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Abstract Let N be the set of all non-negative integers. For any integer r and m, let r+mN = {r+mk :
k ∈ N}. For S ⊆ N and n ∈ N, let RS(n) denote the number of solutions of the equation n = s + s′

with s, s′ ∈ S and s < s′. Let r1, r2,m be integers with 0 < r1 < r2 < m and 2 | r1. In this paper,
we prove that there exist two sets C and D with C ∪ D = N and C ∩ D = (r1 + mN) ∪ (r2 + mN)
such that RC(n) = RD(n) for all n ∈ N if and only if there exists a positive integer l such that
r1 = 22l+1 − 2, r2 = 22l+1 − 1,m = 22l+2 − 2.
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1. Introduction

Let N be the set of all non-negative integers. For any integer r and m, let r + mN =
{r + mk : k ∈ N}. Let A be the set of all non-negative integers which contain an
even number of digits 1 in their binary representations and B = N\A. The set A is
called Thue–Morse sequence. For any positive integer l, let Al = A ∩ [0, 2l − 1] and
Bl = B ∩ [0, 2l − 1]. For S ⊆ N and n ∈ N, let the representation function RS(n) denote
the number of solutions of the equation s + s′ = n with s, s′ ∈ S and s < s′. Sárközy
asked whether there exist two subsets C,D ⊆ N with |(C ∪D)\(C ∩D)| = ∞ such that
RC(n) = RD(n) for all sufficiently large integers n. By using the Thue–Morse sequence,
Dombi [6] answered Sárközy’s problem affirmatively. Later, Lev [10], Sándor [12] and
Tang [17] proved this result by different methods. Partitions of non-negative integers
and their corresponding representation functions have been extensively studied by many
authors. The related results can be found in [4, 5, 7–9, 12–17, 19].
In 2012, Yu and Tang [20] began to focus on partitions of non-negative integers with

the intersection not empty. They studied the intersection of two sets is an arithmetic
progression and posed the following conjecture:
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Conjecture 1.1. Let m ∈ N and R ⊂ {0, 1, . . . ,m − 1}. If C ∪D = N and C ∩D =
{r + km : k ∈ N, r ∈ R}, then RC(n) = RD(n) cannot hold for all sufficiently large n.

In 2016, Tang [18] obtained the following theorem.

Theorem A [18, Theorem 1]. Let m be an integer with m ≥ 2. If C ∪D = N and
C ∩D = mN, then RC(n) = RD(n) cannot hold for all large enough integers n.

In 20l6, Chen and Lev [3] disproved Conjecture 1.1 by the following result.

Theorem B [3, Theorem 1]. Let l be a positive integer. There exist two sets C and
D with C ∪D = N and C ∩D = (22l − 1) + (22l+1 − 1)N such that RC(n) = RD(n) for
every positive integer n.

In [3], Chen and Lev also proposed the following problem.

Problem 1.2. Given RC(n) = RD(n) for every positive integer n, C ∪ D = N and
C ∩ D = r + mN with r ≥ 0 and m ≥ 2, must there exist an integer l ≥ 1 such that
r = 22l − 1,m = 22l+1 − 1?

Afterwards, Li and Tang [11], Chen, Tang and Yang [2] solved Problem 1.2 under the
condition 0 ≤ r < m. In 2021, Chen and Chen [1] solved Problem 1.2 affirmatively.

Theorem C [1, Theorem 1.1]. Let m ≥ 2 and r ≥ 0 be two integers and let C and
D be two sets with C ∪ D = N and C ∩ D = r + mN such that RC(n) = RD(n) for
every positive integer n. Then there exists a positive integer l such that r = 22l − 1 and
m = 22l+1 − 1.

Let r1, r2,m be integers with 0 < r1 < r2 < m. In this paper, we focus on partitions
of non-negative integers into two sets C,D with C ∪ D = N and C ∩ D = (r1 + mN)∪
(r2 + mN) such that RC(n) = RD(n) for all n ∈ N and obtain the following result.

Theorem 1.3. Let r1, r2,m be integers with 0 < r1 < r2 < m and 2 | r1. Then there
exist two sets C and D with C ∪D = N and C ∩D = (r1 +mN) ∪ (r2 +mN) such that
RC(n) = RD(n) for all n ∈ N if and only if there exists a positive integer l such that
r1 = 22l+1 − 2, r2 = 22l+1 − 1,m = 22l+2 − 2.

Motivated by Theorems B and C, we propose the following conjecture for further
research.

Conjecture 1.4. Let r1, r2,m be integers with 0 < r1 < r2 < m and 2 - r1. Then
there exist two sets C and D with C ∪D = N and C ∩D = (r1 +mN) ∪ (r2 +mN) such
that RC(n) = RD(n) for all n ∈ N if and only if there exists a positive integer l such that
r1 = 22l − 1, r2 = 22l+1 + 22l − 2,m = 22l+2 − 2.

Throughout this paper, let f(x) = a0 + a1x+ · · ·+ anx
n ∈ Z[x] and for m ≤ n, define

(f(x))m = a0 + a1x+ · · ·+ amxm.

For C,D ⊆ N and n ∈ N, let RC,D(n) be the number of solutions of n = c+d with c ∈ C
and d ∈ D. Let C + D = {c + d : c ∈ C, d ∈ D}. Let C (x ) be the set of integers in C
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which are less than or equal to x. The characteristic function of C is denoted by

χC(n) =

1, n ∈ C,

0, n 6∈ C.

2. Some lemmas

Lemma 2.1. [3, Lemma 1]. Suppose that C0, D0 ⊆ N satisfy RC0
(n) = RD0

(n) for
all n ∈ N, and that m is a non-negative integer with m /∈ (C0 −D0) ∪ (D0 − C0). Then,
letting

C1 := C0 ∪ (m+D0)and D1 := D0 ∪ (m+ C0),

we have RC1
(n) = RD1

(n) for all n ∈ N and furthermore

(i) C1 ∪D1 = (C0 ∪D0) ∪ (m+ C0 ∪D0);
(ii) C1 ∩D1 ⊇ (C0 ∩D0) ∪ (m+ C0 ∩D0), the union being disjoint.

Moreover, if m /∈ (C0 − C0) ∪ (D0 − D0), then also in (i) the union is disjoint, and
in (ii) the inclusion is in fact an equality. In particular, if C0 ∪ D0 = [0,m − 1], then
C1 ∪D1 = [0, 2m− 1], and if C0 and D0 indeed partition the interval [0,m− 1], then C1

and D1 partition the interval [0, 2m− 1].

Lemma 2.2. [8, Claim 1]. Let 0 < r1 < · · · < rs ≤ m be integers. Then there exists
at most one pair of sets (C,D) such that C ∪D = [0,m], 0 ∈ C,C ∩D = {r1, . . . , rs} and
RC(n) = RD(n) for every n ≤ m.

Lemma 2.3. [8, Claim 3]. If for some positive integer M, the integers M − 1,M −
2,M − 4,M − 8, . . . ,M − 2dlog2 Me−1 are all contained in the set A, then dlog2 Me is odd
and M = 2dlog2 Me − 1.

Lemma 2.4. [8, Claim 4]. If for some positive integer M, the integers M − 1,M −
2,M −4,M −8, . . . ,M −2dlog2 Me−1 are all contained in the set B, then dlog2 Me is even
and M = 2dlog2 Me − 1.

Lemma 2.5. [8, Theorem 3]. Let C and D be sets of non-negative integers such
that C ∪ D = [0,m], C ∩ D = ∅ and 0 ∈ C. Then RC(n) = RD(n) for every positive
integer n if and only if there exists a positive integer l such that C = Al and D = Bl.

3. Proofs

Proof of Theorem 1.3. (Sufficiency). For any given positive integer l, let

mi =


2i+1, 0 ≤ i ≤ 2l − 1,

2i+1 − 2, i = 2l,

2i+1 − 2i−2l, i ≥ 2l + 1.

(3.1)
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For given sets C0 = {0}, D0 = {1}, define

Ci = Ci−1 ∪ (mi−1 +Di−1), Di = Di−1 ∪ (mi−1 + Ci−1), i = 1, 2, . . . (3.2)

and

C =
⋃
i∈N

Ci, D =
⋃
i∈N

Di. (3.3)

It is clear that C 0 and D0 partition the interval [0,m0 − 1] and

m0 = 2 /∈ (C0 −D0) ∪ (D0 − C0) ∪ (C0 − C0) ∪ (D0 −D0)

and RC0
(n) = RD0

(n) for all n ∈ N (both representation functions are identically equal to
0). Applying Lemma 2.1 inductively 2l−1 times, we can deduce that for any i ∈ [0, 2l−1],
RCi

(n) = RDi
(n) for all n ∈ N, the sets Ci and Di partition the interval [0,mi − 1] and

mi = 2i+1 /∈ (Ci −Di) ∪ (Di − Ci) ∪ (Ci − Ci) ∪ (Di −Di).

In particular, RC2l−1
(n) = RD2l−1

(n) for all n ∈ N, the sets C2l−1 and D2l−1 partition

the interval [0,m2l−1 − 1] = [0, 22l − 1] and

m2l−1 = 22l /∈ (C2l−1 −D2l−1) ∪ (D2l−1 − C2l−1) ∪ (C2l−1 − C2l−1) ∪ (D2l−1 −D2l−1).

By Lemma 2.1, we have RC2l
(n) = RD2l

(n) for all n ∈ N, the sets C2l and D2l partition

the interval [0, 2m2l−1 − 1] = [0, 22l+1 − 1] = [0,m2l + 1]. In addition, it is easily seen
that {0,m2l} ⊆ C2l and {1,m2l + 1} ⊆ D2l. Then

m2l 6∈ (C2l −D2l) ∪ (D2l − C2l), m2l ∈ (C2l − C2l) ∪ (D2l −D2l).

By Lemma 2.1, we have RC2l+1
(n) = RD2l+1

(n) for all n ∈ N and

C2l+1 ∪D2l+1 = [0, 2m2l + 1] = [0,m2l+1 − 1],

C2l+1 ∩D2l+1 = (C2l ∪ (m2l +D2l)) ∩ (D2l ∪ (m2l + C2l))

= (C2l ∩D2l) ∪ (C2l ∩ (m2l + C2l)) ∪ (D2l ∩ (m2l +D2l))

∪ (m2l + C2l ∩D2l)

= {m2l,m2l + 1}.

Applying again Lemma 2.1, we can conclude that RCi
(n) = RDi

(n) for all n ∈ N,
Ci ∪Di = [0,mi − 1] and Ci ∩Di = {m2l,m2l +1}+ {0,m2l+1, . . . , (2

i−2l − 1)m2l+1} for
each i ≥ 2l + 1.
Therefore, by the definitions of C and D in (3.1)–(3.3), we have RC(n) = RD(n) for

all n ∈ N, C ∪D = N and

C ∩D = {m2l,m2l + 1}+m2l+1N = (r1 +mN) ∪ (r2 +mN).

(Necessity). To prove the necessity of Theorem 1.3, we need the following three claims.
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Claim 1. Given 0 < r1 < r2 ≤ m, there exists at most one pair of sets (C,D) such
that C ∪D = N, C ∩D = (r1 +mN) ∪ (r2 +mN) and RC(n) = RD(n) for all n ∈ N.

Proof of Claim 1. Assume that there exist at least two pairs of sets (C,D) and
(C ′, D′) which satisfy the conditions

C ∪D = N, C ∩D = (r1 +mN) ∪ (r2 +mN), RC(n) = RD(n) for all n ∈ N,

C ′ ∪D′ = N, C ′ ∩D′ = (r1 +mN) ∪ (r2 +mN), RC′(n) = RD′(n) for all n ∈ N.

We may assume that 0 ∈ C ∩ C ′. Let k be the smallest positive integer such that
χC(k) 6= χC′(k). Write

(
(r1 +mN) ∪ (r2 +mN)

)
∩ [0, k] = {t1, . . . , ts},

C1 = C ∩ [0, k], D1 = D ∩ [0, k],

C2 = C ′ ∩ [0, k], D2 = D′ ∩ [0, k].

Then

C1 ∪D1 = C2 ∪D2 = [0, k], (3.4)

C1 ∩D1 = C2 ∩D2 = {t1, . . . , ts}, (3.5)

χC1
(k) 6= χC2

(k), 0 ∈ C1 ∩ C2. (3.6)

For any integer n ∈ [0, k], by the hypothesis, we have

RC1
(n) = |{(c, c′) : c < c′ ≤ n, c, c′ ∈ C1, c+ c′ = n}|

= RC(n) = RD(n) = RD1
(n), (3.7)

RC2
(n) = |{(c, c′) : c < c′ ≤ n, c, c′ ∈ C2, c+ c′ = n}|

= RC′(n) = RD′(n) = RD2
(n). (3.8)

Thus there exist two pairs of sets (C1, D1) and (C2, D2) satisfying (3.4)–(3.8). By
Lemma 2.2, this is impossible. This completes the proof of Claim 1. �

Claim 2. Let r1, r2,m be integers with 0 < r1 < r2 < r1 + r2 ≤ m and 2 | r1. Let C
and D be sets of non-negative integers such that C ∪D = [0,m], C ∩D = {r1, r2} and
0 ∈ C. If RC(n) = RD(n) for any integer n ∈ [0,m], then there exists a positive integer
l such that r1 = 22l+1 − 2, r2 = 22l+1 − 1.
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Proof of Claim 2. Let

pC(x) =
m∑
i=0

χC(i)x
i, pD(x) =

m∑
i=0

χD(i)xi. (3.9)

Then

1

2
(pC(x)

2 − pC(x
2)) =

∞∑
n=0

RC(n)x
n,

1

2
(pD(x)2 − pD(x2)) =

∞∑
n=0

RD(n)xn. (3.10)

Since RC(n) = RD(n) for any integer n ∈ [0,m], we have( ∞∑
n=0

RC(n)x
n

)
m

=

( ∞∑
n=0

RD(n)xn

)
m

. (3.11)

By (3.9)–(3.11), we have(
1

2
(pC(x)

2 − pC(x
2))

)
m

=

( ∞∑
n=0

RC(n)x
n

)
m

=

( ∞∑
n=0

RD(n)xn

)
m

=

(
1

2
(pD(x)2 − pD(x2))

)
m

.

Noting that C ∪D = [0,m], C ∩D = {r1, r2}, we have

pD(x) =
1− xm+1

1− x
− pC(x) + xr1 + xr2 .

Then

(
pC(x)

2 − pC(x
2)
)
m

=

((
1− xm+1

1− x
− pC(x) + xr1 + xr2

)2

−
(
1− x2m+2

1− x2
− pC(x

2) + x2r1 + x2r2

))
m

.

Thus

(
2pC(x

2)
)
m

=

(
1−x2m+2

1−x2
+ 2pC(x)x

r1 + 2pC(x)x
r2 + 2pC(x)

1−xm+1

1−x

−
(

1−xm+1

1−x

)2

− 2xr1 1−xm+1

1−x − 2xr2 1−xm+1

1−x − 2xr1+r2

)
m

.

(3.12)

An easy calculation shows that r1 ≥ 6, {0, 3, 5, 6} ⊂ C and {1, 2, 4, 7} ⊂ D.
In order to prove r2 = r1 + 1, we suppose that r2 ≥ r1 + 2 and we will show that this

leads to a contradiction.
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The coefficient of xr1−1 in (3.12) is 0 = 2
r1−1∑
i=0

χC(i) − r1. Since r1 ∈ C, we

have χC(r1) = 1. Then 2
r1∑
i=0

χC(i) = r1 + 2. The coefficient of xr1 in (3.12) is

2χC

( r1
2

)
= 2

r1∑
i=0

χC(i) − r1 = 2. Then χC

( r1
2

)
= 1. The coefficient of xr1+1 in (3.12) is

0 = 2
r1+1∑
i=0

χC(i) − r1 − 4 = 2χC(r1 + 1) − 2. Then χC(r1 + 1) = 1. The coefficient of

xr1+2 in (3.12) is 2χC

( r1+2
2

)
= 2

r1+2∑
i=0

χC(i) − r1 − 4. Then χC

( r1+2
2

)
= χC(r1 + 2). If

r2 = r1 + 2, then χC(r1 + 2) = 1. Comparing the coefficients of xr1+s with s ∈ {3, 4, 5}
on the both sides of (3.12), we have

0 = 2
r1+3∑
i=0

χC(i)− r1 − 6,

2χC

(
r1+4

2

)
= 2

r1+4∑
i=0

χC(i)− r1 − 8,

0 = 2
r1+5∑
i=0

χC(i)− r1 − 6.

Then χC(r1 + 3) = 0, χC(r1 + 4) = 1 and χC(r1 + 5) = −1, a contradiction. Thus
r2 ≥ r1 + 3. The coefficient of xr1+3 in (3.12) is

0 = 2

r1+3∑
i=0

χC(i)− r1 − 4 = 2χC(r1 + 2) + 2χC(r1 + 3).

Then χC(r1 + 2) = χC(r1 + 3) = 0. Thus χC

( r1+2
2

)
= 0 and r2 ≥ r1 + 4. The coefficient

of xr1+4 in (3.12) is

2χC

(
r1 + 4

2

)
= 2

r1+4∑
i=0

χC(i)− r1 − 6 = 2χC(r1 + 4)− 2.

Then χC(r1 + 4) = 1, χC

( r1+4
2

)
= 0 and 2

r1+4∑
i=0

χC(i) = r1 + 6. By Lemma 2.2, we have

C ∩ [0, r1 − 1] = A ∩ [0, r1 − 1], D ∩ [0, r1 − 1] = B ∩ [0, r1 − 1]. (3.13)

Since χC

( r1+2
2

)
= χC

( r1+4
2

)
and

r1+4
2 ≤ r1 − 1, by (3.13) and the definition of A, we

have r1 ≡ 0 (mod 4). It follows that r1 ≥ 8 and χC

( r1+6
2

)
= 1.

Let k be a positive even integer such that r1 ≤ k < k + 1 < min{r2, 2r1} ≤ m.
Comparing the coefficients of x k and xk+1 on the both sides of (3.12) respectively, we
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have

2χC

(
k

2

)
= 2χC(k − r1) + 2

k∑
i=0

χC(i)− k − 2,

0 = 2χC(k + 1− r1) + 2
k+1∑
i=0

χC(i)− k − 4.

Subtracting the above two equalities and dividing by 2 we can get

χC

(
k

2

)
= χC(k − r1)− χC(k + 1− r1)− χC(k + 1) + 1. (3.14)

Since k + 1− r1 < r1, k − r1 is even, by (3.13), we have

χC(k − r1) + χC(k + 1− r1) = 1.

If χC(k−r1) = 0, then χC(k+1−r1) = 1. By (3.14), we get χC(
k
2 ) = 0. If χC(k−r1) = 1,

then χC(k + 1− r1) = 0. By (3.14), we get χC(
k
2 ) = 1. Thus

χC(k − r1) = χC

(
k

2

)
. (3.15)

If min{r2, 2r1} > 2r1 − 1, then choose k = 2r1 − 2i+1 with i ≥ 0 in (3.15), we have

χC(r1 − 2i+1) = χC(r1 − 2i).

Then

χC(r1 − 1) = χC(r1 − 2) = χC(r1 − 4) = · · · = χC(r1 − 2dlog2 r1e−1).

By Lemmas 2.3 and 2.4, we have r1 = 2dlog2 r1e − 1, which contradicts 2 | r1.
If r2 = 2r1 − 1, then compare the coefficients of xr2 and xr2−1 on the both sides

of (3.12) respectively, we have

0 = 2χC(r1 − 1) + 2

r2∑
i=0

χC(i)− r2 − 3 = 2χC(r1 − 1) + 2

r2−1∑
i=0

χC(i)− r2 − 1,

2χC(r1 − 1) = 2χC(r1 − 2) + 2

r2−1∑
i=0

χC(i)− r2 − 1.

Then 2χC(r1 − 1) = χC(r1 − 2). It follows that χC(r1 − 2) = χC(r1 − 1) = 0, which
contradicts χC(r1 − 2) + χC(r1 − 1) = 1. Thus r2 ≤ 2r1 − 2.
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Let k be a non-negative integer such that 2r1 ≤ 2r1 + k < 2r1 + k + 1 < r1 + r2 ≤ m.
If k is even, then compare the coefficients of x2r1+s with s ∈ {k, k+1} on the both sides
of (3.12), we have

2χC

(
2r1+k

2

)
= 2χC(r1 + k) + 2χC(2r1 + k − r2) + 2

2r1+k∑
i=0

χC(i)− 2r1 − k − 4,

0 = 2χC(r1 + k + 1) + 2χC(2r1 + k + 1− r2) + 2
2r1+k+1∑

i=0

χC(i)− 2r1 − k − 6.

Subtracting the above two equalities and dividing by 2 we can get

χC

(
2r1 + k

2

)
= χC(r1 + k) + χC(2r1 + k − r2)− χC(2r1 + k + 1)

− χC(r1 + k + 1)− χC(2r1 + k + 1− r2) + 1. (3.16)

If k is odd, then compare the coefficients of x2r1+s with s ∈ {k, k + 1} on the both sides
of (3.12), we have

0 = 2χC(r1 + k) + 2χC(2r1 + k − r2) + 2

2r1+k∑
i=0

χC(i)− 2r1 − k − 5,

2χC

(
2r1 + k + 1

2

)
= 2χC(r1+k+1)+2χC(2r1+k+1−r2)+2

2r1+k+1∑
i=0

χC(i)−2r1−k−5.

Subtracting the above two equalities and dividing by 2 we can get

χC

(
2r1 + k + 1

2

)
= χC(r1 + k + 1) + χC(2r1 + k + 1− r2) + χC(2r1 + k + 1)

− χC(r1 + k)− χC(2r1 + k − r2). (3.17)

If r2 is even, then choose k =0 and k =2 in (3.16) respectively, we have

χC(r1) = χC(r1) + χC(2r1 − r2)− χC(2r1 + 1)− χC(r1 + 1)− χC(2r1 + 1− r2) + 1,

χC(r1+1) = χC(r1+2)+χC(2r1+2−r2)−χC(2r1+3)−χC(r1+3)−χC(2r1+3−r2)+1.

Then

χC(2r1 − r2)− χC(2r1 + 1)− χC(2r1 + 1− r2) = 0,

χC(2r1 + 2− r2)− χC(2r1 + 3)− χC(2r1 + 3− r2) = 0.

By (3.13), we have χC(2r1 − r2)+χC(2r1 +1− r2) = 1 and χC(2r1 +2− r2)+χC(2r1 +
3 − r2) = 1. Then χC(2r1 − r2) = 1 and χC(2r1 + 2 − r2) = 1. It follows that r2 ≡ 2
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(mod 4). The coefficient of xr2 in (3.12) is

2χC

(
r2
2

)
= 2χC(r2 − r1) + 2

r2∑
i=0

χC(i)− r2 − 2

and the coefficient of xr2+1 in (3.12) is

0 = 2χC(r2 + 1− r1) + 2

r2+1∑
i=0

χC(i)− r2 − 6.

Then

χC

(
r2
2

)
= χC(r2 − r1)− χC(r2 + 1− r1)− χC(r2 + 1) + 2.

By χC(r2 − r1) + χC(r2 +1− r1) = 1, we have χC(r2 − r1) = 0, χC(r2 +1− r1) = 1. By
r1 ≡ 0 (mod 4) and r2 ≡ 2 (mod 4), we have χC(r2 − 1− r1) = 0, χC(r2 − 2− r1) = 1.
The coefficient of xr2−1 in (3.12) is

0 = 2χC(r2 − 1− r1) + 2

r2−1∑
i=0

χC(i)− r2 − 2.

Then 2
r2−1∑
i=0

χC(i) = r2 + 2. It follows that 2
r2∑
i=0

χC(i) = r2 + 4 and χC

( r2
2

)
= 1. The

coefficient of xr2−2 in (3.12) is

2χC

(
r2 − 2

2

)
= 2χC(r2 − 2− r1) + 2

r2−2∑
i=0

χC(i)− r2.

Then χC

( r2−2
2

)
= 2 − χC(r2 − 1). Thus χC

( r2−2
2

)
= χC(r2 − 1) = 1. By (3.13) and

χC

( r2−2
2

)
= χC

( r2
2

)
= 1, we have r2 ≡ 0 (mod 4), a contradiction.

If r2 is odd, then r1 + 5 ≤ r2 ≤ 2r1 − 3. The coefficient of xr1+5 in (3.12) is

0 = 2

r1+5∑
i=0

χC(i)− r1 − 6 = 2χC(r1 + 5).

Then χC(r1 + 5) = 0 and so r2 ≥ r1 + 7. The coefficient of xr1+6 in (3.12) is

2χC

(r1 + 6

2

)
= 2

r1+6∑
i=0

χC(i)− r1 − 6 = 2χC(r1 + 6).
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Then χC(r1 +6) = χC

( r1+6
2

)
= 1. By choosing k =3 and k =5 in (3.17) respectively, we

have

χC(r1+2) = χC(r1+4)+χC(2r1+4− r2)+χC(2r1+4)−χC(r1+3)−χC(2r1+3− r2),

χC(r1+3) = χC(r1+6)+χC(2r1+6− r2)+χC(2r1+6)−χC(r1+5)−χC(2r1+5− r2).

Then

χC(2r1 + 4− r2) + χC(2r1 + 4)− χC(2r1 + 3− r2) + 1 = 0,

χC(2r1 + 6− r2) + χC(2r1 + 6)− χC(2r1 + 5− r2) + 1 = 0.

By (3.13), we have χC(2r1 + 4 − r2) + χC(2r1 + 3 − r2) = 1 and χC(2r1 + 6 − r2) +
χC(2r1 + 5 − r2) = 1. Then χC(2r1 + 3 − r2) = χC(2r1 + 5 − r2) = 1. Applying again
(3.13), we have r2 ≡ 1 (mod 4). The coefficient of x2r1−2 in (3.12) is

2χC(r1 − 1) = 2χC(r1 − 2) + 2χC(2r1 − 2− r2) + 2

2r1−2∑
i=0

χC(i)− 2r1 − 2

and the coefficient of x2r1−1 in (3.12) is

0 = 2χC(r1 − 1) + 2χC(2r1 − 1− r2) + 2

2r1−1∑
i=0

χC(i)− 2r1 − 4.

Subtracting the above two equalities and dividing by 2 we can obtain

2χC(r1 − 1) = 1 + χC(r1 − 2) + χC(2r1 − 2− r2)− χC(2r1 − 1)− χC(2r1 − 1− r2).

Noting that χC(r1 − 2) + χC(r1 − 1) = 1 and χC(2r1 − 2 − r2) = χC(2r1 − 1 − r2), we
have 3χC(r1 − 1) = 2− χC(2r1 − 1). However, it is impossible. Therefore r2 = r1 + 1.
The remainder of the proof is similar to the proof of [13, Theorem 1.1]. For the sake

of completeness we give the details.
Let k be a positive even integer with r2 < k < k + 1 < 2r1 < r1 + r2 ≤ m. Comparing

the coefficients of xk−1, xk and xk+1 on the both sides of (3.12) respectively, we have

0 = 2χC(k − 1− r1) + 2χC(k − 1− r2) + 2
k−1∑
i=0

χC(i)− k − 4,

2χC

(
k

2

)
= 2χC(k − r1) + 2χC(k − r2) + 2

k∑
i=0

χC(i)− k − 4,

0 = 2χC(k + 1− r1) + 2χC(k + 1− r2) + 2
k+1∑
i=0

χC(i)− k − 6.
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Calculating the above three equalities, we have

χC

(
k

2

)
= χC(k − r1)− χC(k − 1− r2) + χC(k), (3.18)

χC

(
k

2

)
= χC(k − r2)− χC(k + 1− r1)− χC(k + 1) + 1. (3.19)

By choosing k = 2r1 − 2 in (3.19), we have

2χC(r1 − 1) = χC(r1 − 3)− χC(2r1 − 1) + 1.

Then χC(r1 − 1) = χC(r1 − 3). Thus r1 ≡ 2 (mod 4) and r2 ≡ 3 (mod 4).
If k − 1− r2 ≡ 0 (mod 4), then k − r1 ≡ 2 (mod 4) and k ≡ 0 (mod 4). Thus

χC

(
k − 1− r2

2

)
+ χC

(
k − r1

2

)
= 1.

Hence

χC(k − 1− r2) + χC(k − r1) = 1.

If χC(k−1−r2) = 0, then χC(k−r1) = 1. By (3.18), we have χC(
k
2 ) = 1. If χC(k−1−r2) =

1, then χC(k − r1) = 0. By (3.18), we have χC(
k
2 ) = 0. Thus χC

(
k
2

)
= χC(k − r1) and

χC

(
k
2

)
+ χC(k − 1 − r2) = 1. Noting that χC(k − 1 − r2) + χC(k − r2) = 1, we have

χC

(
k
2

)
= χC(k − r2).

If k− 1− r2 ≡ 2 (mod 4), then k− r1 ≡ 0 (mod 4) and k ≡ 2 (mod 4). By (3.18), we
have

χC

(
k − 2

2

)
= χC(k − 2− r1)− χC(k − 3− r2) + χC(k − 2).

Then χC

(
k−2
2

)
= χC(k − 2 − r1). Noting that χC

(
k−2
2

)
+ χC

(
k
2

)
= 1 and χC(k − 1 −

r2) + χC(k − r2) = 1, we have χC

(
k
2

)
= χC(k − r2).

As a result, we can obtain χC

(
k
2

)
= χC(k − r2). Put k = 2r2 − 2i+1 with i ≥ 0. Then

χC(r2 − 2i) = χC(r2 − 2i+1). Thus

1 = χC(r1) = χC(r2 − 1) = χC(r2 − 2) = χC(r2 − 4) = · · · = χC(r2 − 2dlog2 r2e−1).

By Lemma 2.3, we have r1 = 22l+1 − 2 and r2 = 22l+1 − 1 for some positive integer l.
This completes the proof of Claim 2. �

Claim 3. Let l be a positive integer and let E,F be two sets of non-negative integers
with E ∪ F = [0, 3 · 22l+1 − 4], 0 ∈ E and E ∩ F = {22l+1 − 2, 22l+1 − 1}. Then RE(n) =
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RF (n) for any integer n ∈ [0, 3 · 22l+1 − 4] if and only if

E = A2l+1 ∪ (22l+1 − 2 +B2l+1) ∪ (22l+2 − 2 + (B2l+1 ∩ [0, 22l+1 − 3])) ∪ {3 · 22l+1 − 4},
F = B2l+1 ∪ (22l+1 − 2 +A2l+1) ∪ (22l+2 − 2 + (A2l+1 ∩ [0, 22l+1 − 3])).

Proof of Claim 3. We first prove the sufficiency of Claim 3. It is easy to verify that
E ∪ F = [0, 3 · 22l+1 − 4], 0 ∈ E and E ∩ F = {22l+1 − 2, 22l+1 − 1}.
If n ∈ [0, 22l+2 − 3], then

RE(n) = RA2l+1
(n) +RA2l+1,2

2l+1−2+B2l+1
(n) +R22l+1−2+B2l+1

(n)

= RA2l+1
(n) +RA2l+1,B2l+1

(n− (22l+1 − 2)) +RB2l+1
(n− 2(22l+1 − 2))

and

RF (n) = RB2l+1
(n) +R22l+1−2+A2l+1,B2l+1

(n) +R22l+1−2+A2l+1
(n)

= RB2l+1
(n) +RA2l+1,B2l+1

(n− (22l+1 − 2)) +RA2l+1
(n− 2(22l+1 − 2)).

By Lemma 2.5, for all k ∈ N, we have RA2l+1
(k) = RB2l+1

(k). Then RE(n) = RF (n).

If n ∈ [22l+2 − 2, 3 · 22l+1 − 5], then

RE(n) = RA2l+1,2
2l+1−2+B2l+1

(n) +R22l+1−2+B2l+1
(n)

+ RA2l+1,2
2l+2−2+(B2l+1∩[0,22l+1−3])(n)

= RA2l+1,B2l+1
(n− (22l+1 − 2)) +RB2l+1

(n− 2(22l+1 − 2))

+ RA2l+1,B2l+1
(n− (22l+2 − 2))

and

RF (n) = RB2l+1,2
2l+1−2+A2l+1

(n) +R22l+1−2+A2l+1
(n)

+ RB2l+1,2
2l+2−2+(A2l+1∩[0,22l+1−3])(n)

= RB2l+1,A2l+1
(n− (22l+1 − 2)) +RA2l+1

(n− 2(22l+1 − 2))

+ RB2l+1,A2l+1
(n− (22l+2 − 2)).

By Lemma 2.5, RA2l+1
(k) = RB2l+1

(k) holds for all k ∈ N and then RE(n) = RF (n).

By 3 · 22l+1 − 4 = (22l+1 − 2) + (22l+2 − 2) in D, we have

RC(3 · 22l+1 − 4) = 1 +RB2l+1
(22l+1) +RA2l+1,B2l+1

(22l+1 − 2)

and

RD(3 · 22l+1 − 4) = 1 +RA2l+1
(22l+1) +RB2l+1,A2l+1

(22l+1 − 2).

Thus RC(3 · 22l+1 − 4) = RD(3 · 22l+1 − 4).
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14 C. Sun and H. Pan

The necessity of Claim 3 follows from Lemma 2.2 and the sufficiency of Claim 3.
This completes the proof of Claim 3. �

Now let

C1 = C ∩ [0,m− 1 + r1], D1 = D ∩ [0,m− 1 + r1].

Then

C1 ∪D1 = [0,m− 1 + r1], C1 ∩D1 = {r1, r2}.

Moreover, for any integer n ∈ [0,m− 1 + r1], we have

RC1
(n) = |{(c, c′) : c < c′ ≤ n, c, c′ ∈ C1, c+ c′ = n}|

= |{(c, c′) : c < c′ ≤ n, c, c′ ∈ C, c+ c′ = n}|
= RC(n),

RD1
(n) = |{(d, d′) : d < d′ ≤ n, d, d′ ∈ D1, d+ d′ = n}|

= |{(d, d′) : d < d′ ≤ n, d, d′ ∈ D, d+ d′ = n}|
= RD(n).

Thus for any integer n ∈ [0,m− 1 + r1], we have

RC1
(n) = RC(n) = RD(n) = RD1

(n).

Noting that r2 ≤ m − 1, we see that r1 + r2 ≤ m − 1 + r1. By Claim 2, there exists a
positive integer l such that r1 = 22l+1 − 2, r2 = 22l+1 − 1.
Let E and F be as in Claim 3. If m ≥ 22l+2−1 and 0 ∈ C, then m−1+r1 ≥ 3·22l+1−4

and

C(3 · 22l+1 − 4) ∪D(3 · 22l+1 − 4) = [0, 3 · 22l+1 − 4],

C(3 · 22l+1 − 4) ∩D(3 · 22l+1 − 4) = {22l+1 − 2, 22l+1 − 1}.

Moreover, RC(3·22l+1−4)(n) = RC(n) = RD(n) = RD(3·22l+1−4)(n) for all n ∈ [0, 3 ·
22l+1 − 4]. By Lemma 2.2, we have

C(3 · 22l+1 − 4) = E, D(3 · 22l+1 − 4) = F.

By

RC(3 · 22l+1 − 3) = χC(3 · 22l+1 − 3) +RA2l+1,B2l+1
(22l+1 − 1) +RB2l+1

(22l+1 + 1)− 1,

RD(3 · 22l+1 − 3) = RB2l+1,A2l+1
(22l+1 − 1) +RA2l+1

(22l+1 + 1)− 1,
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we know that RC(3 · 22l+1 − 3) = RD(3 · 22l+1 − 3) if and only if χC(3 · 22l+1 − 3) = 0,
that is, 3 · 22l+1 − 3 ∈ D. Noting that 22l+1 − 2 ∈ A2l+1, 2

2l+1 − 1 ∈ B2l+1, 3 · 22l+1 − 2 =
(22l+1 − 1) + (22l+2 − 1) in C and 3 · 22l+1 − 2 = 1 + (3 · 22l+1 − 3) in D, we obtain

RC(3 · 22l+1 − 2) = 1 + χC(3 · 22l+1 − 2) +RA2l+1,B2l+1
(22l+1) +RB2l+1

(22l+1 + 2)

− χA2l+1
(3 · 22l+1 − 2− (22l+2 − 2 + 22l+1 − 1))

= 1 + χC(3 · 22l+1 − 2) +RA2l+1,B2l+1
(22l+1) +RB2l+1

(22l+1 + 2)

and

RD(3 · 22l+1 − 2) = 1 +RB2l+1,A2l+1
(22l+1) +RA2l+1

(22l+1 + 2)

− χB2l+1
(3 · 22l+1 − 2− (22l+2 − 2 + 22l+1 − 2))

= RB2l+1,A2l+1
(22l+1) +RA2l+1

(22l+1 + 2).

Thus by Lemma 2.5, we have RC(3 · 22l+1 − 2) > RD(3 · 22l+1 − 2), which is impossible.
Therefore m ≤ 22l+2 − 2.
Now we assume that 22l+1 ≤ m ≤ 22l+2 − 3 and 0 ∈ C. Let

M = r1 +m = 22l+1 − 2 +m.

Since 22l+2 − 2 ≤ M ≤ 3 · 22l+1 − 5, by Lemma 2.2, we have

E(M) ∪ F (M) = [0,M ], E(M) ∩ F (M) = {22l+1 − 2, 22l+1 − 1}, (3.20)

RE(M)(n) = RE(n) = RF (n) = RF (M)(n) for any integer n ∈ [0,M ]. (3.21)

Moreover,

C(M) ∪D(M − 1) = [0,M ], C(M) ∩D(M − 1) = {22l+1 − 2, 22l+1 − 1}. (3.22)

Since RC(n) = RD(n) for all n ∈ N and 0 6∈ D, we have

RC(M)(n) = RC(n) = RD(n) = RD(M−1)(n) (3.23)

for any integer n ∈ [0,M ]. By (3.20)–(3.23) and Lemma 2.2, we have

C(M) = E(M), D(M − 1) = F (M). (3.24)

Then χE(M) = 1, χF (M) = 0.
By 22l+1−3 ∈ A2l+1, we have 3 · 22l+1−5 ∈ F . ThenM < 3 · 22l+1−5. If χE(M+1) = 1,

then χF (M + 1) = 0 and C(M + 1) = E(M + 1), D(M + 1) = F (M + 1) ∪ {M,M + 1}.

https://doi.org/10.1017/S0013091524000907 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000907


16 C. Sun and H. Pan

Thus

RC(M + 1) = |{(c, c′) : 0 ≤ c < c′ ≤ M + 1, c, c′ ∈ C, c+ c′ = M + 1}|
= |{(c, c′) : 0 ≤ c < c′ ≤ M + 1, c, c′ ∈ C(M + 1), c+ c′ = M + 1}|
= RE(M+1)(M + 1)

and

RD(M + 1) = |{(d, d′) : 1 ≤ d < d′ ≤ M + 1, d, d′ ∈ D, d+ d′ = M + 1}|
= |{(d, d′) : 1 ≤ d < d′ ≤ M + 1, d, d′ ∈ D(M + 1), d+ d′ = M + 1}|
= 1 + |{(d, d′) : 1 ≤ d < d′ ≤ M + 1, d, d′ ∈ F (M + 1), d+ d′ = M + 1}|
= 1 +RF (M+1)(M + 1).

By Claim 3, we have RE(M+1)(M+1) = RF (M+1)(M+1). Then RC(M+1) 6= RD(M+1),
a contradiction. Thus χE(M + 1) = 0 and χF (M + 1) = 1.
Let t be an arbitrary positive integer such that M < M + t < M + t+1 ≤ 3 ·22l+1−4.

Then 1 ≤ t ≤ 22l+1 − 3. Define the sets S and T by

S = (E ∩ C)(M + t) ∪ (F (M + t)\D(M + t)),

T = (F ∩D)(M + t) ∪ (E(M + t)\C(M + t)).

Noting that

E(M + t) ∪ F (M + t) = [0,M + t] = (C(M + t)\{M + 1}) ∪ (D(M + t)\{M}),

E(M + t) ∩ F (M + t) = {22l+1 − 2, 22l+1 − 1},

we have

S ⊆ C(M + t)\{M + 1}, T ⊆ D(M + t)\{M},

S ∪ T = (C(M + t)\{M + 1}) ∪ (D(M + t)\{M}),

S ∩ T = {22l+1 − 2, 22l+1 − 1} = (C(M + t)\{M + 1}) ∩ (D(M + t)\{M}).

Then

|S|+ |T | = |S ∪ T |+ |S ∩ T | = |C(M + t)\{M + 1}|+ |D(M + t)\{M}|.

It follows that

S = C(M + t)\{M + 1}, T = D(M + t)\{M}. (3.25)
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For M + t ≤ n ≤ 3 · 22l+1 − 4, let

N1(t, n) = RE(22l+1−3),E(M+t)\C(M+t)(n),

N2(t, n) = RF (22l+1−3),E(M+t)\C(M+t)(n),

N3(t, n) = RE(22l+1−3),F (M+t)\D(M+t)(n),

N4(t, n) = RF (22l+1−3),F (M+t)\D(M+t)(n).

We claim that

|E(M + t)\C(M + t)| = N1(t, n) +N2(t, n), (3.26)

|F (M + t)\D(M + t)| = N3(t, n) +N4(t, n). (3.27)

In fact, if E(M + t)\C(M + t) = ∅, then N1(t, n) = N2(t, n) = 0; if

E(M + t)\C(M + t) = {c1, . . . , cu}

for some positive integer u, then by (3.24), we have ci ≥ M+1 and so 0 ≤ n−ci ≤ 22l+1−3
for i ∈ [1, u]. In view of

E(22l+1 − 3) ∪ F (22l+1 − 3) = [0, 22l+1 − 3], E(22l+1 − 3) ∩ F (22l+1 − 3) = ∅,

we have

N1(t, n) +N2(t, n) =
u∑

i=1

χE(22l+1−3)(n− ci) +
u∑

i=1

χF (22l+1−3)(n− ci) = u.

Thus (3.26) holds. Similarly, we can deduce (3.27) holds.
By M + t < 3 · 22l+1 − 4 < 22l+3 − 4 ≤ 2M , we can obtain

RE(M+t)(n) = R(E∩C)(M+t)(n) +RE(22l+1−3),E(M+t)\C(M+t)(n)

= R(E∩C)(M+t)(n) +N1(t, n).

By (3.24) and (3.25), we have

RC(M+t)(n) = RC(M+t)\{M+1}(n) + χC(M+t)\{M+1}(n−M − 1)

= R(E∩C)(M+t)(n) +RE(22l+1−3),F (M+t)\D(M+t)(n) + χE(n−M − 1)

= RE(M+t)(n)−N1(t, n) +N3(t, n) + χE(n−M − 1). (3.28)

Similarly, we can get

RD(M+t)(n) = RD(M+t)\{M}(n) + χD(M+t)\{M}(n−M)

= R(F∩D)(M+t)(n) +RF (22l+1−3),E(M+t)\C(M+t)(n) + χF (n−M)

= RF (M+t)(n)−N4(t, n) +N2(t, n) + χF (n−M). (3.29)
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By choosing n = M + t and n = M + t+ 1 in (3.28) respectively, we have

RC(M+t)(M + t) = RE(M+t)(M + t)−N1(t,M + t) +N3(t,M + t) + χE(t− 1) (3.30)

and

RC(M+t+1)(M + t+ 1) = RC(M+t)(M + t+ 1) + χC(M + t+ 1)

= RE(M+t+1)(M + t+ 1)− χE(M + t+ 1)−N1(t,M + t+ 1)

+ N3(t,M + t+ 1) + χE(t) + χC(M + t+ 1). (3.31)

By choosing n = M + t and n = M + t+ 1 in (3.29) respectively, we have

RD(M+t)(M + t) = RF (M+t)(M + t)−N4(t,M + t) +N2(t,M + t) + χF (t) (3.32)

and

RD(M+t+1)(M + t+ 1) = RD(M+t)(M + t+ 1)

= RF (M+t+1)(M + t+ 1)−N4(t,M + t+ 1)

+ N2(t,M + t+ 1) + χF (t+ 1). (3.33)

Note that RC(n)(n) = RD(n)(n) and RE(n)(n) = RF (n)(n). By (3.30)–(3.33), we have

N1(t,M + t) +N2(t,M + t) + χF (t) = N3(t,M + t) +N4(t,M + t) + χE(t− 1)

and

N1(t,M + t+ 1) +N2(t,M + t+ 1) + χE(M + t+ 1) + χF (t+ 1)

= N3(t,M + t+ 1) +N4(t,M + t+ 1) + χE(t) + χC(M + t+ 1).

By (3.26) and (3.27), we have

|E(M + t)\C(M + t)|+ χF (t) = |F (M + t)\D(M + t)|+ χE(t− 1)

and

|E(M + t)\C(M + t)|+ χE(M + t+ 1) + χF (t+ 1)

= |F (M + t)\D(M + t)|+ χE(t) + χC(M + t+ 1).

Then

χF (t) + χE(t) + χC(M + t+ 1) = χE(t− 1) + χE(M + t+ 1) + χF (t+ 1). (3.34)

If M is even, then we can write

M = (22l+2 − 2) +
2l∑
i=1

bi2
i,
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where bi ∈ {0, 1}. It follows from χF (M) = 0 that χB2l+1

( 2l∑
i=1

bi2
i
)
= 1. By choosing

M + t+ 1 = 3 · 22l+1 − 4 in (3.34), we see that t is odd and

χF (t+ 1) = χF

(
221+1 − 2−

2l∑
i=1

bi2
i
)
= χB2l+1

( 2l∑
i=1

(1− bi)2
i
)
= 1.

Then χE(t + 1) = 0. It follows from χF (t) + χE(t) = 1 and χE(3 · 22l+1 − 4) = 1 that
χE(t − 1) = 0 and χF (t − 1) = 1. Since χE(t − 1) + χE(t) = 1, we have χE(t) = 1 and
χF (t) = 0. Noting that χE(t−1) = χE(t+1), we have t ≡ 3 (mod 4) and so t ≥ 3. Then
χE(t− 2) = 0. By choosing M + (t− 1) + 1 = 3 · 22l+1 − 5 in (3.34), we have

χF (t− 1) + χE(t− 1) + χC(M + (t− 1) + 1) = χE(t− 2) + χE(M + (t− 1) + 1) + χF (t).

It follows from χE(M+(t−1)+1) = χE(3 ·22l+1−5) = 0 that χC(M+(t−1)+1) = −1,
which is clearly false.
If M is odd, then we can write

M = (22l+2 − 2) +

f∑
i=0

2i +
2l∑

i=f+2

bi2
i,

where f ∈ {0, 1, . . . , 2l−1} and bi ∈ {0, 1}. It follows from χE(M+1) = 0 and χF (M) = 0
that

χA2l+1

(
2f+1 +

2l∑
i=f+2

bi2
i

)
= 1, χB2l+1

( f∑
i=0

2i +
2l∑

i=f+2

bi2
i

)
= 1.

Then f is odd. By choosing M + t+ 1 = 3 · 22l+1 − 4 in (3.34), we see that t is even and

χF (t+1) = χF

(
221+1−2−

f∑
i=0

2i−
2l∑

i=f+2

bi2
i

)
= χB2l+1

(
2f+1−1+

2l∑
i=f+2

(1−bi)2
i
)
= 1.

Then χE(t+1) = 0 and χF (t) = 0. Thus χE(t) = 1. It follows from χE(3 · 22l+1 − 4) = 1
that χE(t − 1) = 0 and χF (t − 1) = 1. Since χE(t − 1) = χE(t + 1), we have t ≡ 0
(mod 4) and so t ≥ 4. Then χE(t− 2) = χE(t− 3) = 1 and χF (t− 2) = 0. By choosing
M + (t− 2) + 1 = 3 · 22l+1 − 6 in (3.34), we have

χF (t−2)+χE(t−2)+χC(M +(t−2)+1) = χE(t−3)+χE(M +(t−2)+1)+χF (t−1).

It follows from χE(M +(t− 2)+1) = χE(3 · 22l+1− 6) = 1 that χC(M +(t− 2)+1) = 2,
which is also impossible. Therefore m = 22l+2 − 2.
This completes the proof of Theorem 1.3.
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