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ON A CLASS OF CRITICAL N-LAPLACIAN PROBLEMS
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Abstract  We establish some existence results for a class of critical N-Laplacian problems in a bounded
domain in RY. In the absence of a suitable direct sum decomposition of the underlying Sobolev space
to which the classical linking theorem can be applied, we use an abstract linking theorem based on the
Za-cohomological index to obtain a non-trivial critical point.
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1. Introduction

In this paper, we establish some existence results for the class of critical N-Laplacian
problems

—Anu = h(u) el im0 (1.1)
u=0 on 012, ’

where Q is a smooth-bounded domain in RN, N >2 a >0, N'= N/(N —1) is the
Holder conjugate of N, and h is a continuous function such that

lim A(t)=0 (1.2)
[t]—o0
and
0<f:= llir‘ninf th(t) < oo. (1.3)
t|—o0

This problem is motivated by the Trudinger—Moser inequality

sup / N 1™ d < oo, (1.4)
wewy N(Q) /@
ull<1
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where W™ (Q) is the usual Sobolev space with the norm

1/N
Jull = / |Vu|Ndx) ,
Q

— N/,

and
27TN/2

N1 D(N/2)

is the area of the unit sphere in RY (see Trudinger [14] and Moser [10]). Problem (1.1) is
critical with respect to this inequality and hence lacks compactness. Indeed, the associated
variational functional satisfies the Palais—Smale compactness condition only at energy
levels below a certain threshold (see Proposition 2.1 in the next section).

In dimension N = 2, problem (1.1) is semilinear and has been extensively studied in
the literature (see, e.g., [2-4, 6]). In dimensions N > 3, this problem is quasilinear and
has been studied mainly when

t ’
:/ h(s)e®!*” ds < A|t|N  for small ¢ (1.5)
0

for some A € (0, A1) (see, e.g., [1, 5, 8]). Here,

/ |Vu|N dz
= inf Lo (1.6)

uewd N (2)\ {0} / ™ dz
Q
is the first eigenvalue of the eigenvalue problem

{—ANu:)\u|N2u in (1.7)

u=20 on 0f).

The case h(t) = A |t|N =2t with A > 0, for which 8 = oo, was recently studied in Yang
and Perera [15]. The remaining case, where N >3, A > A1, and < oo, does not seem
to have been studied in the literature. This case is covered in our results here, which are
for large 8 < oo and allow N > 3 and A > A; in (1.5).

Let d be the radius of the largest open ball contained in 2. Our first result is the
following theorem.

Theorem 1.1. Assume that o > 0, h satisfies (1.2) and (1.3), and G satisfies

G(t) > —%O’Q [t|N fort >0, (1.8)

G(t) < % (A — o) [tV for |t| <6 (1.9)
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for some og > 0 and o1, > 0. If

N
B> ! (N) 70/ (N=Dr (1.10)

NalN-1\ d

1 (N\"
where Kk = N (d> , then problem (1.1) has a non-trivial solution.

In particular, we have the following corollary for oy = 0.
Corollary 1.2. Assume that o > 0, h satisfies (1.2) and (1.3), and G satisfies

G(t) >0 fort>0,

1
<
<5 (

1 NV
5>NaN—1 (d) ’

then problem (1.1) has a non-trivial solution.

G(t) A —o) [t]N for |t] <6

for some o1, > 0. If

Corollary 1.2 should be compared with Theorem 1 of do O [8], where this result is
proved under the stronger assumption h(t) > 0 for ¢t > 0.

To state our second result, let (A\;) be the sequence of eigenvalues of problem (1.7)
based on the Zs-cohomological index that was introduced in Perera [11] (see Proposition
2.3 in the next section). We have the following theorem.

Theorem 1.3. Assume that a > 0, h satisfies (1.2) and (1.3), and G satisfies

1
G(t) = 5 M1+ o0) [HY W, (1.11)
G(t) < %(/\k —a) |tV for|t| < (1.12)

for some k > 2 and og,01,9 > 0. Then there exists a constant ¢ > 0 depending on §), «,
and k, but not on o, o1, or §, such that if

N
ﬁ > 051\}71 <]C\Z[) 66/0(1)\7717

then problem (1.1) has a non-trivial solution.

Theorem 1.3 should be compared with Theorem 1.4 of de Figueiredo et al. [3, 4],
where this result is 2proved in the case N =2 under the additional assumption that
0 < 2G(t) < th(t)e*" for all t € R\ {0}. However, the linking argument used in [3, 4]
is based on a splitting of HE () that involves the eigenspaces of the Laplacian, and
this argument does not extend to the case N > 3 where the N-Laplacian is a nonlinear
operator and therefore has no linear eigenspaces. We will prove Theorem 1.3 using an
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abstract critical point theorem based on the Zs-cohomological index that was proved in
Yang and Perera [15] (see § 2.4).

In the proofs of Theorems 1.1 and 1.3, the inner radius d of ) comes into play
when verifying that certain minimax levels are below the compactness threshold given in
Proposition 2.1.

2. Preliminaries

2.1. A compactness result

Weak solutions of problem (1.1) coincide with critical points of the C'-functional
/ |Vu|Nd:c—/G z, ue Wy N(Q).

We recall that a (PS).. sequence of E is a sequence (u;) C Wy (Q) such that E(u;) — ¢
and E’(u;) — 0. Proofs of Theorem 1.1 and Theorem 1.3 will be based on the following
compactness result.

Proposition 2.1. Assume that o > 0 and h satisfies (1.2) and (1.3). Then for all ¢ # 0
satisfying

1 sany\N-1
<<=\ )
¢ N(oz)

every (PS). sequence of E has a subsequence that converges weakly to a non-trivial
solution of problem (1.1).

Proof. Let (u;) C Wol’N(Q) be a (PS). sequence of E. Then,

Bw) = 5 s = | Gluy)do = e o(1) (21)

and
N
B (uj) uy = [luz |~ /Quj h(uz) e dz = o([|uy|)). (2.2)

First, we show that (u;) is bounded in W, (). Multiplying (2.1) by 2N and subtracting
(2.2) gives

ol + [ (s e = 2NG(;)) da = 2N+ offuy |+ 1),

so it suffices to show that th(t) et 2NG(t) is bounded from below. Let 0 < ¢ <
B/(2N +1). By (1.2) and (1.3), for some constant C. > 0,

G(t)] < ee* ™ 4 C. (2.3)

and
th(t) e !!1™ > (3 —e)e!" — . (2.4)
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for all t. So
th(t) e —aNG(t) > [8— 2N + Vel e — 2N + 1) C.,

which is bounded from below.
Since (u;) is bounded in WM (Q), a renamed subsequence converges to some u weakly

in W, N (Q), strongly in L?(Q) for all p € [1,00), and a.e.in . We have
E'(uj)v = /Q |V, [N "2 Vu, - Vode — /th(uj) e el 4z 0 (2.5)

for all v € Wol’N(Q). By (1.2), given any & > 0, there exists a constant C. > 0 such that
Ih(t) e ™ | < eexl™ 4+ o vt (2.6)
By (2.2),

N/
sup/uj h(uj) el da < oo,
Jj Ja

which together with (2.4) gives

sup / el dy < oo (2.7)
J Q

For v € C§°(Q), it follows from (2.6) and (2.7) that the sequence (v h(uj)e“‘"j‘N,) is
uniformly integrable and hence

/ vh(uj)e® il 4z — / v h(u) e ™ 4
Q Q

by Vitali’s convergence theorem, so it follows from (2.5) that
/ |Vu|N "2 Vu - Vodr — / v h(u) el 4 = 0.
Q Q

Then this holds for all v € VVO1 N(Q) by density, so the weak limit u is a solution of
problem (1.1).
Suppose that v = 0. Then
G(uj)dz — 0
Q

since (2.3) and (2.7) imply that the sequence (G(u;)) is uniformly integrable, so (2.1)
gives ¢ > 0 and

lus | — (Ney /™. (2.8)
Let Ne<v < (ay/a)V~1 Then |u;| <vN for all j > jo for some jo. Let ¢ =
aN/owl/(N_l) > 1. By the Holder inequality,

N 1/p N 1/q
‘/ wj h(uj) e da| < (/ luj h(u;)P dx) (/ ede luil dx) ,
Q Q Q

where 1/p+1/¢ = 1. The first integral on the right-hand side converges to zero since
h is bounded and u; — 0 in LP(§), and the second integral is bounded by (1.4) since
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e \uj|N/ =ay |ﬂj|N/, where ; = u;/v'/N satisfies ||u;|| < 1 for j > jo, so

/ w; h(uy) e 1™ dz — 0.
Q

Then, u; — 0 by (2.2) and hence ¢ = 0 by (2.8), contrary to assumption. So u is a non-
trivial solution. O

2.2. Zo-cohomological index

The Zs-cohomological index of Fadell and Rabinowitz [9] is defined as follows. Let W be
a Banach space and let A denote the class of symmetric subsets of W\ {0}. For A € A, let
A = A/Zj be the quotient space of A with each u and —u identified, let f : A — RP> be
the classifying map of A, and let f* : H*(RP*) — H*(A) be the induced homomorphism
of the Alexander—Spanier cohomology rings. The cohomological index of A is defined by

i) = sup{m >1: f*(w™ 1) #0}, A#D
o, A=4,
where w € H(RP*) is the generator of the polynomial ring H*(RP*) = Za[w]. For
example, the classifying map of the unit sphere S™ ! in R™, m > 1 is the inclusion
RP™~! ¢ RP*, which induces isomorphisms on H? for ¢ < m — 1, so i(S™~') = m.

The following proposition summarizes the basic properties of the cohomological index
(see Fadell and Rabinowitz [9]).

Proposition 2.2. The index i : A — NU{0,00} has the following properties:
(i) Definiteness: i(A) = 0 if and only if A = .

(ii) Monotonicity: If there is an odd continuous map from A to B (in particu-
lar, if A C B), then i(A) <i(B). Thus, equality holds when the map is an odd
homeomorphism.

(iii) Dimension: i(A) < dim W.

(iv) Continuity: If A is closed, then there is a closed neighbourhood N € A of A such
that i(N) = i(A). When A is compact, N may be chosen to be a d-neighbourhood
Ns(A) ={u e W : dist (u, A) < d}.

(v) Subadditivity: If A and B are closed, then i(AU B) < i(A) +i(B).

(vi) Stability: If SA is the suspension of A # (), obtained as the quotient space of A X
[-1,1] with A x {1} and A x {—1} collapsed to different points, then i(SA) =
i(A) + 1.

(vii) Piercing property: If A, Ay and Ay are closed, and ¢ : A x [0,1] — AgU A; is a
continuous map such that o(—u,t) = —p(u,t) for all (u,t) € A x [0, 1], p(A x [0,1])
is closed, ¢(A x {0}) C Ap and p(A x {1}) C Ay, theni(p(A x [0,1]) N Ay N Ay) >
i(A).
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(viii) Neighborhood of zero: If U is a bounded closed symmetric neighbourhood of 0, then
i(OU) = dim W.
2.3. Eigenvalues

Eigenvalues of problem (1.7) coincide with critical values of the functional

1
U(u) = —F——, uES:{uEWOl’N(Q):/|Vu|ngg:1}_
/|u|Ndm Q
Q

We have the following proposition (see Perera [11] and Perera etal.[12, Proposition 3.52
and Proposition 3.53]).

Proposition 2.3. Let F denote the class of symmetric subsets of S and set

A= inf sup U(u), keN
i(J\]@E).;k ueM

Then 0 <A\ <Xy <A3<---— 400 Is a sequence of eigenvalues of problem (1.7).
Moreover, if A\,_1 < A, then

i(WM-1) = i(S\Ty,) =k — 1,
where U ={u € S:¥(u) <a} and ¥, ={u € S:¥(u) > a} fora e R.
We will also need the following result of Degiovanni and Lancelotti [7, Theorem 2.3].

Proposition 2.4. If \y_; < Ay, then U1 contains a compact symmetric set C of
index k — 1 that is bounded in C*(€).

2.4. An abstract critical point theorem

We will use the following abstract critical point theorem proved in Yang and Perera
[15, Theorem 2.2] to prove Theorem 1.3. This result generalizes the linking theorem of
Rabinowitz [13].

Theorem 2.5. Let E be a Cl-functional defined on a Banach space W and
let Ay and By be disjoint non-empty closed symmetric subsets of the unit sphere
S ={ueW:|u| =1} such that

i(Ap) = i(S\Bp) < 0. (2.9)
Assume that there exist R > p > 0 and w € S\ Ay such that
sup E(A) <inf E(B), supE(X) < oo,
where
A={sv:v €Ay, 0<s<R}U{R7((1 —t)v+1tw):veE Ay 0<t<1},
B={pu:u€ By},
X ={sv+tw:v e Ag, s,t >0, ||sv+itw| < R},
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and m: W\ {0} — S, uw — u/ ||u|| is the radial projection onto S. Let
F={yeCX,W):~(X) is closed and 7|, =1ida},
and set

c:=inf sup FE(u).
YEL yery(X) ( )

Then, inf E(B) < ¢ <sup E(X), and E has a (PS). sequence.

2.5. Moser sequence

For j > 2, let
(log )IN=D/N o < dfj
1 log (d/|x]|) .
wj(r) = — 75 ST7N d/j <lz| <d
w]\,Cl (log )
0, |x] > d

(see Moser [10]).

Proposition 2.6. We have

| l—nL/NdN m Nm—1
/wmdm: m-Wy_q [1_%2(1\]10’53)]7 m=1,...,N
Q .

7= N log gy |1 TGN T
and
wy A < 1 ) ... N—1
-], m=1,...,N —
/|ij|mdx: (N —m) (log j)™/N gN-—m
¢ 1, m = N.

Proof. We have

1-m/N ;N .
w d 1 m
/ wjm dp = N=1 [Im + (og?) } ,
Q

(log j)m/N NN
where
1
I, = / (—logs)™ sV ~1ds.
1/3
We have
1 1 .

and integrating by parts gives the recurrence relation

m (log 7)™
I, = m—1 — - , m > 2.
N ™t NN -
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So

m l

m! 1 & N log j
b= s 1 g 30 s,
1=
and (2.11) follows. The integral in (2.12) is eas1ly evaluated. O

2.6. A limit calculation
We will need the following limit in the proof of Theorem 1.1.

Proposition 2.7. We have

1 ’
lim ne " (t—t" )dt = N.

n—oo 0

Proof. Let f,(t) = ne=™ ") and set to = (N/)"V(N'=1) For t # tg,

d e—n(t—t )
falt) = gn(t) — at (1_]\/-,tNI1> ) (2.13)

where

N'(N" —1) tN'=2 o—n -tV
n(t) = 7
g ( ) (1 _ NItN —1)2

Fix § so small that 0 < § <19 <1 —9 < 1 and write

1 ) 1-6 1
/ Fult)dt = / Fult) dt + / fa@ydt+ [ ) ac. (2.14)
0 0 5 1-6
By (2.13),
—n (6—0N")
/fn t)dt = /0 "()dt_iwmﬂ' (2.15)

For all t € (0,6), gn(t) — 0 as n — oo and |g,(t)| < N'(N' — )tN/_Q/( — N'§N'=1)2)
SO fo gn(t) dt — 0 by the dominated convergence theorem. So fo fa(t)dt — 1 by (2.15).
A similar calculatlon shows that fl s fn(t)dt — N —1. On the other hand, it is easily
seen that f w(t)dt — 0. So fo fn(t)dt — N by (2.14). O

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by showing that the functional E has the moun-
tain pass geometry with the mountain pass level ¢ € (0, (1/N)(ay/a)¥~1) and applying
Proposition 2.1.

Lemma 3.1. There exists a p > 0 such that

inf E(u) > 0.
llull=p
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Proof. Since (1.2) implies that & is bounded, there exists a constant Cs > 0 such that

G(0)] < Cs 1N+ e for 1] > 5,

which together with (1.9) gives
1 ’
/ Gu)dz < —= (A — 01)/ lulN dx + 05/ | VL e vl qg. (3.1)
Q N Q Q
By (1.6),

pN
[l ae < 5 (3.2)

where p = |Ju||. By the Holder inequality,

N+1 o ful™ 2 (N+1) 12 20 |u|N 2
|l e da < [ul dz eI dax . (3.3)
Q Q Q

The first integral on the right-hand side is bounded by Cp? (N1 for some constant C' > 0
by the Sobolev embedding theorem. Since 2a [u|N" = 2a p™ [a|™", where i = u/p satisfies
|@]| = 1, the second integral is bounded when p < ay/2a by (1.4). So combining (3.1)—

(3.3) gives
1 _01) N N+1
G(u)dx < 1 p’ +0(p" ") asp—0.
Q N A1
Then,
Loy N+1
> - 21
E(u) 2 4 +0(p" ),
and the desired conclusion follows from this for sufficiently small p > 0. (]

We may assume without loss of generality that Bq(0) C Q. Let (w;) be the sequence of
functions defined in (2.10).

Lemma 3.2. We have
(i) E(tw;) — —oco ast — oo for all j > 2,

(ii) Jjo > 2 such that

1 say\N-1
Bltay,) < - (2)7,
sup (twjo) A"
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Proof. (i) Fix 0 < e < 8. By (1.3), 3M, > 0 such that
th(t) e "™ > (5= ) e for [t > M.. (3.4)

Since e [t" > o2N-2 t2N /(2N — 2)! for all ¢, then there exists a constant C. > 0 such

that
' 1
tht alt|N >~__ - (g_ 2N-2 42N _ n )
et > s (B a C. (35)
and
2N —1
1 > o 2N—2 2N _ " .
G(t) = Zp (9-2)a oAl (36)
for all ¢. Since |lw;|| =1 and w; > 0, then
E(tw;) < ﬂ - M(ﬂ—s)am’”tm\[/ wNdz +C t/ w; dz
Yo N (2N)! o’ o T
and the conclusion follows.
(ii) Set
N
Hj(t) = E(tw]') = - — G(twj)dx, t> 0.
N Q

If the conclusion is false, then it follows from (i) that for all j > 2, 3t; > 0 such that

tN 1 san\N-1
H;(t;) =2 — | G(tjw;)dx =sup H;(t) > — (— 3.7
i(t5) N /Q (tjw;) d 21218 J()—N(a) ) (3.7)
Hj,(t]) = tj»v_l — /ij‘ h(tjwj) Bat?’/w;\,/ dz = 0. (38)
Since G(t) > —C.t for all t > 0 by (3.6), (3.7) gives
tN >t — NG 5, (3.9)
where
_[anN (N-1)/N
o= (%)
and
(5]»:Cg/wjdx—>0 as j — oo (3.10)
Q

by Proposition 2.6. First, we will show that t; — #g.
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By (3.9) and the Young’s inequality,

N -1 /

N N N

which together with (3.10) gives

Write (3.8) as

t;v = / tjw]‘ h(thj) Saté\f wé\’ dZL’+/ tjwj h(tjwj) eo‘t;'v w;\f dSC = Il+12.
{tjw;>Mc} {tjw; <M.}

(3.12)
Set r; = deM- (wn-11og/)""™/t; Gince lim inf t; > 0, for all sufficiently large j, d/j < r; <
d and t;w;(xz) > M, if and only if |z| < r;. So, (3.4) gives

L > (ﬂ—e)/ et da = (B—¢) </ et W dy (3.13)
{lal<r;} {lal<d/5)

+/ ety @ dx) = (B—¢)(I3+1y). (3.14)
{d/i<|z|<r;}
We have
Jo— N1 d Yo logj/wy/ Y™V _ WN—=1 N o (¢ —t)") /T (3.15)
TN \G) N Y ' '

Since th(t) el > Ot forallt >0 by (3.5),
12 Z —CE tj/ Wy dx Z —(5]' tj. (316)
{tjw; <M}

Combining (3.12)—(3.16) and noting that Iy > 0 gives

tév Z (ﬂ — 6) % dea (tjlyl_tév,)/wll\]/iq]_l) _ 6] t]

It follows from this that

lim sup tj < to,

Jj—oo

which together with (3.11) shows that ¢; — .
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Next, we estimate I,. We have

Iy = / oot log (d/12N]Y' /(wn—1log i)/ N1 4
{d/j<|z|<r;}
d ’ ’
= WN_1 (/ eatfj [log(d/r)]N /(wN,llogj)l/(N’l) TN_l dr
a/j

d ! !
7/ oot flog (d/r)]Y' /(wn—1log )/ NV N1 dr)

T

1 , - ,
= Wwn_1 dN(logj/ e—Nt [1=(t; /to)N ¢/ N =D]log j dt
0

1 7 ’
_/ SN—leat;V (—logs)V' /(wn—1log )t/ N—1 dS), (317)

J

where t = log (d/r)/logj, s =r/d, and s; = r;/d = e~ M= (“n—1 log/j)l/N/tj — 0. For s; <
s <1, ozt;-v (—log )N /(wn_11log ) N=1) is bounded by aMN" and goes to zero as
j — 00, so the last integral converges to

1
1
N—-1
ds = —.
/os TN

So, combining (3.12)—(3.17) and letting j — oo gives

1 > (8—e) 5t aV (L + Ly~ 1),

where

L; = liminf efn[lf(tj/tO)N/]v
j—o0

1 ’ ’
Ly = liminf / ne~ "=/t ] g
0

J—00

and n = Nlogj — oo. Letting ¢ — 0 in this inequality gives

N
1 N 1
< — | = _— 3.18
ﬂ_aNl<d) Li+Ly—1 ( )
By (3.7), (1.8), and Proposition 2.6,

N
Jotj

t;-v—tévZN/G(tjwj)de—ootév/ijdmZ—
Q Q RN

SO

AN —1/(N-1)
2) > (14 ) 1o %0
to KN (N —=1)kn
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This gives
Ly > 6700/(N71)n

and

1

Ly > lim ne—n(t—tN’)—ootN//(N—l)fcdt > Ne—oo/(N=1)x
n—oo 0

by Proposition 2.7. So (3.18) gives

N N
g<L (XN ! <1 (DY oosv-n
“aN-1\d/) Neoo/WN-1r_(1—e-oo/0N-1)r) = NaN-1\ 4 7

contradicting (1.10). O
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let jo be as in Lemma 3.2 (ii). By Lemma 3.2 (i), 3R > p
such that E(Rwj,) <0, where p is as in Lemma 3.1. Let

P ={y € C([0,1, W3 (9)) :7(0) = 0, 7(1) = Revy, }
be the class of paths joining the origin to Rw,,, and set

c:=inf max FE(u).
vel uev([0,1])

By Lemma 3.1, ¢ > 0. Since the path ~vo(t) = tRw,,, t € [0,1] is in T,

< E(u) < sup E(tw; ) < — (aN>N_1
& max u su Wi — |\ — .
~ uevo([0,1]) - ,213 Jo N\ «

If there are no (PS). sequences of E, then E satisfies the (PS). condition vacuously and
hence has a critical point u at the level ¢ by the mountain pass theorem. Then u is a
solution of problem (1.1) and w is non-trivial since ¢ > 0. So we may assume that E
has a (PS). sequence. Then this sequence has a subsequence that converges weakly to a
non-trivial solution of problem (1.1) by Proposition 2.1. O

4. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 using Theorem 2.5. We take Ag to be the set C' in
Proposition 2.4 and By = ¥, . Since i(S\By) = k — 1 by Proposition 2.3, (2.9) holds.

Lemma 4.1. There exists a p > 0 such that inf E(B) > 0, where B = {pu : u € By}.

https://doi.org/10.1017/50013091522000220 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091522000220

570 T. C. Ho and K. Perera

Proof. As in the proof of Lemma 3.1, there exists a constant C'5 > 0 such that

G(B)] < Cs [t e for 1 > 6,
which together with (1.12) gives

1
<
<y (

[N’

G(t) e — o) |t + Cs [tV L e Vt. (4.1)

For uw € By and p > 0,

N
/Q\pu|Ndx < N (4.2)

and

, 1/2 , , 1/2
/ |pu‘N+1 e(x\pu|N dr < pN+1 (/ |u|2(N+1) dl‘) (/ e2apN | N d.’l?) ) (43)
Q Q Q

The first integral on the right-hand side of (4.3) is bounded by the Sobolev embedding
theorem, and the second integral is bounded when pV < ay /2a by (1.4). So, combining
(4.1)-(4.3) gives

1
/ G(pu)dr < — (1 — 01) oV + 0Nt as p— 0.
o N )

k
Then,
Loy N+1
E(pu) > — — O(p™™),
(pU)fNAkp +0(p™ ™)
and the desired conclusion follows from this for sufficiently small p. O

We may assume without loss of generality that B4(0) C Q. Let (w;) be the sequence of
functions defined in (2.10).

Lemma 4.2. We have
(i) E(sv) <0 Yv e Ay, s >0,
(ii) for all j > 2,

sup{E(R7((1 —t)v+tw;)):v € Ay, 0 <t <1} — —00 as R — oo,
(iii) Jjo > 2 such that

1 N-1
sup {E(sv + twj,) : v € Ag, s,t >0} < N(%") .
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Proof. (i) By (1.11),

B(u) < % {/Q|Vu|Ndx—(/\k_1+ao)/Qu|Ndx} (4.4)

For v € Ag and s > 0,

N
svl™ dx >
/' | _>\k1

since Ag C UM—1 50 (4.4) gives

1
70 sN <0.

E(sv) < —

(ii) Fix 0 < ¢ < . As in the proof of Lemma 3.2 (i), IM. > 0 such that

th(t) e > (B—e)e* ™ for |t > M. (4.5)
and there exists a constant C. > 0 such that

' 1
Y > (B ) a2 N 1 (4.6)

th(t)e® GN =2

and

2N —1
G(t) =
2N)!
for all t. Let A; ={n((1 —t)v+tw;):ve Ay, 0<t<1}. Forue Ay and R >0, (4.7)
gives

(B—e)a®N 22N — C. It| (4.7)

RN 2N -1

E(Ru) < 7 = 5

(3 — ) a2 g2V / 2N da + CER/ lu| dz.
Q Q

The set A; is compact since Ag is compact, so the first integral on the right-hand side
is bounded away from zero on A;. Since the second integral is bounded, the desired
conclusion follows.

(iii) If the conclusion is false, then it follows from (i) and (ii) that for all j > 2, there
exist v; € Ao, s; > 0, t; > 0 such that
1 QN

N-1
E(sjv; +tjw;) =sup {E(sv +tw;) : v € Ay, s,t >0} > N <7) .

Set u; = s;v; + t;w;. Then

Blwy) = sl = [ Gludo> 5 (%) @3)

(67

Moreover, Tu; € {sv+tw;:v € Ap, s,t >0} for all 7>0 and E(ru;) attains its
maximum at 7 = 1, so

8 / U5 N/
s B =Bl = [ul = [ b =0 49
Q

T=1
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Since ||vj|| = ||lw;j|| =1 and G(¢t) > 0 for all t by (1.11), (4.8) gives
8; +t; = to,

where

ay\V-1)/N

to = () .

«

First, we show that s; — 0 and t; — tp as j — oo.
Combining (4.8) with (1.11) gives

Isj0; + tjwi|Y > (A1 + Uo)/ |sjv; + tjw; |V do + .
Q
Set 7; = s;/t;. Then,

t
05+ will Y > (o1 + ao)/ I7jv; + w; |V dz + (t*O)N- (4.10)
Q j

Since (v;) is bounded in C*(£2), Proposition 2.6 gives

o5 + i)Y < /Q (73 [V05] + [V D de = 7V /Q Vo, |V dz + /Q Ve, |V da

N —m —m m
+ Z (m) TjN /Q Vo [N |Vw;|™ da < TJN—‘rl-i-Cl

=1

>
(log j)m/N

N-1
m =1

N-1 N—m
m

and

A\ijj+wj|Ndwz/(z<Tj |vj|—wj>Ndx:nN/Q|vj\Ndx

. m (N _N-m N—m  m T E TJN_m
+mZ:1(—1) (m) T /Q|vj| wi*dr > N c2mZ:1 (log J) /N
for some constants ¢, ca > 0. So (4.10) gives
% o\ N N TjN—m
N0 (%) = 63; (log j)m/™ e

for some constant ¢z > 0, which implies that (7;) is bounded and

J—o0

Next, combining (4.9) with (4.5) and (4.6) gives

ol = [ e s [ el
{luj|>Me} {luy|<M.}

> (- 5)/ e lwl qg C’s/ lu;| da. (4.13)
{lu;[>M:} {luj|<Mc}
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For [2] < d/j,
t;
luj| > tjw; — s;lvjl > — 75 [(bgj)(N DN 0473}
WN-1

for some constant ¢4 > 0, and the last expression is greater than M, for all sufficiently
large j since (7;) is bounded and liminf¢; > 0. So

/ ea\uj\N, deeat [(log])(N 1)/N,C4T]_]N’/ 1/£1;f 1)/ .
tesl=aty flel<d/i)

_ WN -1 dN ja[ N

! . _ ’ ’ _
N (1—carj /(log )N =D/NYNT Ty /o /=D
N

for large j. On the contrary,

1
U dxﬁ/ Silvi| +tiw)de < est; |:T‘+,:|
Jo g = [l e sty [+ o

for some constant ¢; > 0 by Proposition 2.6. So, (4.13) gives

N
(B — &) jo 6 (meams/(og N DM/ JOI7Y Nt (7 +1)

WN— 1dN

ooty [ N <1og31>1/N} )

for some constant ¢g > 0. Since (7;) is bounded, it follows from this that

limsup t; < to,

Jj—00

which together with (4.12) shows that t; — ¢o. Then (4.11) implies that 7; — 0, so s; =

Tj tj — 0.
Now, we show that there exists a constant ¢ > 0 depending only on €2, a, and k such
that
1 (N\Y o~

The right-hand side of (4.14) goes to (N/d)Y JaN~tas j — oco. If 3 < (N/d) /aN~1, then
we may take any ¢ > 0, so suppose [ > (N/d)N/aN*1 Then for ¢ < 8 — (N/d)N JaN—1

TN V(N
and all sufficiently large j, (4.14) gives j¢ aft) (1=car; /(log j) N =D/N)N g )/ <1, so

t() C4Tj
S e E——
t; = (logj)™-D/N

Combining this with (4.11) gives

% N _ Neyr;
A1 (log )N =D

Mz

IOgj m/N
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SO
7_N—'m
N Yy
UTJ S C7 7]\[
= (log )™/

for some constant c; > 0. Set 7; = 7; (log j)1/". Then

N
o7y < Yy TN (4.16)
m=1
We claim that
cs
< © 4.17
7 < p (4.17)

for some constant cg > 0. Taking o( smaller in (1.11) if necessary, we may assume that
oo < 1. S0 if 7; < 1, then (4.17) holds with ¢g = 1, so suppose 7; > 1. Then (4.16) gives
(4.17) with ¢s = Ney. Now (4.11) gives

to ~N Co
= Ml
(B) <rp S

N 110g]

for some constant cg > 0, so

+ N’ c 1/(N-1) c
<0> <<1+ng,) §1+%~
t; oy logj oy logj
Then,

N ~ N N’
tN/ |:1_ C4Tj :| —tév,:tl.v, (1_ C4Tj) . (to)
J (log j)(N—1/N J log j t

’ C10 N’ Cg N’ NICIO C9
>tV (1 - )N — 1+>}z—t< ( -+ )
! [( o0 IOgJ) < oy ~'logj 7 \oologj ol "logj

_ C11
aév_l log j

for some constants cig, c11 > 0, so
/ . — / 1/(N—1 — .
ja[té\’ (1—C4Tj/(10g])(N D/NYNT ]/ /(1 ) > ij/Ué\] Y log j — e*C/Uo -1

for some constant ¢ > 0. Combining this with (4.14) and passing to the limit gives

N 1 (N\V
(6_5) /0 SaN—l (d) 9

and letting £ — 0 gives (4.15). O

We are now ready to prove Theorem 1.3.
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Proof of Theorem 1.3. Let jo > 2 be as in Lemma 4.2 (iii). By Lemma 4.2 (ii),
JR > p such that

sup{E(R7((1 —t)v+tw;,)) 1v e Ay, 0 <t <1} <0, (4.18)
where p > 0 is as in Lemma 4.1. Let

A={sv:ve Ay, 0<s<RIU{Rm((1—t)v+tw,,):veE Ay 0<t<1},
X ={sv+tw;, : v € Ay, 5,t >0, ||sv+tw;,|| < R}.

Combining Lemma 4.2 (i), (4.18), and Lemma 4.1 gives

sup E(A) < 0 < inf E(B), (4.19)
while Lemma 4.2 (iii) gives
1 say\N-1
sup E(X) <sup {E(sv +twj,) : v € Ay, 5,t >0} < N (—) . (4.20)
a
Let
I'={yeC(X,W):~(X) is closed and | , =ida},
and set
c:=inf sup FE(u).
TEL uey(X) )
By Theorem 2.5, inf E(B) < ¢ <sup E(X), and E has a (PS), sequence. By (4.19) and
(4.20),
1 sany\N-1
vce<y ()
<c< v
so a subsequence of this (PS). sequence converges weakly to a non-trivial solution of
problem (1.1) by Proposition 2.1. O
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