1. Introduction
In this paper, we establish some existence results for the class of critical $N$-Laplacian problems
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn1.png?pub-status=live)
where $\Omega$ is a smooth-bounded domain in $\mathbb {R}^{N},\, N \ge 2$
, $\alpha > 0$
, $N' = N/(N - 1)$
is the Hölder conjugate of $N$
, and $h$
is a continuous function such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn2.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn3.png?pub-status=live)
This problem is motivated by the Trudinger–Moser inequality
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn4.png?pub-status=live)
where $W^{1,N}_0(\Omega )$ is the usual Sobolev space with the norm
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU1.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU2.png?pub-status=live)
is the area of the unit sphere in $\mathbb {R}^{N}$ (see Trudinger [Reference Trudinger14] and Moser [Reference Moser10]). Problem (1.1) is critical with respect to this inequality and hence lacks compactness. Indeed, the associated variational functional satisfies the Palais–Smale compactness condition only at energy levels below a certain threshold (see Proposition 2.1 in the next section).
In dimension $N = 2$, problem (1.1) is semilinear and has been extensively studied in the literature (see, e.g., [Reference Adimurthi and Yadava2–Reference de Figueiredo, Miyagaki and Ruf4, Reference de Figueiredo, do Ó and Ruf6]). In dimensions $N \ge 3$
, this problem is quasilinear and has been studied mainly when
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn5.png?pub-status=live)
for some $\lambda \in (0,\lambda _1)$ (see, e.g., [Reference Adimurthi1, Reference de Figueiredo, do Ó and Ruf5, Reference do Ó8]). Here,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn6.png?pub-status=live)
is the first eigenvalue of the eigenvalue problem
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn7.png?pub-status=live)
The case $h(t) = \lambda \, |t|^{N-2}\, t$ with $\lambda > 0$
, for which $\beta = \infty$
, was recently studied in Yang and Perera [Reference Yang and Perera15]. The remaining case, where $N \ge 3$
, $\lambda \ge \lambda _1$
, and $\beta < \infty$
, does not seem to have been studied in the literature. This case is covered in our results here, which are for large $\beta < \infty$
and allow $N \ge 3$
and $\lambda \ge \lambda _1$
in (1.5).
Let $d$ be the radius of the largest open ball contained in $\Omega$
. Our first result is the following theorem.
Theorem 1.1 Assume that $\alpha > 0,$ $h$
satisfies (1.2) and (1.3) , and $G$
satisfies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn8.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn9.png?pub-status=live)
for some $\sigma _0 \ge 0$ and $\sigma _1, \delta > 0$
. If
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn10.png?pub-status=live)
where $\kappa = \dfrac {1}{N!} \left(\dfrac {N}{d}\right)^{N},$ then problem (1.1) has a non-trivial solution.
In particular, we have the following corollary for $\sigma _0 = 0$.
Corollary 1.2 Assume that $\alpha > 0,$ $h$
satisfies (1.2) and (1.3), and $G$
satisfies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU3.png?pub-status=live)
for some $\sigma _1, \delta > 0$. If
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU4.png?pub-status=live)
then problem (1.1) has a non-trivial solution.
Corollary 1.2 should be compared with Theorem 1 of do Ó [Reference do Ó8], where this result is proved under the stronger assumption $h(t) \ge 0$ for $t \ge 0$
.
To state our second result, let $\left ({\lambda _k}\right )$ be the sequence of eigenvalues of problem (1.7) based on the $\mathbb {Z}_2$
-cohomological index that was introduced in Perera [Reference Perera11] (see Proposition 2.3 in the next section). We have the following theorem.
Theorem 1.3 Assume that $\alpha > 0,$ $h$
satisfies (1.2) and (1.3), and $G$
satisfies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn11.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn12.png?pub-status=live)
for some $k \ge 2$ and $\sigma _0, \sigma _1, \delta > 0$
. Then there exists a constant $c > 0$
depending on $\Omega$
, $\alpha$
, and $k$
, but not on $\sigma _0$
, $\sigma _1$
, or $\delta$
, such that if
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU5.png?pub-status=live)
then problem (1.1) has a non-trivial solution.
Theorem 1.3 should be compared with Theorem 1.4 of de Figueiredo et al. [Reference de Figueiredo, Miyagaki and Ruf3, Reference de Figueiredo, Miyagaki and Ruf4], where this result is proved in the case $N = 2$ under the additional assumption that $0 < 2G(t) \le th(t)\, e^{\alpha t^{2}}$
for all $t \in \mathbb {R} {\setminus} \left \{{0}\right \}$
. However, the linking argument used in [Reference de Figueiredo, Miyagaki and Ruf3, Reference de Figueiredo, Miyagaki and Ruf4] is based on a splitting of $H^{1}_0(\Omega )$
that involves the eigenspaces of the Laplacian, and this argument does not extend to the case $N \ge 3$
where the $N$
-Laplacian is a nonlinear operator and therefore has no linear eigenspaces. We will prove Theorem 1.3 using an abstract critical point theorem based on the $\mathbb {Z}_2$
-cohomological index that was proved in Yang and Perera [Reference Yang and Perera15] (see § 2.4).
In the proofs of Theorems 1.1 and 1.3, the inner radius $d$ of $\Omega$
comes into play when verifying that certain minimax levels are below the compactness threshold given in Proposition 2.1.
2. Preliminaries
2.1. A compactness result
Weak solutions of problem (1.1) coincide with critical points of the $C^{1}$-functional
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU6.png?pub-status=live)
We recall that a $(\text {PS})_{c}$ sequence of $E$
is a sequence $\left ({u_j}\right ) \subset W^{1,N}_0(\Omega )$
such that $E(u_j) \to c$
and $E'(u_j) \to 0$
. Proofs of Theorem 1.1 and Theorem 1.3 will be based on the following compactness result.
Proposition 2.1 Assume that $\alpha > 0$ and $h$
satisfies (1.2) and (1.3). Then for all $c \ne 0$
satisfying
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU7.png?pub-status=live)
every $(\text {PS})_{c}$ sequence of $E$
has a subsequence that converges weakly to a non-trivial solution of problem (1.1).
Proof. Let $\left ({u_j}\right ) \subset W^{1,N}_0(\Omega )$ be a $(\text {PS})_{c}$
sequence of $E$
. Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn13.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn14.png?pub-status=live)
First, we show that $\left ({u_j}\right )$ is bounded in $W^{1,N}_0(\Omega )$
. Multiplying (2.1) by $2N$
and subtracting (2.2) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU8.png?pub-status=live)
so it suffices to show that $th(t)\, e^{\alpha \, |t|^{N'}} - 2N G(t)$ is bounded from below. Let $0 < \varepsilon < \beta /(2N + 1)$
. By (1.2) and (1.3), for some constant $C_\varepsilon > 0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn15.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn16.png?pub-status=live)
for all $t$. So
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU9.png?pub-status=live)
which is bounded from below.
Since $\left ({u_j}\right )$ is bounded in $W^{1,N}_0(\Omega )$
, a renamed subsequence converges to some $u$
weakly in $W^{1,N}_0(\Omega )$
, strongly in $L^{p}(\Omega )$
for all $p \in [1,\infty )$
, and a.e.in $\Omega$
. We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn17.png?pub-status=live)
for all $v \in W^{1,N}_0(\Omega )$. By (1.2), given any $\varepsilon > 0$
, there exists a constant $C_\varepsilon > 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn18.png?pub-status=live)
By (2.2),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU10.png?pub-status=live)
which together with (2.4) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn19.png?pub-status=live)
For $v \in C^{\infty }_0(\Omega )$, it follows from (2.6) and (2.7) that the sequence $(v\, h(u_j)\, e^{\alpha \, |u_j|^{N'}})$
is uniformly integrable and hence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU11.png?pub-status=live)
by Vitali's convergence theorem, so it follows from (2.5) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU12.png?pub-status=live)
Then this holds for all $v \in W^{1,N}_0(\Omega )$ by density, so the weak limit $u$
is a solution of problem (1.1).
Suppose that $u = 0$. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU13.png?pub-status=live)
since (2.3) and (2.7) imply that the sequence $\left ({G(u_j)}\right )$ is uniformly integrable, so (2.1) gives $c \ge 0$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn20.png?pub-status=live)
Let $Nc < \nu < (\alpha _N/\alpha )^{N-1}$. Then $\left \|u_j\right \| \le \nu ^{1/N}$
for all $j \ge j_0$
for some $j_0$
. Let $q = \alpha _N/\alpha \nu ^{1/(N-1)} > 1$
. By the Hölder inequality,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU14.png?pub-status=live)
where $1/p + 1/q = 1$. The first integral on the right-hand side converges to zero since $h$
is bounded and $u_j \to 0$
in $L^{p}(\Omega )$
, and the second integral is bounded by (1.4) since $q \alpha \, |u_j|^{N'} = \alpha _N\, |\widetilde {u}_j|^{N'}$
, where $\widetilde {u}_j = u_j/\nu ^{1/N}$
satisfies $\left \|\widetilde {u}_j\right \| \le 1$
for $j \ge j_0$
, so
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU15.png?pub-status=live)
Then, $u_j \to 0$ by (2.2) and hence $c = 0$
by (2.8), contrary to assumption. So $u$
is a non-trivial solution.
2.2. $\mathbb {Z}_2$
-cohomological index
The $\mathbb {Z}_2$-cohomological index of Fadell and Rabinowitz [Reference Fadell and Rabinowitz9] is defined as follows. Let $W$
be a Banach space and let $\mathcal {A}$
denote the class of symmetric subsets of $W {\setminus} \left \{{0}\right \}$
. For $A \in \mathcal {A}$
, let $\overline {A} = A/\mathbb {Z}_2$
be the quotient space of $A$
with each $u$
and $-u$
identified, let $f : \overline {A} \to \mathbb {R} \text {P}^{\infty }$
be the classifying map of $\overline {A}$
, and let $f^{\ast } : H^{\ast }(\mathbb {R} \text {P}^{\infty }) \to H^{\ast }(\overline {A})$
be the induced homomorphism of the Alexander–Spanier cohomology rings. The cohomological index of $A$
is defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU16.png?pub-status=live)
where $\omega \in H^{1}(\mathbb {R} \text {P}^{\infty })$ is the generator of the polynomial ring $H^{\ast }(\mathbb {R} \text {P}^{\infty }) = \mathbb {Z}_2[\omega ]$
. For example, the classifying map of the unit sphere $S^{m-1}$
in $\mathbb {R}^{m},\, m \ge 1$
is the inclusion $\mathbb {R} \text {P}^{m-1} \subset \mathbb {R} \text {P}^{\infty }$
, which induces isomorphisms on $H^{q}$
for $q \le m - 1$
, so $i(S^{m-1}) = m$
.
The following proposition summarizes the basic properties of the cohomological index (see Fadell and Rabinowitz [Reference Fadell and Rabinowitz9]).
Proposition 2.2 The index $i : \mathcal {A} \to \mathbb {N} \cup \left \{{0,\infty }\right \}$ has the following properties:
(i) Definiteness: $i(A) = 0$
if and only if $A = \emptyset$
.
(ii) Monotonicity: If there is an odd continuous map from $A$
to $B$
(in particular, if $A \subset B$
), then $i(A) \le i(B)$
. Thus, equality holds when the map is an odd homeomorphism.
(iii) Dimension: $i(A) \le \dim W$
.
(iv) Continuity: If $A$
is closed, then there is a closed neighbourhood $N \in \mathcal {A}$
of $A$
such that $i(N) = i(A)$
. When $A$
is compact, $N$
may be chosen to be a $\delta$
-neighbourhood $N_\delta (A) = \left \{{u \in W : \text {dist}\, ({u}, {A}) \le \delta }\right \}$
.
(v) Subadditivity: If $A$
and $B$
are closed, then $i(A \cup B) \le i(A) + i(B)$
.
(vi) Stability: If $SA$
is the suspension of $A \ne \emptyset$
, obtained as the quotient space of $A \times [-1,1]$
with $A \times \left \{{1}\right \}$
and $A \times \left \{{-1}\right \}$
collapsed to different points, then $i(SA) = i(A) + 1$
.
(vii) Piercing property: If $A$
, $A_0$
and $A_1$
are closed, and $\varphi : A \times [0,1] \to A_0 \cup A_1$
is a continuous map such that $\varphi (-u,t) = - \varphi (u,t)$
for all $(u,t) \in A \times [0,1]$
, $\varphi (A \times [0,1])$
is closed, $\varphi (A \times \left \{{0}\right \}) \subset A_0$
and $\varphi (A \times \left \{{1}\right \}) \subset A_1,$
then $i(\varphi (A \times [0,1]) \cap A_0 \cap A_1) \ge i(A)$
.
(viii) Neighborhood of zero: If $U$
is a bounded closed symmetric neighbourhood of $0$
, then $i(\partial {U}) = \dim W$
.
2.3. Eigenvalues
Eigenvalues of problem (1.7) coincide with critical values of the functional
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU17.png?pub-status=live)
We have the following proposition (see Perera [Reference Perera11] and Perera $et al.$[Reference Perera, Agarwal and O'Regan12, Proposition 3.52 and Proposition 3.53]).
Proposition 2.3 Let $\mathcal {F}$ denote the class of symmetric subsets of $S$
and set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU18.png?pub-status=live)
Then $0 < \lambda _1 < \lambda _2 \le \lambda _3 \le \cdots \to + \infty$ is a sequence of eigenvalues of problem (1.7). Moreover, if $\lambda _{k-1} < \lambda _k,$
then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU19.png?pub-status=live)
where $\Psi ^{a} = \left \{{u \in S : \Psi (u) \le a}\right \}$ and $\Psi _a = \left \{{u \in S : \Psi (u) \ge a}\right \}$
for $a \in \mathbb {R}$
.
We will also need the following result of Degiovanni and Lancelotti [Reference Degiovanni and Lancelotti7, Theorem 2.3].
Proposition 2.4 If $\lambda _{k-1} < \lambda _k,$ then $\Psi ^{\lambda _{k-1}}$
contains a compact symmetric set $C$
of index $k - 1$
that is bounded in $C^{1}(\overline {\Omega })$
.
2.4. An abstract critical point theorem
We will use the following abstract critical point theorem proved in Yang and Perera [Reference Yang and Perera15, Theorem 2.2] to prove Theorem 1.3. This result generalizes the linking theorem of Rabinowitz [Reference Rabinowitz13].
Theorem 2.5 Let $E$ be a $C^{1}$
-functional defined on a Banach space $W$
and let $A_0$
and $B_0$
be disjoint non-empty closed symmetric subsets of the unit sphere $S = \left \{{u \in W : \left \|u\right \| = 1}\right \}$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn21.png?pub-status=live)
Assume that there exist $R > \rho > 0$ and $\omega \in S {\setminus} A_0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU20.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU21.png?pub-status=live)
and $\pi : W {\setminus} \left \{{0}\right \} \to S,\, u \mapsto u/\left \|u\right \|$ is the radial projection onto $S$
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU22.png?pub-status=live)
and set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU23.png?pub-status=live)
Then, $\inf E(B) \le c \le \sup E(X),$ and $E$
has a $(\text {PS})_{c}$
sequence.
2.5. Moser sequence
For $j \ge 2$, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn22.png?pub-status=live)
(see Moser [Reference Moser10]).
Proposition 2.6 We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn23.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn24.png?pub-status=live)
Proof. We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU24.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU25.png?pub-status=live)
We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU26.png?pub-status=live)
and integrating by parts gives the recurrence relation
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU27.png?pub-status=live)
So
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU28.png?pub-status=live)
and (2.11) follows. The integral in (2.12) is easily evaluated.
2.6. A limit calculation
We will need the following limit in the proof of Theorem 1.1.
Proposition 2.7 We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU29.png?pub-status=live)
Proof. Let $f_n(t) = ne^{- n\, (t - t^{N'})}$ and set $t_0 = (N')^{-1/(N'-1)}$
. For $t \ne t_0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn25.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU30.png?pub-status=live)
Fix $\delta$ so small that $0 < \delta < t_0 < 1 - \delta < 1$
and write
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn26.png?pub-status=live)
By (2.13),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn27.png?pub-status=live)
For all $t \in (0,\delta )$, $g_n(t) \to 0$
as $n \to \infty$
and $\left |{g_n(t)}\right | \le N' (N' - 1)\, t^{N'-2}/(1 - N'\, \delta ^{N'-1})^{2}$
, so $\int _0^{\delta } g_n(t)\, {\rm d}t \to 0$
by the dominated convergence theorem. So $\int _0^{1} f_n(t)\, {\rm d}t \to 1$
by (2.15). A similar calculation shows that $\int _{1 - \delta }^{1} f_n(t)\, {\rm d}t \to N - 1$
. On the other hand, it is easily seen that $\int _\delta ^{1 - \delta } f_n(t)\, {\rm d}t \to 0$
. So $\int _0^{1} f_n(t)\, {\rm d}t \to N$
by (2.14).
3. Proof of Theorem 1.1
In this section, we prove Theorem 1.1 by showing that the functional $E$ has the mountain pass geometry with the mountain pass level $c \in (0,(1/N)(\alpha _N/\alpha )^{N-1})$
and applying Proposition 2.1.
Lemma 3.1 There exists a $\rho > 0$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU31.png?pub-status=live)
Proof. Since (1.2) implies that $h$ is bounded, there exists a constant $C_\delta > 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU32.png?pub-status=live)
which together with (1.9) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn28.png?pub-status=live)
By (1.6),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn29.png?pub-status=live)
where $\rho = \left \|u\right \|$. By the Hölder inequality,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn30.png?pub-status=live)
The first integral on the right-hand side is bounded by $C \rho ^{2\, (N+1)}$ for some constant $C > 0$
by the Sobolev embedding theorem. Since $2 \alpha \, |u|^{N'} = 2 \alpha \, \rho ^{N'} |\widetilde {u}|^{N'}$
, where $\widetilde {u} = u/\rho$
satisfies $\left \|\widetilde {u}\right \| = 1$
, the second integral is bounded when $\rho ^{N'} \le \alpha _N/2 \alpha$
by (1.4). So combining (3.1)–(3.3) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU33.png?pub-status=live)
Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU34.png?pub-status=live)
and the desired conclusion follows from this for sufficiently small $\rho > 0$.
We may assume without loss of generality that $B_d(0) \subset \Omega$. Let $\left ({\omega _j}\right )$
be the sequence of functions defined in (2.10).
Lemma 3.2 We have
(i) $E(t \omega _j) \to - \infty$
as $t \to \infty$
for all $j \ge 2,$
(ii) $\exists j_0 \ge 2$
such that
\[ \sup_{t \ge 0}\, E(t \omega_{j_0}) < \frac{1}{N} \left(\frac{\alpha_N}{\alpha}\right)^{N-1}. \]
Proof. ${\rm (i)}$ Fix $0 < \varepsilon < \beta$
. By (1.3), $\exists M_\varepsilon > 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn31.png?pub-status=live)
Since $e^{\alpha \, |t|^{N'}} > \alpha ^{2N-2}\, t^{2N}/(2N - 2)!$ for all $t$
, then there exists a constant $C_\varepsilon > 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn32.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn33.png?pub-status=live)
for all $t$. Since $\left \|{\omega _j}\right \| = 1$
and $\omega _j \ge 0$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU36.png?pub-status=live)
and the conclusion follows.
${\rm (ii)}$ Set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU37.png?pub-status=live)
If the conclusion is false, then it follows from ${\rm (i)}$ that for all $j \ge 2$
, $\exists t_j > 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn34.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn35.png?pub-status=live)
Since $G(t) \ge - C_\varepsilon \, t$ for all $t \ge 0$
by (3.6), (3.7) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn36.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU38.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn37.png?pub-status=live)
by Proposition 2.6. First, we will show that $t_j \to t_0$.
By (3.9) and the Young's inequality,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU39.png?pub-status=live)
which together with (3.10) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn38.png?pub-status=live)
Write (3.8) as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn39.png?pub-status=live)
Set $r_j = de^{- M_\varepsilon \, (\omega _{N-1} \log j)^{1/N}/t_j}$. Since $\liminf t_j > 0$
, for all sufficiently large $j$
, $d/j < r_j < d$
and $t_j \omega _j(x) > M_\varepsilon$
if and only if $|x| < r_j$
. So, (3.4) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn40.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn41.png?pub-status=live)
We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn42.png?pub-status=live)
Since $th(t)\, e^{\alpha \, |t|^{N'}} \ge - C_\varepsilon \, t$ for all $t \ge 0$
by (3.5),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn43.png?pub-status=live)
Combining (3.12)–(3.16) and noting that $I_4 \ge 0$ gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU40.png?pub-status=live)
It follows from this that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU41.png?pub-status=live)
which together with (3.11) shows that $t_j \to t_0$.
Next, we estimate $I_4$. We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn44.png?pub-status=live)
where $t = \log \, (d/r)/\log j$, $s = r/d$
, and $s_j = r_j/d = e^{- M_\varepsilon \, (\omega _{N-1} \log j)^{1/N}/t_j} \to 0$
. For $s_j < s < 1$
, $\alpha \, t_j^{N'} (- \log s)^{N'}/(\omega _{N-1} \log j)^{1/(N-1)}$
is bounded by $\alpha M_\varepsilon ^{N'}$
and goes to zero as $j \to \infty$
, so the last integral converges to
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU42.png?pub-status=live)
So, combining (3.12)–(3.17) and letting $j \to \infty$ gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU43.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU44.png?pub-status=live)
and $n = N \log j \to \infty$. Letting $\varepsilon \to 0$
in this inequality gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn45.png?pub-status=live)
By (3.7), (1.8), and Proposition 2.6,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU45.png?pub-status=live)
so
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU46.png?pub-status=live)
This gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU47.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU48.png?pub-status=live)
by Proposition 2.7. So (3.18) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU49.png?pub-status=live)
contradicting (1.10).
We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. Let $j_0$ be as in Lemma 3.2 ${\rm (ii)}$
. By Lemma 3.2 ${\rm (i)}$
, $\exists R > \rho$
such that $E(R \omega _{j_0}) \le 0$
, where $\rho$
is as in Lemma 3.1. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU50.png?pub-status=live)
be the class of paths joining the origin to $R \omega _{j_0}$, and set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU51.png?pub-status=live)
By Lemma 3.1, $c > 0$. Since the path $\gamma _0(t) = tR \omega _{j_0},\, t \in [0,1]$
is in $\Gamma$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU52.png?pub-status=live)
If there are no $(\text {PS})_{c}$ sequences of $E$
, then $E$
satisfies the $(\text {PS})_{c}$
condition vacuously and hence has a critical point $u$
at the level $c$
by the mountain pass theorem. Then $u$
is a solution of problem (1.1) and $u$
is non-trivial since $c > 0$
. So we may assume that $E$
has a $(\text {PS})_{c}$
sequence. Then this sequence has a subsequence that converges weakly to a non-trivial solution of problem (1.1) by Proposition 2.1.
4. Proof of Theorem 1.3
In this section, we prove Theorem 1.3 using Theorem 2.5. We take $A_0$ to be the set $C$
in Proposition 2.4 and $B_0 = \Psi _{\lambda _k}$
. Since $i(S {\setminus} B_0) = k - 1$
by Proposition 2.3, (2.9) holds.
Lemma 4.1 There exists a $\rho > 0$ such that $\inf E(B) > 0,$
where $B = \left \{{\rho u : u \in B_0}\right \}$
.
Proof. As in the proof of Lemma 3.1, there exists a constant $C_\delta > 0$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU53.png?pub-status=live)
which together with (1.12) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn46.png?pub-status=live)
For $u \in B_0$ and $\rho > 0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn47.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn48.png?pub-status=live)
The first integral on the right-hand side of (4.3) is bounded by the Sobolev embedding theorem, and the second integral is bounded when $\rho ^{N'} \le \alpha _N/2 \alpha$ by (1.4). So, combining (4.1)–(4.3) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU54.png?pub-status=live)
Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU55.png?pub-status=live)
and the desired conclusion follows from this for sufficiently small $\rho$.
We may assume without loss of generality that $B_d(0) \subset \Omega$. Let $\left ({\omega _j}\right )$
be the sequence of functions defined in (2.10).
Lemma 4.2 We have
(i) $E(sv) \le 0 \hspace {0.08in} \forall v \in A_0,\, s \ge 0,$
(ii) for all $j \ge 2,$
\[ \sup \left\{{E(R\, \pi((1 - t)\, v + t \omega_j)) : v \in A_0,\, 0 \le t \le 1}\right\} \to - \infty \text{ as }R \to \infty, \](iii) $\exists j_0 \ge 2$
such that
\[ \sup \left\{{E(sv + t \omega_{j_0}) : v \in A_0,\, s, t \ge 0}\right\} < \frac{1}{N} \left(\frac{\alpha_N}{\alpha}\right)^{N-1}. \]
Proof. ${\rm (i)}$ By (1.11),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn49.png?pub-status=live)
For $v \in A_0$ and $s \ge 0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU58.png?pub-status=live)
since $A_0 \subset \Psi ^{\lambda _{k-1}}$, so (4.4) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU59.png?pub-status=live)
${\rm (ii)}$ Fix $0 < \varepsilon < \beta$
. As in the proof of Lemma 3.2 ${\rm (i)}$
, $\exists M_\varepsilon > 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn50.png?pub-status=live)
and there exists a constant $C_\varepsilon > 0$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn51.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn52.png?pub-status=live)
for all $t$. Let $A_1 = \left \{{\pi ((1 - t)\, v + t \omega _j) : v \in A_0,\, 0 \le t \le 1}\right \}$
. For $u \in A_1$
and $R > 0$
, (4.7) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU60.png?pub-status=live)
The set $A_1$ is compact since $A_0$
is compact, so the first integral on the right-hand side is bounded away from zero on $A_1$
. Since the second integral is bounded, the desired conclusion follows.
${\rm (iii)}$ If the conclusion is false, then it follows from ${\rm (i)}$
and ${\rm (ii)}$
that for all $j \ge 2$
, there exist $v_j \in A_0,\, s_j \ge 0,\, t_j > 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU61.png?pub-status=live)
Set $u_j = s_j v_j + t_j \omega _j$. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn53.png?pub-status=live)
Moreover, $\tau u_j \in \left \{{sv + t \omega _j : v \in A_0,\, s, t \ge 0}\right \}$ for all $\tau \ge 0$
and $E(\tau u_j)$
attains its maximum at $\tau = 1$
, so
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn54.png?pub-status=live)
Since $\left \|{v_j}\right \| = \left \|{\omega _j}\right \| = 1$ and $G(t) \ge 0$
for all $t$
by (1.11), (4.8) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU62.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU63.png?pub-status=live)
First, we show that $s_j \to 0$ and $t_j \to t_0$
as $j \to \infty$
.
Combining (4.8) with (1.11) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU64.png?pub-status=live)
Set $\tau _j = s_j/t_j$. Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn55.png?pub-status=live)
Since $\left ({v_j}\right )$ is bounded in $C^{1}(\overline {\Omega })$
, Proposition 2.6 gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU65.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU66.png?pub-status=live)
for some constants $c_1, c_2 > 0$. So (4.10) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn56.png?pub-status=live)
for some constant $c_3 > 0$, which implies that $\left ({\tau _j}\right )$
is bounded and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn57.png?pub-status=live)
Next, combining (4.9) with (4.5) and (4.6) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn58.png?pub-status=live)
For $|x| \le d/j$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU67.png?pub-status=live)
for some constant $c_4 > 0$, and the last expression is greater than $M_\varepsilon$
for all sufficiently large $j$
since $\left ({\tau _j}\right )$
is bounded and $\liminf t_j > 0$
. So
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU68.png?pub-status=live)
for large $j$. On the contrary,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU69.png?pub-status=live)
for some constant $c_5 > 0$ by Proposition 2.6. So, (4.13) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn59.png?pub-status=live)
for some constant $c_6 > 0$. Since $\left ({\tau _j}\right )$
is bounded, it follows from this that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU70.png?pub-status=live)
which together with (4.12) shows that $t_j \to t_0$. Then (4.11) implies that $\tau _j \to 0$
, so $s_j = \tau _j\, t_j \to 0$
.
Now, we show that there exists a constant $c > 0$ depending only on $\Omega$
, $\alpha$
, and $k$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn60.png?pub-status=live)
The right-hand side of (4.14) goes to $(N/d)^{N}/\alpha ^{N-1}$ as $j \to \infty$
. If $\beta \le (N/d)^{N}/\alpha ^{N-1}$
, then we may take any $c > 0$
, so suppose $\beta > (N/d)^{N}/\alpha ^{N-1}$
. Then for $\varepsilon < \beta - (N/d)^{N}/\alpha ^{N-1}$
and all sufficiently large $j$
, (4.14) gives $j^{\alpha \, [t_j^{N'} (1 - c_4 \tau _j/(\log j)^{(N-1)/N})^{N'} - t_0^{N'}]/\omega _{N-1}^{1/(N-1)}} \le 1$
, so
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU71.png?pub-status=live)
Combining this with (4.11) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU72.png?pub-status=live)
so
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU73.png?pub-status=live)
for some constant $c_7 > 0$. Set $\widetilde {\tau }_j = \tau _j\, (\log j)^{1/N}$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn61.png?pub-status=live)
We claim that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn62.png?pub-status=live)
for some constant $c_8 > 0$. Taking $\sigma _0$
smaller in (1.11) if necessary, we may assume that $\sigma _0 \le 1$
. So if $\widetilde {\tau }_j < 1$
, then (4.17) holds with $c_8 = 1$
, so suppose $\widetilde {\tau }_j \ge 1$
. Then (4.16) gives (4.17) with $c_8 = N c_7$
. Now (4.11) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU74.png?pub-status=live)
for some constant $c_9 > 0$, so
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU75.png?pub-status=live)
Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU76.png?pub-status=live)
for some constants $c_{10}, c_{11} > 0$, so
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU77.png?pub-status=live)
for some constant $c > 0$. Combining this with (4.14) and passing to the limit gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU78.png?pub-status=live)
and letting $\varepsilon \to 0$ gives (4.15).
We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3. Let $j_0 \ge 2$ be as in Lemma 4.2 ${\rm (iii)}$
. By Lemma 4.2 ${\rm (ii)}$
, $\exists R > \rho$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn63.png?pub-status=live)
where $\rho > 0$ is as in Lemma 4.1. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU79.png?pub-status=live)
Combining Lemma 4.2 ${\rm (i)}$, (4.18), and Lemma 4.1 gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn64.png?pub-status=live)
while Lemma 4.2 ${\rm (iii)}$ gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqn65.png?pub-status=live)
Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU80.png?pub-status=live)
and set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU81.png?pub-status=live)
By Theorem 2.5, $\inf E(B) \le c \le \sup E(X)$, and $E$
has a $(\text {PS})_{c}$
sequence. By (4.19) and (4.20),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230201191112723-0403:S0013091522000220:S0013091522000220_eqnU82.png?pub-status=live)
so a subsequence of this $(\text {PS})_{c}$ sequence converges weakly to a non-trivial solution of problem (1.1) by Proposition 2.1.
Competing interests declaration
The authors declare no competing interests.