R_C(n) = R_D(n)$ for all $n \in \mathbb{N}$ and obtain the following result.

Theorem 1.3. Let r_1, r_2, m be integers with $0 < r_1 < r_2 < m$ and $2 | r_1$. Then there exist two sets C and D with $C \cup D = \mathbb{N}$ and $C \cap D = (r_1 + m\mathbb{N}) \cup (r_2 + m\mathbb{N})$ such that $R_C(n) = R_D(n)$ for all $n \in \mathbb{N}$ if and only if there exists a positive integer l such that $r_1 = 2^{2l+1} - 2, r_2 = 2^{2l+1} - 1, m = 2^{2l+2} - 2.$

Motivated by Theorems B and C, we propose the following conjecture for further research.

Conjecture 1.4. Let r_1, r_2, m be integers with $0 < r_1 < r_2 < m$ and $2 \nmid r_1$. Then there exist two sets C and D with $C \cup D = \mathbb{N}$ and $C \cap D = (r_1 + m\mathbb{N}) \cup (r_2 + m\mathbb{N})$ such that $R_C(n) = R_D(n)$ for all $n \in \mathbb{N}$ if and only if there exists a positive integer l such that $r_1 = 2^{2l} - 1, r_2 = 2^{2l+1} + 2^{2l} - 2, m = 2^{2l+2} - 2.$

Throughout this paper, let $f(x) = a_0 + a_1x + \dots + a_nx^n \in \mathbb{Z}[x]$ and for $m \leq n$, define

$$(f(x))_m = a_0 + a_1x + \dots + a_mx^m.$$

For $C, D \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, let $R_{C,D}(n)$ be the number of solutions of n = c + d with $c \in C$ and $d \in D$. Let $C + D = \{c + d : c \in C, d \in D\}$. Let C(x) be the set of integers in C which are less than or equal to x. The characteristic function of C is denoted by

$$\chi_C(n) = \begin{cases} 1, & n \in C, \\ 0, & n \notin C. \end{cases}$$

2. Some lemmas

Lemma 2.1. [3, Lemma 1]. Suppose that $C_0, D_0 \subseteq \mathbb{N}$ satisfy $R_{C_0}(n) = R_{D_0}(n)$ for all $n \in \mathbb{N}$, and that m is a non-negative integer with $m \notin (C_0 - D_0) \cup (D_0 - C_0)$. Then, letting

$$C_1 := C_0 \cup (m + D_0) and D_1 := D_0 \cup (m + C_0),$$

we have $R_{C_1}(n) = R_{D_1}(n)$ for all $n \in \mathbb{N}$ and furthermore

- (i) $C_1 \cup D_1 = (C_0 \cup D_0) \cup (m + C_0 \cup D_0);$
- (ii) $C_1 \cap D_1 \supseteq (C_0 \cap D_0) \cup (m + C_0 \cap D_0)$, the union being disjoint.

Moreover, if $m \notin (C_0 - C_0) \cup (D_0 - D_0)$, then also in (i) the union is disjoint, and in (ii) the inclusion is in fact an equality. In particular, if $C_0 \cup D_0 = [0, m - 1]$, then $C_1 \cup D_1 = [0, 2m - 1]$, and if C_0 and D_0 indeed partition the interval [0, m - 1], then C_1 and D_1 partition the interval [0, 2m - 1].

Lemma 2.2. [8, Claim 1]. Let $0 < r_1 < \cdots < r_s \leq m$ be integers. Then there exists at most one pair of sets (C, D) such that $C \cup D = [0, m], 0 \in C, C \cap D = \{r_1, \ldots, r_s\}$ and $R_C(n) = R_D(n)$ for every $n \leq m$.

Lemma 2.3. [8, Claim 3]. If for some positive integer M, the integers $M - 1, M - 2, M - 4, M - 8, \ldots, M - 2^{\lceil \log_2 M \rceil - 1}$ are all contained in the set A, then $\lceil \log_2 M \rceil$ is odd and $M = 2^{\lceil \log_2 M \rceil} - 1$.

Lemma 2.4. [8, Claim 4]. If for some positive integer M, the integers $M - 1, M - 2, M - 4, M - 8, \ldots, M - 2^{\lceil \log_2 M \rceil - 1}$ are all contained in the set B, then $\lceil \log_2 M \rceil$ is even and $M = 2^{\lceil \log_2 M \rceil} - 1$.

Lemma 2.5. [8, Theorem 3]. Let C and D be sets of non-negative integers such that $C \cup D = [0,m], C \cap D = \emptyset$ and $0 \in C$. Then $R_C(n) = R_D(n)$ for every positive integer n if and only if there exists a positive integer l such that $C = A_l$ and $D = B_l$.

3. Proofs

Proof of Theorem 1.3. (Sufficiency). For any given positive integer l, let

$$m_{i} = \begin{cases} 2^{i+1}, & 0 \le i \le 2l-1, \\ 2^{i+1}-2, & i = 2l, \\ 2^{i+1}-2^{i-2l}, & i \ge 2l+1. \end{cases}$$
(3.1)

For given sets $C_0 = \{0\}, D_0 = \{1\}$, define

$$C_i = C_{i-1} \cup (m_{i-1} + D_{i-1}), \quad D_i = D_{i-1} \cup (m_{i-1} + C_{i-1}), \quad i = 1, 2, \dots$$
 (3.2)

and

$$C = \bigcup_{i \in \mathbb{N}} C_i, \qquad D = \bigcup_{i \in \mathbb{N}} D_i.$$
(3.3)

It is clear that C_0 and D_0 partition the interval $[0, m_0 - 1]$ and

$$m_0 = 2 \notin (C_0 - D_0) \cup (D_0 - C_0) \cup (C_0 - C_0) \cup (D_0 - D_0)$$

and $R_{C_0}(n) = R_{D_0}(n)$ for all $n \in \mathbb{N}$ (both representation functions are identically equal to 0). Applying Lemma 2.1 inductively 2l-1 times, we can deduce that for any $i \in [0, 2l-1]$, $R_{C_i}(n) = R_{D_i}(n)$ for all $n \in \mathbb{N}$, the sets C_i and D_i partition the interval $[0, m_i - 1]$ and

$$m_i = 2^{i+1} \notin (C_i - D_i) \cup (D_i - C_i) \cup (C_i - C_i) \cup (D_i - D_i).$$

In particular, $R_{C_{2l-1}}(n) = R_{D_{2l-1}}(n)$ for all $n \in \mathbb{N}$, the sets C_{2l-1} and D_{2l-1} partition the interval $[0, m_{2l-1} - 1] = [0, 2^{2l} - 1]$ and

$$m_{2l-1} = 2^{2l} \notin (C_{2l-1} - D_{2l-1}) \cup (D_{2l-1} - C_{2l-1}) \cup (C_{2l-1} - C_{2l-1}) \cup (D_{2l-1} - D_{2l-1}).$$

By Lemma 2.1, we have $R_{C_{2l}}(n) = R_{D_{2l}}(n)$ for all $n \in \mathbb{N}$, the sets C_{2l} and D_{2l} partition the interval $[0, 2m_{2l-1} - 1] = [0, 2^{2l+1} - 1] = [0, m_{2l} + 1]$. In addition, it is easily seen that $\{0, m_{2l}\} \subseteq C_{2l}$ and $\{1, m_{2l} + 1\} \subseteq D_{2l}$. Then

$$m_{2l} \notin (C_{2l} - D_{2l}) \cup (D_{2l} - C_{2l}), \quad m_{2l} \in (C_{2l} - C_{2l}) \cup (D_{2l} - D_{2l}).$$

By Lemma 2.1, we have $R_{C_{2l+1}}(n) = R_{D_{2l+1}}(n)$ for all $n \in \mathbb{N}$ and

$$C_{2l+1} \cup D_{2l+1} = [0, 2m_{2l} + 1] = [0, m_{2l+1} - 1],$$

$$C_{2l+1} \cap D_{2l+1} = (C_{2l} \cup (m_{2l} + D_{2l})) \cap (D_{2l} \cup (m_{2l} + C_{2l}))$$

$$= (C_{2l} \cap D_{2l}) \cup (C_{2l} \cap (m_{2l} + C_{2l})) \cup (D_{2l} \cap (m_{2l} + D_{2l}))$$

$$\cup (m_{2l} + C_{2l} \cap D_{2l})$$

$$= \{m_{2l}, m_{2l} + 1\}.$$

Applying again Lemma 2.1, we can conclude that $R_{C_i}(n) = R_{D_i}(n)$ for all $n \in \mathbb{N}$, $C_i \cup D_i = [0, m_i - 1]$ and $C_i \cap D_i = \{m_{2l}, m_{2l} + 1\} + \{0, m_{2l+1}, \dots, (2^{i-2l} - 1)m_{2l+1}\}$ for each $i \geq 2l + 1$.

Therefore, by the definitions of C and D in (3.1)–(3.3), we have $R_C(n) = R_D(n)$ for all $n \in \mathbb{N}, C \cup D = \mathbb{N}$ and

$$C \cap D = \{m_{2l}, m_{2l} + 1\} + m_{2l+1}\mathbb{N} = (r_1 + m\mathbb{N}) \cup (r_2 + m\mathbb{N}).$$

(Necessity). To prove the necessity of Theorem 1.3, we need the following three claims.

Claim 1. Given $0 < r_1 < r_2 \le m$, there exists at most one pair of sets (C, D) such that $C \cup D = \mathbb{N}$, $C \cap D = (r_1 + m\mathbb{N}) \cup (r_2 + m\mathbb{N})$ and $R_C(n) = R_D(n)$ for all $n \in \mathbb{N}$.

Proof of Claim 1. Assume that there exist at least two pairs of sets (C, D) and (C', D') which satisfy the conditions

$$C \cup D = \mathbb{N}, C \cap D = (r_1 + m\mathbb{N}) \cup (r_2 + m\mathbb{N}), R_C(n) = R_D(n) \text{ for all } n \in \mathbb{N},$$
$$C' \cup D' = \mathbb{N}, C' \cap D' = (r_1 + m\mathbb{N}) \cup (r_2 + m\mathbb{N}), R_{C'}(n) = R_{D'}(n) \text{ for all } n \in \mathbb{N}.$$

We may assume that $0 \in C \cap C'$. Let k be the smallest positive integer such that $\chi_C(k) \neq \chi_{C'}(k)$. Write

$$((r_1 + m\mathbb{N}) \cup (r_2 + m\mathbb{N})) \cap [0, k] = \{t_1, \dots, t_s\},\$$
$$C_1 = C \cap [0, k], \quad D_1 = D \cap [0, k],\$$
$$C_2 = C' \cap [0, k], \quad D_2 = D' \cap [0, k].$$

Then

$$C_1 \cup D_1 = C_2 \cup D_2 = [0, k], \tag{3.4}$$

$$C_1 \cap D_1 = C_2 \cap D_2 = \{t_1, \dots, t_s\},\tag{3.5}$$

$$\chi_{C_1}(k) \neq \chi_{C_2}(k), \ 0 \in C_1 \cap C_2.$$
(3.6)

For any integer $n \in [0, k]$, by the hypothesis, we have

$$R_{C_1}(n) = |\{(c,c') : c < c' \le n, c, c' \in C_1, c + c' = n\}|$$

= $R_C(n) = R_D(n) = R_{D_1}(n),$ (3.7)

$$R_{C_2}(n) = |\{(c,c') : c < c' \le n, c, c' \in C_2, c+c' = n\}|$$

= $R_{C'}(n) = R_{D'}(n) = R_{D_2}(n).$ (3.8)

Thus there exist two pairs of sets (C_1, D_1) and (C_2, D_2) satisfying (3.4)–(3.8). By Lemma 2.2, this is impossible. This completes the proof of Claim 1.

Claim 2. Let r_1, r_2, m be integers with $0 < r_1 < r_2 < r_1 + r_2 \le m$ and $2 | r_1$. Let C and D be sets of non-negative integers such that $C \cup D = [0, m], C \cap D = \{r_1, r_2\}$ and $0 \in C$. If $R_C(n) = R_D(n)$ for any integer $n \in [0, m]$, then there exists a positive integer l such that $r_1 = 2^{2l+1} - 2, r_2 = 2^{2l+1} - 1$.

C. Sun and H. Pan

Proof of Claim 2. Let

$$p_C(x) = \sum_{i=0}^m \chi_C(i) x^i, \ p_D(x) = \sum_{i=0}^m \chi_D(i) x^i.$$
(3.9)

Then

$$\frac{1}{2}(p_C(x)^2 - p_C(x^2)) = \sum_{n=0}^{\infty} R_C(n)x^n, \quad \frac{1}{2}(p_D(x)^2 - p_D(x^2)) = \sum_{n=0}^{\infty} R_D(n)x^n.$$
(3.10)

Since $R_C(n) = R_D(n)$ for any integer $n \in [0, m]$, we have

$$\left(\sum_{n=0}^{\infty} R_C(n) x^n\right)_m = \left(\sum_{n=0}^{\infty} R_D(n) x^n\right)_m.$$
(3.11)

By (3.9)-(3.11), we have

$$\left(\frac{1}{2}(p_C(x)^2 - p_C(x^2))\right)_m = \left(\sum_{n=0}^{\infty} R_C(n)x^n\right)_m = \left(\sum_{n=0}^{\infty} R_D(n)x^n\right)_m$$
$$= \left(\frac{1}{2}(p_D(x)^2 - p_D(x^2))\right)_m.$$

Noting that $C \cup D = [0, m], C \cap D = \{r_1, r_2\}$, we have

$$p_D(x) = \frac{1 - x^{m+1}}{1 - x} - p_C(x) + x^{r_1} + x^{r_2}.$$

Then

$$\left(p_C(x)^2 - p_C(x^2)\right)_m = \left(\left(\frac{1 - x^{m+1}}{1 - x} - p_C(x) + x^{r_1} + x^{r_2}\right)^2 - \left(\frac{1 - x^{2m+2}}{1 - x^2} - p_C(x^2) + x^{2r_1} + x^{2r_2}\right)\right)_m$$

Thus

$$(2p_C(x^2))_m = \left(\frac{1-x^{2m+2}}{1-x^2} + 2p_C(x)x^{r_1} + 2p_C(x)x^{r_2} + 2p_C(x)\frac{1-x^{m+1}}{1-x} - \left(\frac{1-x^{m+1}}{1-x}\right)^2 - 2x^{r_1}\frac{1-x^{m+1}}{1-x} - 2x^{r_2}\frac{1-x^{m+1}}{1-x} - 2x^{r_1+r_2}\right)_m.$$

$$(3.12)$$

An easy calculation shows that $r_1 \ge 6$, $\{0, 3, 5, 6\} \subset C$ and $\{1, 2, 4, 7\} \subset D$. In order to prove $r_2 = r_1 + 1$, we suppose that $r_2 \ge r_1 + 2$ and we will show that this leads to a contradiction.

The coefficient of x^{r_1-1} in (3.12) is $0 = 2 \sum_{i=0}^{r_1-1} \chi_C(i) - r_1$. Since $r_1 \in C$, we have $\chi_C(r_1) = 1$. Then $2\sum_{i=0}^{r_1} \chi_C(i) = r_1 + 2$. The coefficient of x^{r_1} in (3.12) is $2\chi_C\left(\frac{r_1}{2}\right) = 2\sum_{i=0}^{r_1} \chi_C(i) - r_1 = 2$. Then $\chi_C\left(\frac{r_1}{2}\right) = 1$. The coefficient of x^{r_1+1} in (3.12) is $0 = 2 \sum_{i=0}^{r_1+1} \chi_C(i) - r_1 - 4 = 2\chi_C(r_1+1) - 2$. Then $\chi_C(r_1+1) = 1$. The coefficient of x^{r_1+2} in (3.12) is $2\chi_C\left(\frac{r_1+2}{2}\right) = 2\sum_{i=0}^{r_1+2}\chi_C(i) - r_1 - 4$. Then $\chi_C\left(\frac{r_1+2}{2}\right) = \chi_C(r_1+2)$. If $r_2 = r_1 + 2$, then $\chi_C(r_1 + 2) = 1$. Comparing the coefficients of $x^{r_1 + s}$ with $s \in \{3, 4, 5\}$ on the both sides of (3.12), we have

$$0 = 2 \sum_{i=0}^{r_1+3} \chi_C(i) - r_1 - 6,$$

$$2\chi_C\left(\frac{r_1+4}{2}\right) = 2 \sum_{i=0}^{r_1+4} \chi_C(i) - r_1 - 8,$$

$$0 = 2 \sum_{i=0}^{r_1+5} \chi_C(i) - r_1 - 6.$$

Then $\chi_C(r_1 + 3) = 0$, $\chi_C(r_1 + 4) = 1$ and $\chi_C(r_1 + 5) = -1$, a contradiction. Thus $r_2 \ge r_1 + 3$. The coefficient of x^{r_1+3} in (3.12) is

$$0 = 2\sum_{i=0}^{r_1+3} \chi_C(i) - r_1 - 4 = 2\chi_C(r_1+2) + 2\chi_C(r_1+3)$$

Then $\chi_C(r_1+2) = \chi_C(r_1+3) = 0$. Thus $\chi_C(\frac{r_1+2}{2}) = 0$ and $r_2 \ge r_1+4$. The coefficient of x^{r_1+4} in (3.12) is

$$2\chi_C\left(\frac{r_1+4}{2}\right) = 2\sum_{i=0}^{r_1+4}\chi_C(i) - r_1 - 6 = 2\chi_C(r_1+4) - 2.$$

Then $\chi_C(r_1+4) = 1$, $\chi_C(\frac{r_1+4}{2}) = 0$ and $2\sum_{i=0}^{r_1+4} \chi_C(i) = r_1 + 6$. By Lemma 2.2, we have

$$C \cap [0, r_1 - 1] = A \cap [0, r_1 - 1], \quad D \cap [0, r_1 - 1] = B \cap [0, r_1 - 1].$$
(3.13)

Since $\chi_C(\frac{r_1+2}{2}) = \chi_C(\frac{r_1+4}{2})$ and $\frac{r_1+4}{2} \le r_1 - 1$, by (3.13) and the definition of A, we

have $r_1 \equiv 0 \pmod{4}$. It follows that $r_1 \geq 8$ and $\chi_C\left(\frac{r_1+6}{2}\right) = 1$. Let k be a positive even integer such that $r_1 \leq k < k+1 < \min\{r_2, 2r_1\} \leq m$. Comparing the coefficients of x^k and x^{k+1} on the both sides of (3.12) respectively, we

have

$$2\chi_C\left(\frac{k}{2}\right) = 2\chi_C(k-r_1) + 2\sum_{i=0}^k \chi_C(i) - k - 2,$$
$$0 = 2\chi_C(k+1-r_1) + 2\sum_{i=0}^{k+1} \chi_C(i) - k - 4.$$

Subtracting the above two equalities and dividing by 2 we can get

$$\chi_C\left(\frac{k}{2}\right) = \chi_C(k-r_1) - \chi_C(k+1-r_1) - \chi_C(k+1) + 1.$$
(3.14)

Since $k + 1 - r_1 < r_1, k - r_1$ is even, by (3.13), we have

$$\chi_C(k - r_1) + \chi_C(k + 1 - r_1) = 1.$$

If $\chi_C(k-r_1) = 0$, then $\chi_C(k+1-r_1) = 1$. By (3.14), we get $\chi_C(\frac{k}{2}) = 0$. If $\chi_C(k-r_1) = 1$, then $\chi_C(k+1-r_1) = 0$. By (3.14), we get $\chi_C(\frac{k}{2}) = 1$. Thus

$$\chi_C(k-r_1) = \chi_C\left(\frac{k}{2}\right). \tag{3.15}$$

If $\min\{r_2, 2r_1\} > 2r_1 - 1$, then choose $k = 2r_1 - 2^{i+1}$ with $i \ge 0$ in (3.15), we have

$$\chi_C(r_1 - 2^{i+1}) = \chi_C(r_1 - 2^i).$$

Then

$$\chi_C(r_1-1) = \chi_C(r_1-2) = \chi_C(r_1-4) = \dots = \chi_C(r_1-2^{\lceil \log_2 r_1 \rceil - 1}).$$

By Lemmas 2.3 and 2.4, we have $r_1 = 2^{\lceil \log_2 r_1 \rceil} - 1$, which contradicts $2 \mid r_1$.

If $r_2 = 2r_1 - 1$, then compare the coefficients of x^{r_2} and x^{r_2-1} on the both sides of (3.12) respectively, we have

$$0 = 2\chi_C(r_1 - 1) + 2\sum_{i=0}^{r_2} \chi_C(i) - r_2 - 3 = 2\chi_C(r_1 - 1) + 2\sum_{i=0}^{r_2 - 1} \chi_C(i) - r_2 - 1,$$

$$2\chi_C(r_1 - 1) = 2\chi_C(r_1 - 2) + 2\sum_{i=0}^{r_2 - 1} \chi_C(i) - r_2 - 1.$$

Then $2\chi_C(r_1-1) = \chi_C(r_1-2)$. It follows that $\chi_C(r_1-2) = \chi_C(r_1-1) = 0$, which contradicts $\chi_C(r_1-2) + \chi_C(r_1-1) = 1$. Thus $r_2 \leq 2r_1 - 2$.

Let k be a non-negative integer such that $2r_1 \leq 2r_1 + k < 2r_1 + k + 1 < r_1 + r_2 \leq m$. If k is even, then compare the coefficients of x^{2r_1+s} with $s \in \{k, k+1\}$ on the both sides of (3.12), we have

$$2\chi_C\left(\frac{2r_1+k}{2}\right) = 2\chi_C(r_1+k) + 2\chi_C(2r_1+k-r_2) + 2\sum_{\substack{i=0\\i=0}}^{2r_1+k}\chi_C(i) - 2r_1 - k - 4,$$

$$0 = 2\chi_C(r_1+k+1) + 2\chi_C(2r_1+k+1-r_2) + 2\sum_{\substack{i=0\\i=0}}^{2r_1+k}\chi_C(i) - 2r_1 - k - 6.$$

Subtracting the above two equalities and dividing by 2 we can get

$$\chi_C\left(\frac{2r_1+k}{2}\right) = \chi_C(r_1+k) + \chi_C(2r_1+k-r_2) - \chi_C(2r_1+k+1) - \chi_C(r_1+k+1) - \chi_C(2r_1+k+1-r_2) + 1.$$
(3.16)

If k is odd, then compare the coefficients of x^{2r_1+s} with $s \in \{k, k+1\}$ on the both sides of (3.12), we have

$$0 = 2\chi_C(r_1 + k) + 2\chi_C(2r_1 + k - r_2) + 2\sum_{i=0}^{2r_1 + k} \chi_C(i) - 2r_1 - k - 5,$$

$$2\chi_C\left(\frac{2r_1+k+1}{2}\right) = 2\chi_C(r_1+k+1) + 2\chi_C(2r_1+k+1-r_2) + 2\sum_{i=0}^{2r_1+k+1}\chi_C(i) - 2r_1-k-5.$$

Subtracting the above two equalities and dividing by 2 we can get

$$\chi_C\left(\frac{2r_1+k+1}{2}\right) = \chi_C(r_1+k+1) + \chi_C(2r_1+k+1-r_2) + \chi_C(2r_1+k+1) - \chi_C(r_1+k) - \chi_C(2r_1+k-r_2).$$
(3.17)

If r_2 is even, then choose k = 0 and k = 2 in (3.16) respectively, we have

$$\chi_C(r_1) = \chi_C(r_1) + \chi_C(2r_1 - r_2) - \chi_C(2r_1 + 1) - \chi_C(r_1 + 1) - \chi_C(2r_1 + 1 - r_2) + 1,$$

$$\chi_C(r_1 + 1) = \chi_C(r_1 + 2) + \chi_C(2r_1 + 2 - r_2) - \chi_C(2r_1 + 3) - \chi_C(r_1 + 3) - \chi_C(2r_1 + 3 - r_2) + 1.$$

Then

$$\chi_C(2r_1 - r_2) - \chi_C(2r_1 + 1) - \chi_C(2r_1 + 1 - r_2) = 0,$$

$$\chi_C(2r_1 + 2 - r_2) - \chi_C(2r_1 + 3) - \chi_C(2r_1 + 3 - r_2) = 0.$$

By (3.13), we have $\chi_C(2r_1 - r_2) + \chi_C(2r_1 + 1 - r_2) = 1$ and $\chi_C(2r_1 + 2 - r_2) + \chi_C(2r_1 + 3 - r_2) = 1$. Then $\chi_C(2r_1 - r_2) = 1$ and $\chi_C(2r_1 + 2 - r_2) = 1$. It follows that $r_2 \equiv 2$

(mod 4). The coefficient of x^{r_2} in (3.12) is

$$2\chi_C\left(\frac{r_2}{2}\right) = 2\chi_C(r_2 - r_1) + 2\sum_{i=0}^{r_2}\chi_C(i) - r_2 - 2$$

and the coefficient of x^{r_2+1} in (3.12) is

$$0 = 2\chi_C(r_2 + 1 - r_1) + 2\sum_{i=0}^{r_2+1}\chi_C(i) - r_2 - 6$$

Then

$$\chi_C\left(\frac{r_2}{2}\right) = \chi_C(r_2 - r_1) - \chi_C(r_2 + 1 - r_1) - \chi_C(r_2 + 1) + 2.$$

By $\chi_C(r_2 - r_1) + \chi_C(r_2 + 1 - r_1) = 1$, we have $\chi_C(r_2 - r_1) = 0$, $\chi_C(r_2 + 1 - r_1) = 1$. By $r_1 \equiv 0 \pmod{4}$ and $r_2 \equiv 2 \pmod{4}$, we have $\chi_C(r_2 - 1 - r_1) = 0$, $\chi_C(r_2 - 2 - r_1) = 1$. The coefficient of x^{r_2-1} in (3.12) is

$$0 = 2\chi_C(r_2 - 1 - r_1) + 2\sum_{i=0}^{r_2 - 1} \chi_C(i) - r_2 - 2.$$

Then $2\sum_{i=0}^{r_2-1}\chi_C(i) = r_2 + 2$. It follows that $2\sum_{i=0}^{r_2}\chi_C(i) = r_2 + 4$ and $\chi_C\left(\frac{r_2}{2}\right) = 1$. The coefficient of x^{r_2-2} in (3.12) is

$$2\chi_C\left(\frac{r_2-2}{2}\right) = 2\chi_C(r_2-2-r_1) + 2\sum_{i=0}^{r_2-2}\chi_C(i) - r_2.$$

Then $\chi_C\left(\frac{r_2-2}{2}\right) = 2 - \chi_C(r_2-1)$. Thus $\chi_C\left(\frac{r_2-2}{2}\right) = \chi_C(r_2-1) = 1$. By (3.13) and $\chi_C\left(\frac{r_2-2}{2}\right) = \chi_C\left(\frac{r_2}{2}\right) = 1$, we have $r_2 \equiv 0 \pmod{4}$, a contradiction. If r_2 is odd, then $r_1 + 5 \leq r_2 \leq 2r_1 - 3$. The coefficient of x^{r_1+5} in (3.12) is

$$0 = 2 \sum_{i=0}^{r_1+5} \chi_C(i) - r_1 - 6 = 2\chi_C(r_1+5).$$

Then $\chi_C(r_1+5)=0$ and so $r_2 \geq r_1+7$. The coefficient of x^{r_1+6} in (3.12) is

$$2\chi_C\left(\frac{r_1+6}{2}\right) = 2\sum_{i=0}^{r_1+6}\chi_C(i) - r_1 - 6 = 2\chi_C(r_1+6).$$

Then $\chi_C(r_1+6) = \chi_C(\frac{r_1+6}{2}) = 1$. By choosing k=3 and k=5 in (3.17) respectively, we have

$$\chi_C(r_1+2) = \chi_C(r_1+4) + \chi_C(2r_1+4-r_2) + \chi_C(2r_1+4) - \chi_C(r_1+3) - \chi_C(2r_1+3-r_2),$$

$$\chi_C(r_1+3) = \chi_C(r_1+6) + \chi_C(2r_1+6-r_2) + \chi_C(2r_1+6) - \chi_C(r_1+5) - \chi_C(2r_1+5-r_2).$$

Then

$$\chi_C(2r_1 + 4 - r_2) + \chi_C(2r_1 + 4) - \chi_C(2r_1 + 3 - r_2) + 1 = 0,$$

$$\chi_C(2r_1 + 6 - r_2) + \chi_C(2r_1 + 6) - \chi_C(2r_1 + 5 - r_2) + 1 = 0.$$

By (3.13), we have $\chi_C(2r_1 + 4 - r_2) + \chi_C(2r_1 + 3 - r_2) = 1$ and $\chi_C(2r_1 + 6 - r_2) + \chi_C(2r_1 + 5 - r_2) = 1$. Then $\chi_C(2r_1 + 3 - r_2) = \chi_C(2r_1 + 5 - r_2) = 1$. Applying again (3.13), we have $r_2 \equiv 1 \pmod{4}$. The coefficient of x^{2r_1-2} in (3.12) is

$$2\chi_C(r_1 - 1) = 2\chi_C(r_1 - 2) + 2\chi_C(2r_1 - 2 - r_2) + 2\sum_{i=0}^{2r_1 - 2}\chi_C(i) - 2r_1 - 2$$

and the coefficient of x^{2r_1-1} in (3.12) is

$$0 = 2\chi_C(r_1 - 1) + 2\chi_C(2r_1 - 1 - r_2) + 2\sum_{i=0}^{2r_1 - 1} \chi_C(i) - 2r_1 - 4.$$

Subtracting the above two equalities and dividing by 2 we can obtain

$$2\chi_C(r_1-1) = 1 + \chi_C(r_1-2) + \chi_C(2r_1-2-r_2) - \chi_C(2r_1-1) - \chi_C(2r_1-1-r_2).$$

Noting that $\chi_C(r_1 - 2) + \chi_C(r_1 - 1) = 1$ and $\chi_C(2r_1 - 2 - r_2) = \chi_C(2r_1 - 1 - r_2)$, we have $3\chi_C(r_1 - 1) = 2 - \chi_C(2r_1 - 1)$. However, it is impossible. Therefore $r_2 = r_1 + 1$.

The remainder of the proof is similar to the proof of [13, Theorem 1.1]. For the sake of completeness we give the details.

Let k be a positive even integer with $r_2 < k < k+1 < 2r_1 < r_1 + r_2 \leq m$. Comparing the coefficients of x^{k-1}, x^k and x^{k+1} on the both sides of (3.12) respectively, we have

$$0 = 2\chi_C(k-1-r_1) + 2\chi_C(k-1-r_2) + 2\sum_{i=0}^{k-1}\chi_C(i) - k - 4,$$

$$2\chi_C\left(\frac{k}{2}\right) = 2\chi_C(k-r_1) + 2\chi_C(k-r_2) + 2\sum_{i=0}^k\chi_C(i) - k - 4,$$

$$0 = 2\chi_C(k+1-r_1) + 2\chi_C(k+1-r_2) + 2\sum_{i=0}^{k+1}\chi_C(i) - k - 6.$$

Calculating the above three equalities, we have

$$\chi_C\left(\frac{k}{2}\right) = \chi_C(k - r_1) - \chi_C(k - 1 - r_2) + \chi_C(k), \qquad (3.18)$$

$$\chi_C\left(\frac{k}{2}\right) = \chi_C(k-r_2) - \chi_C(k+1-r_1) - \chi_C(k+1) + 1.$$
(3.19)

By choosing $k = 2r_1 - 2$ in (3.19), we have

$$2\chi_C(r_1 - 1) = \chi_C(r_1 - 3) - \chi_C(2r_1 - 1) + 1.$$

Then $\chi_C(r_1 - 1) = \chi_C(r_1 - 3)$. Thus $r_1 \equiv 2 \pmod{4}$ and $r_2 \equiv 3 \pmod{4}$. If $k - 1 - r_2 \equiv 0 \pmod{4}$, then $k - r_1 \equiv 2 \pmod{4}$ and $k \equiv 0 \pmod{4}$. Thus

$$\chi_C\left(\frac{k-1-r_2}{2}\right) + \chi_C\left(\frac{k-r_1}{2}\right) = 1.$$

Hence

$$\chi_C(k-1-r_2) + \chi_C(k-r_1) = 1.$$

If $\chi_C(k-1-r_2) = 0$, then $\chi_C(k-r_1) = 1$. By (3.18), we have $\chi_C(\frac{k}{2}) = 1$. If $\chi_C(k-1-r_2) = 1$, then $\chi_C(k-r_1) = 0$. By (3.18), we have $\chi_C(\frac{k}{2}) = 0$. Thus $\chi_C(\frac{k}{2}) = \chi_C(k-r_1)$ and $\chi_C(\frac{k}{2}) + \chi_C(k-1-r_2) = 1$. Noting that $\chi_C(k-1-r_2) + \chi_C(k-r_2) = 1$, we have $\chi_C(\frac{k}{2}) = \chi_C(k-r_2)$.

If $k - 1 - r_2 \equiv 2 \pmod{4}$, then $k - r_1 \equiv 0 \pmod{4}$ and $k \equiv 2 \pmod{4}$. By (3.18), we have

$$\chi_C\left(\frac{k-2}{2}\right) = \chi_C(k-2-r_1) - \chi_C(k-3-r_2) + \chi_C(k-2).$$

Then $\chi_C(\frac{k-2}{2}) = \chi_C(k-2-r_1)$. Noting that $\chi_C(\frac{k-2}{2}) + \chi_C(\frac{k}{2}) = 1$ and $\chi_C(k-1-r_2) + \chi_C(k-r_2) = 1$, we have $\chi_C(\frac{k}{2}) = \chi_C(k-r_2)$.

As a result, we can obtain $\chi_C(\frac{k}{2}) = \chi_C(k-r_2)$. Put $k = 2r_2 - 2^{i+1}$ with $i \ge 0$. Then $\chi_C(r_2 - 2^i) = \chi_C(r_2 - 2^{i+1})$. Thus

$$1 = \chi_C(r_1) = \chi_C(r_2 - 1) = \chi_C(r_2 - 2) = \chi_C(r_2 - 4) = \dots = \chi_C(r_2 - 2^{\lceil \log_2 r_2 \rceil - 1}).$$

By Lemma 2.3, we have $r_1 = 2^{2l+1} - 2$ and $r_2 = 2^{2l+1} - 1$ for some positive integer *l*. This completes the proof of Claim 2.

Claim 3. Let *l* be a positive integer and let *E*, *F* be two sets of non-negative integers with $E \cup F = [0, 3 \cdot 2^{2l+1} - 4], 0 \in E$ and $E \cap F = \{2^{2l+1} - 2, 2^{2l+1} - 1\}$. Then $R_E(n) =$ $R_F(n)$ for any integer $n \in [0, 3 \cdot 2^{2l+1} - 4]$ if and only if

$$E = A_{2l+1} \cup (2^{2l+1} - 2 + B_{2l+1}) \cup (2^{2l+2} - 2 + (B_{2l+1} \cap [0, 2^{2l+1} - 3])) \cup \{3 \cdot 2^{2l+1} - 4\},$$

$$F = B_{2l+1} \cup (2^{2l+1} - 2 + A_{2l+1}) \cup (2^{2l+2} - 2 + (A_{2l+1} \cap [0, 2^{2l+1} - 3])).$$

Proof of Claim 3. We first prove the sufficiency of Claim 3. It is easy to verify that $E \cup F = [0, 3 \cdot 2^{2l+1} - 4], 0 \in E$ and $E \cap F = \{2^{2l+1} - 2, 2^{2l+1} - 1\}$. If $n \in [0, 2^{2l+2} - 3]$, then

$$R_{E}(n) = R_{A_{2l+1}}(n) + R_{A_{2l+1},2^{2l+1}-2+B_{2l+1}}(n) + R_{2^{2l+1}-2+B_{2l+1}}(n)$$

= $R_{A_{2l+1}}(n) + R_{A_{2l+1},B_{2l+1}}(n - (2^{2l+1}-2)) + R_{B_{2l+1}}(n - 2(2^{2l+1}-2))$

and

$$\begin{split} R_F(n) &= R_{B_{2l+1}}(n) + R_{2^{2l+1}-2+A_{2l+1},B_{2l+1}}(n) + R_{2^{2l+1}-2+A_{2l+1}}(n) \\ &= R_{B_{2l+1}}(n) + R_{A_{2l+1},B_{2l+1}}(n-(2^{2l+1}-2)) + R_{A_{2l+1}}(n-2(2^{2l+1}-2)). \end{split}$$

By Lemma 2.5, for all $k \in \mathbb{N}$, we have $R_{A_{2l+1}}(k) = R_{B_{2l+1}}(k)$. Then $R_E(n) = R_F(n)$. If $n \in [2^{2l+2} - 2, 3 \cdot 2^{2l+1} - 5]$, then

$$\begin{split} R_E(n) &= R_{A_{2l+1},2^{2l+1}-2+B_{2l+1}}(n) + R_{2^{2l+1}-2+B_{2l+1}}(n) \\ &\quad + R_{A_{2l+1},2^{2l+2}-2+(B_{2l+1}\cap[0,2^{2l+1}-3])}(n) \\ &= R_{A_{2l+1},B_{2l+1}}(n-(2^{2l+1}-2)) + R_{B_{2l+1}}(n-2(2^{2l+1}-2)) \\ &\quad + R_{A_{2l+1},B_{2l+1}}(n-(2^{2l+2}-2)) \end{split}$$

and

$$\begin{split} R_F(n) &= R_{B_{2l+1},2^{2l+1}-2+A_{2l+1}}(n) + R_{2^{2l+1}-2+A_{2l+1}}(n) \\ &\quad + R_{B_{2l+1},2^{2l+2}-2+(A_{2l+1}\cap[0,2^{2l+1}-3])}(n) \\ &= R_{B_{2l+1},A_{2l+1}}(n-(2^{2l+1}-2)) + R_{A_{2l+1}}(n-2(2^{2l+1}-2)) \\ &\quad + R_{B_{2l+1},A_{2l+1}}(n-(2^{2l+2}-2)). \end{split}$$

By Lemma 2.5, $R_{A_{2l+1}}(k) = R_{B_{2l+1}}(k)$ holds for all $k \in \mathbb{N}$ and then $R_E(n) = R_F(n)$. By $3 \cdot 2^{2l+1} - 4 = (2^{2l+1} - 2) + (2^{2l+2} - 2)$ in D, we have

$$R_C(3 \cdot 2^{2l+1} - 4) = 1 + R_{B_{2l+1}}(2^{2l+1}) + R_{A_{2l+1}, B_{2l+1}}(2^{2l+1} - 2)$$

and

$$R_D(3 \cdot 2^{2l+1} - 4) = 1 + R_{A_{2l+1}}(2^{2l+1}) + R_{B_{2l+1},A_{2l+1}}(2^{2l+1} - 2).$$

Thus $R_C(3 \cdot 2^{2l+1} - 4) = R_D(3 \cdot 2^{2l+1} - 4).$

The necessity of Claim 3 follows from Lemma 2.2 and the sufficiency of Claim 3. This completes the proof of Claim 3.

Now let

$$C_1 = C \cap [0, m - 1 + r_1], \quad D_1 = D \cap [0, m - 1 + r_1]$$

Then

$$C_1 \cup D_1 = [0, m - 1 + r_1], \quad C_1 \cap D_1 = \{r_1, r_2\}$$

Moreover, for any integer $n \in [0, m - 1 + r_1]$, we have

$$R_{C_1}(n) = |\{(c,c') : c < c' \le n, c, c' \in C_1, c+c' = n\}|$$

= |\{(c,c') : c < c' \le n, c, c' \in C, c+c' = n\}|
= R_C(n),

$$\begin{aligned} R_{D_1}(n) &= |\{(d,d') : d < d' \le n, d, d' \in D_1, d+d' = n\}| \\ &= |\{(d,d') : d < d' \le n, d, d' \in D, d+d' = n\}| \\ &= R_D(n). \end{aligned}$$

Thus for any integer $n \in [0, m - 1 + r_1]$, we have

$$R_{C_1}(n) = R_C(n) = R_D(n) = R_{D_1}(n).$$

Noting that $r_2 \leq m-1$, we see that $r_1 + r_2 \leq m-1 + r_1$. By Claim 2, there exists a positive integer l such that $r_1 = 2^{2l+1} - 2$, $r_2 = 2^{2l+1} - 1$. Let E and F be as in Claim 3. If $m \geq 2^{2l+2} - 1$ and $0 \in C$, then $m-1+r_1 \geq 3 \cdot 2^{2l+1} - 4$

and

$$C(3 \cdot 2^{2l+1} - 4) \cup D(3 \cdot 2^{2l+1} - 4) = [0, 3 \cdot 2^{2l+1} - 4],$$

$$C(3 \cdot 2^{2l+1} - 4) \cap D(3 \cdot 2^{2l+1} - 4) = \{2^{2l+1} - 2, 2^{2l+1} - 1\}.$$

Moreover, $R_{C(3\cdot 2^{2l+1}-4)}(n) = R_C(n) = R_D(n) = R_{D(3\cdot 2^{2l+1}-4)}(n)$ for all $n \in [0, 3 \cdot 1)$ $2^{2l+1} - 4$]. By Lemma 2.2, we have

$$C(3 \cdot 2^{2l+1} - 4) = E, \quad D(3 \cdot 2^{2l+1} - 4) = F.$$

By

$$R_C(3 \cdot 2^{2l+1} - 3) = \chi_C(3 \cdot 2^{2l+1} - 3) + R_{A_{2l+1}, B_{2l+1}}(2^{2l+1} - 1) + R_{B_{2l+1}}(2^{2l+1} + 1) - 1,$$

$$R_D(3 \cdot 2^{2l+1} - 3) = R_{B_{2l+1}, A_{2l+1}}(2^{2l+1} - 1) + R_{A_{2l+1}}(2^{2l+1} + 1) - 1,$$

we know that $R_C(3 \cdot 2^{2l+1} - 3) = R_D(3 \cdot 2^{2l+1} - 3)$ if and only if $\chi_C(3 \cdot 2^{2l+1} - 3) = 0$, that is, $3 \cdot 2^{2l+1} - 3 \in D$. Noting that $2^{2l+1} - 2 \in A_{2l+1}, 2^{2l+1} - 1 \in B_{2l+1}, 3 \cdot 2^{2l+1} - 2 = (2^{2l+1} - 1) + (2^{2l+2} - 1)$ in C and $3 \cdot 2^{2l+1} - 2 = 1 + (3 \cdot 2^{2l+1} - 3)$ in D, we obtain

$$\begin{aligned} R_C(3 \cdot 2^{2l+1} - 2) &= 1 + \chi_C(3 \cdot 2^{2l+1} - 2) + R_{A_{2l+1},B_{2l+1}}(2^{2l+1}) + R_{B_{2l+1}}(2^{2l+1} + 2) \\ &- \chi_{A_{2l+1}}(3 \cdot 2^{2l+1} - 2 - (2^{2l+2} - 2 + 2^{2l+1} - 1)) \\ &= 1 + \chi_C(3 \cdot 2^{2l+1} - 2) + R_{A_{2l+1},B_{2l+1}}(2^{2l+1}) + R_{B_{2l+1}}(2^{2l+1} + 2) \end{aligned}$$

and

$$\begin{split} R_D(3\cdot 2^{2l+1}-2) &= 1+R_{B_{2l+1},A_{2l+1}}(2^{2l+1})+R_{A_{2l+1}}(2^{2l+1}+2)\\ &\quad -\chi_{B_{2l+1}}(3\cdot 2^{2l+1}-2-(2^{2l+2}-2+2^{2l+1}-2))\\ &= R_{B_{2l+1},A_{2l+1}}(2^{2l+1})+R_{A_{2l+1}}(2^{2l+1}+2). \end{split}$$

Thus by Lemma 2.5, we have $R_C(3 \cdot 2^{2l+1} - 2) > R_D(3 \cdot 2^{2l+1} - 2)$, which is impossible. Therefore $m \leq 2^{2l+2} - 2$.

Now we assume that $2^{2l+1} \leq m \leq 2^{2l+2} - 3$ and $0 \in C$. Let

$$M = r_1 + m = 2^{2l+1} - 2 + m.$$

Since $2^{2l+2} - 2 \le M \le 3 \cdot 2^{2l+1} - 5$, by Lemma 2.2, we have

$$E(M) \cup F(M) = [0, M], \quad E(M) \cap F(M) = \{2^{2l+1} - 2, 2^{2l+1} - 1\},$$
 (3.20)

$$R_{E(M)}(n) = R_E(n) = R_F(n) = R_{F(M)}(n)$$
 for any integer $n \in [0, M]$. (3.21)

Moreover,

$$C(M) \cup D(M-1) = [0, M], \quad C(M) \cap D(M-1) = \{2^{2l+1} - 2, 2^{2l+1} - 1\}.$$
 (3.22)

Since $R_C(n) = R_D(n)$ for all $n \in \mathbb{N}$ and $0 \notin D$, we have

$$R_{C(M)}(n) = R_C(n) = R_D(n) = R_{D(M-1)}(n)$$
(3.23)

for any integer $n \in [0, M]$. By (3.20)–(3.23) and Lemma 2.2, we have

$$C(M) = E(M), \quad D(M-1) = F(M).$$
 (3.24)

Then $\chi_E(M) = 1, \, \chi_F(M) = 0.$

By $2^{2l+1}-3 \in A_{2l+1}$, we have $3 \cdot 2^{2l+1}-5 \in F$. Then $M < 3 \cdot 2^{2l+1}-5$. If $\chi_E(M+1) = 1$, then $\chi_F(M+1) = 0$ and $C(M+1) = E(M+1), D(M+1) = F(M+1) \cup \{M, M+1\}$.

Thus

$$R_C(M+1) = |\{(c,c'): 0 \le c < c' \le M+1, c, c' \in C, c+c' = M+1\}|$$

= |\{(c,c'): 0 \le c < c' \le M+1, c, c' \in C(M+1), c+c' = M+1\}|
= R_{E(M+1)}(M+1)

and

$$R_D(M+1) = |\{(d,d'): 1 \le d < d' \le M+1, d, d' \in D, d+d' = M+1\}|$$

= |\{(d,d'): 1 \le d < d' \le M+1, d, d' \in D(M+1), d+d' = M+1\}|
= 1 + |\{(d,d'): 1 \le d < d' \le M+1, d, d' \in F(M+1), d+d' = M+1\}|
= 1 + R_{F(M+1)}(M+1).

By Claim 3, we have $R_{E(M+1)}(M+1) = R_{F(M+1)}(M+1)$. Then $R_C(M+1) \neq R_D(M+1)$, a contradiction. Thus $\chi_E(M+1) = 0$ and $\chi_F(M+1) = 1$.

Let t be an arbitrary positive integer such that $M < M + t < M + t + 1 \le 3 \cdot 2^{2l+1} - 4$. Then $1 \le t \le 2^{2l+1} - 3$. Define the sets S and T by

$$S = (E \cap C)(M+t) \cup (F(M+t) \setminus D(M+t)),$$
$$T = (F \cap D)(M+t) \cup (E(M+t) \setminus C(M+t)).$$

Noting that

$$\begin{split} E(M+t) \cup F(M+t) &= [0, M+t] = (C(M+t) \backslash \{M+1\}) \cup (D(M+t) \backslash \{M\}), \\ E(M+t) \cap F(M+t) &= \{2^{2l+1}-2, 2^{2l+1}-1\}, \end{split}$$

we have

$$\begin{split} S &\subseteq C(M+t) \setminus \{M+1\}, \quad T \subseteq D(M+t) \setminus \{M\}, \\ S &\cup T = (C(M+t) \setminus \{M+1\}) \cup (D(M+t) \setminus \{M\}), \\ S &\cap T = \{2^{2l+1}-2, 2^{2l+1}-1\} = (C(M+t) \setminus \{M+1\}) \cap (D(M+t) \setminus \{M\}). \end{split}$$

Then

$$|S| + |T| = |S \cup T| + |S \cap T| = |C(M + t) \setminus \{M + 1\}| + |D(M + t) \setminus \{M\}|.$$

It follows that

$$S = C(M+t) \setminus \{M+1\}, \quad T = D(M+t) \setminus \{M\}.$$
 (3.25)

For $M + t \le n \le 3 \cdot 2^{2l+1} - 4$, let

$$\begin{split} N_1(t,n) &= R_{E(2^{2l+1}-3),E(M+t)\backslash C(M+t)}(n),\\ N_2(t,n) &= R_{F(2^{2l+1}-3),E(M+t)\backslash C(M+t)}(n),\\ N_3(t,n) &= R_{E(2^{2l+1}-3),F(M+t)\backslash D(M+t)}(n),\\ N_4(t,n) &= R_{F(2^{2l+1}-3),F(M+t)\backslash D(M+t)}(n). \end{split}$$

We claim that

$$|E(M+t)\backslash C(M+t)| = N_1(t,n) + N_2(t,n), \qquad (3.26)$$

$$|F(M+t)\setminus D(M+t)| = N_3(t,n) + N_4(t,n).$$
(3.27)

In fact, if $E(M+t) \setminus C(M+t) = \emptyset$, then $N_1(t,n) = N_2(t,n) = 0$; if

$$E(M+t)\backslash C(M+t) = \{c_1, \dots, c_u\}$$

for some positive integer u, then by (3.24), we have $c_i \ge M+1$ and so $0 \le n-c_i \le 2^{2l+1}-3$ for $i \in [1, u]$. In view of

$$E(2^{2l+1}-3) \cup F(2^{2l+1}-3) = [0, 2^{2l+1}-3], \quad E(2^{2l+1}-3) \cap F(2^{2l+1}-3) = \emptyset,$$

we have

$$N_1(t,n) + N_2(t,n) = \sum_{i=1}^u \chi_{E(2^{2l+1}-3)}(n-c_i) + \sum_{i=1}^u \chi_{F(2^{2l+1}-3)}(n-c_i) = u.$$

Thus (3.26) holds. Similarly, we can deduce (3.27) holds. By $M + t < 3 \cdot 2^{2l+1} - 4 < 2^{2l+3} - 4 \le 2M$, we can obtain

$$\begin{aligned} R_{E(M+t)}(n) &= R_{(E\cap C)(M+t)}(n) + R_{E(2^{2l+1}-3),E(M+t)\setminus C(M+t)}(n) \\ &= R_{(E\cap C)(M+t)}(n) + N_1(t,n). \end{aligned}$$

By (3.24) and (3.25), we have

$$R_{C(M+t)}(n) = R_{C(M+t)\setminus\{M+1\}}(n) + \chi_{C(M+t)\setminus\{M+1\}}(n-M-1)$$

= $R_{(E\cap C)(M+t)}(n) + R_{E(2^{2l+1}-3),F(M+t)\setminus D(M+t)}(n) + \chi_{E}(n-M-1)$
= $R_{E(M+t)}(n) - N_{1}(t,n) + N_{3}(t,n) + \chi_{E}(n-M-1).$ (3.28)

Similarly, we can get

$$R_{D(M+t)}(n) = R_{D(M+t)\setminus\{M\}}(n) + \chi_{D(M+t)\setminus\{M\}}(n-M)$$

= $R_{(F\cap D)(M+t)}(n) + R_{F(2^{2l+1}-3),E(M+t)\setminus C(M+t)}(n) + \chi_F(n-M)$
= $R_{F(M+t)}(n) - N_4(t,n) + N_2(t,n) + \chi_F(n-M).$ (3.29)

By choosing n = M + t and n = M + t + 1 in (3.28) respectively, we have

$$R_{C(M+t)}(M+t) = R_{E(M+t)}(M+t) - N_1(t, M+t) + N_3(t, M+t) + \chi_E(t-1)$$
(3.30)

and

$$R_{C(M+t+1)}(M+t+1) = R_{C(M+t)}(M+t+1) + \chi_C(M+t+1)$$

= $R_{E(M+t+1)}(M+t+1) - \chi_E(M+t+1) - N_1(t, M+t+1)$
+ $N_3(t, M+t+1) + \chi_E(t) + \chi_C(M+t+1).$ (3.31)

By choosing n = M + t and n = M + t + 1 in (3.29) respectively, we have

$$R_{D(M+t)}(M+t) = R_{F(M+t)}(M+t) - N_4(t,M+t) + N_2(t,M+t) + \chi_F(t)$$
(3.32)

and

$$R_{D(M+t+1)}(M+t+1) = R_{D(M+t)}(M+t+1)$$

= $R_{F(M+t+1)}(M+t+1) - N_4(t, M+t+1)$
+ $N_2(t, M+t+1) + \chi_F(t+1).$ (3.33)

Note that $R_{C(n)}(n) = R_{D(n)}(n)$ and $R_{E(n)}(n) = R_{F(n)}(n)$. By (3.30)–(3.33), we have

$$N_1(t, M+t) + N_2(t, M+t) + \chi_F(t) = N_3(t, M+t) + N_4(t, M+t) + \chi_E(t-1)$$

and

$$N_1(t, M + t + 1) + N_2(t, M + t + 1) + \chi_E(M + t + 1) + \chi_F(t + 1)$$

= $N_3(t, M + t + 1) + N_4(t, M + t + 1) + \chi_E(t) + \chi_C(M + t + 1).$

By (3.26) and (3.27), we have

$$|E(M+t) \setminus C(M+t)| + \chi_F(t) = |F(M+t) \setminus D(M+t)| + \chi_E(t-1)$$

and

$$|E(M+t)\setminus C(M+t)| + \chi_E(M+t+1) + \chi_F(t+1) = |F(M+t)\setminus D(M+t)| + \chi_E(t) + \chi_C(M+t+1).$$

Then

$$\chi_F(t) + \chi_E(t) + \chi_C(M + t + 1) = \chi_E(t - 1) + \chi_E(M + t + 1) + \chi_F(t + 1).$$
(3.34)

If M is even, then we can write

$$M = (2^{2l+2} - 2) + \sum_{i=1}^{2l} b_i 2^i,$$

where $b_i \in \{0,1\}$. It follows from $\chi_F(M) = 0$ that $\chi_{B_{2l+1}}\left(\sum_{i=1}^{2l} b_i 2^i\right) = 1$. By choosing $M + t + 1 = 3 \cdot 2^{2l+1} - 4$ in (3.34), we see that t is odd and

$$\chi_F(t+1) = \chi_F \left(2^{2l+1} - 2 - \sum_{i=1}^{2l} b_i 2^i \right) = \chi_{B_{2l+1}} \left(\sum_{i=1}^{2l} (1-b_i) 2^i \right) = 1$$

Then $\chi_E(t+1) = 0$. It follows from $\chi_F(t) + \chi_E(t) = 1$ and $\chi_E(3 \cdot 2^{2l+1} - 4) = 1$ that $\chi_E(t-1) = 0$ and $\chi_F(t-1) = 1$. Since $\chi_E(t-1) + \chi_E(t) = 1$, we have $\chi_E(t) = 1$ and $\chi_F(t) = 0$. Noting that $\chi_E(t-1) = \chi_E(t+1)$, we have $t \equiv 3 \pmod{4}$ and so $t \ge 3$. Then $\chi_E(t-2) = 0$. By choosing $M + (t-1) + 1 = 3 \cdot 2^{2l+1} - 5$ in (3.34), we have

$$\chi_F(t-1) + \chi_E(t-1) + \chi_C(M + (t-1) + 1) = \chi_E(t-2) + \chi_E(M + (t-1) + 1) + \chi_F(t).$$

It follows from $\chi_E(M + (t-1) + 1) = \chi_E(3 \cdot 2^{2l+1} - 5) = 0$ that $\chi_C(M + (t-1) + 1) = -1$, which is clearly false.

If M is odd, then we can write

$$M = (2^{2l+2} - 2) + \sum_{i=0}^{f} 2^{i} + \sum_{i=f+2}^{2l} b_i 2^{i},$$

where $f \in \{0, 1, ..., 2l-1\}$ and $b_i \in \{0, 1\}$. It follows from $\chi_E(M+1) = 0$ and $\chi_F(M) = 0$ that

$$\chi_{A_{2l+1}}\left(2^{f+1} + \sum_{i=f+2}^{2l} b_i 2^i\right) = 1, \quad \chi_{B_{2l+1}}\left(\sum_{i=0}^f 2^i + \sum_{i=f+2}^{2l} b_i 2^i\right) = 1.$$

Then f is odd. By choosing $M + t + 1 = 3 \cdot 2^{2l+1} - 4$ in (3.34), we see that t is even and

$$\chi_F(t+1) = \chi_F\left(2^{21+1} - 2 - \sum_{i=0}^f 2^i - \sum_{i=f+2}^{2l} b_i 2^i\right) = \chi_{B_{2l+1}}\left(2^{f+1} - 1 + \sum_{i=f+2}^{2l} (1-b_i)2^i\right) = 1.$$

Then $\chi_E(t+1) = 0$ and $\chi_F(t) = 0$. Thus $\chi_E(t) = 1$. It follows from $\chi_E(3 \cdot 2^{2l+1} - 4) = 1$ that $\chi_E(t-1) = 0$ and $\chi_F(t-1) = 1$. Since $\chi_E(t-1) = \chi_E(t+1)$, we have $t \equiv 0 \pmod{4}$ and so $t \ge 4$. Then $\chi_E(t-2) = \chi_E(t-3) = 1$ and $\chi_F(t-2) = 0$. By choosing $M + (t-2) + 1 = 3 \cdot 2^{2l+1} - 6 \pmod{3.34}$, we have

$$\chi_F(t-2) + \chi_E(t-2) + \chi_C(M + (t-2) + 1) = \chi_E(t-3) + \chi_E(M + (t-2) + 1) + \chi_F(t-1).$$

It follows from $\chi_E(M + (t-2) + 1) = \chi_E(3 \cdot 2^{2l+1} - 6) = 1$ that $\chi_C(M + (t-2) + 1) = 2$, which is also impossible. Therefore $m = 2^{2l+2} - 2$.

This completes the proof of Theorem 1.3.

Acknowledgements. This work was supported by the National Natural Science Foundation of China (Grant No. 12371003).

References

- S. Q. Chen and Y. G. Chen, Integer sets with identical representation functions II, European J. Combin. 94 (2021), 103293.
- (2) S. Q. Chen, M. Tang and Q. H. Yang, On a problem of Chen and Lev, Bull. Aust. Math. Soc. 99 (2019), 15–22.
- (3) Y. G. Chen and V. F. Lev, Integer sets with identical representation functions, *Integers* 16 (2016), A36.
- (4) Y. G. Chen and M. Tang, Partitions of natural numbers with the same representation functions, J. Number Theory 129 (2009), 2689–2695.
- Y. G. Chen and B. Wang, On additive properties of two special sequences, Acta Arith. 110 (2003), 299–303.
- (6) G. Dombi, Additive properties of certain sets, Acta Arith. 103 (2002), 137–146.
- (7) K. J. Jiao, C. Sándor, Q. H. Yang and J. Y. Zhou, On integer sets with the same representation functions, *Bull. Aust. Math. Soc.* **106** (2022), 224–235.
- (8) S. Z. Kiss and C. Sándor, Partitions of the set of nonnegative integers with the same representation functions, *Discrete Math.* **340** (2017), 1154–1161.
- (9) S. Z. Kiss and C. Sándor, On the structure of sets which have coinciding representation functions, *Integers* 19 (2019), A66.
- (10) V. F. Lev, Reconstructing integer sets from their representation functions, *Electron. J. Combin.* **11** (2004), R78.
- (11) J. W. Li and M. Tang, Partitions of the set of nonnegative integers with the same representation functions, *Bull. Aust. Math. Soc.* **97** (2018), 200–206.
- (12) C. Sándor, Partitions of natural numbers and their representation functions, *Integers* 4 (2004), A18.
- (13) C. F. Sun and H. Pan, Partitions of finite nonnegative integer sets with identical representation functions, *Bull. Iranian Math. Soc.* **49** (2023), 35.
- (14) C. F. Sun, On finite nonnegative integer sets with identical representation functions, *Ramanujan J.* 65 (2024), 429–445.
- (15) M. Tang and S. Q. Chen, On a problem of partitions of the set of nonnegative integers with the same representation functions, *Discrete Math.* **341** (2018), 3075–3078.
- (16) M. Tang and J. W. Li, On the structure of some sets which have the same representation functions, *Period. Math. Hungar.* 77 (2018), 232–236.
- (17) M. Tang, Partitions of the set of natural numbers and their representation functions, Discrete Math. 308 (2008), 2614–2616.
- (18) M. Tang, Partitions of natural numbers and their representation functions, *Chinese Ann. Math. Ser. A* **37** (2016), 41–46, For English version, see Chinese J. Contemp. Math. 37 (2016), 39–44.
- (19) Q. H. Yang and Y. G. Chen, Partitions of natural numbers with the same representation functions, J. Number Theory 132 (2012), 3047–3055.
- (20) W. Yu and M. Tang, A note on partitions of natural numbers and their representation functions, *Integers* **12** (2012), A53.