1. Introduction
We investigate the existence of a non-trivial solution of the elliptic problem
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn41.png?pub-status=live)
with $g(s)=\mu f(s) + |s|^{2^*-2}s$,
$N\geq 3$, µ > 0, under no periodicity condition on V that changes sign, and
$s\mapsto f(s)/s$ is bounded.
This problem has been extensively studied considering several potentials V and non-linearities g. For the case where V and $g(s)=g(x,s)$ are periodic functions in the variable x and g have a subcritical growth, we refer the reader to [Reference Jeanjean7–Reference Li and Szulkin9, Reference Pankov and Pflüger13, Reference Stuart and Zhou16, Reference Szulkin and Weth17 ] and references therein.
The case when g possesses critical growth and potential V changes sign, we refer the works of [Reference Alves and Germano2, Reference Chabrowski and Szulkin4, Reference Schechter and Zou14, Reference Zhang, Xu and Zhang18 ], which are more closely related to this article. In all of them, the condition of periodicity is crucial in order to overcome the lack of compactness in $\mathbb{R}^N$.
On the other side, Maia e Soares in [Reference Maia and Soares12] considered the case when V is not periodic (namely, $V(x)\to V_\infty \gt 0$ as
$|x|\to \infty$) and g is asymptotically linear at infinity, without any monotonicity condition on
$s\mapsto g(s)/s$. The framework that the authors deal with the problem makes possible to apply the celebrated result due to Berestycki and Lions in [Reference Berestycki and Lions3] and ensures that the limit problem associated to
$(P_\mu)$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn42.png?pub-status=live)
has a non-trivial ground state solution $u_0\in C^2(\mathbb{R}^N,\mathbb{R})$, which is positive, radially symmetric and decays exponentially, namely,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn2.png?pub-status=live)
As quoted by the authors in page 21, after some interactions between the energy functionals associated to $(P_\mu)$ and
$(P_{\mu,\infty})$, property (1.1) of the solution u 0 was strongly needed in order to prove that the weak solution of
$(P_\mu)$ is non-trivial (see Section 5 in [Reference Maia and Soares12], p. 19).
Our work complements all results cited above. Differently from them, the potential V is non-periodic and changes sign and the non-linearity $g(s)=\mu f(s) + |s|^{2^*-2}s$ possesses a critical growth, with
$s\mapsto f(s)/s$ bounded. This scenario brings several difficulties.
The central idea of our approach is to apply the version of the Linking Theorem due to Maia and Soares in [Reference Maia and Soares12, Theorem 1.2] and, for that purpose, takes a positive ground state solution of $(P_{\mu,\infty})$ that has an exponential decay and makes some suitable interactions with problem
$(P_\mu)$. Since our problem is critical, we cannot apply [Reference Berestycki and Lions3] directly as the authors do in [Reference Maia and Soares12]. Therefore, how to guarantee that
$(P_{\mu,\infty})$ has some non-trivial ground state solution? And, then, is it possible to show that this solution has exponential decay as (1.1)?
In this paper, to prove that problem $(P_\mu)$ has a non-trivial solution, we first answer these two question, considering the elliptic problem
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn43.png?pub-status=live)
with $N\geq 3$, µ > 0 and
$u\in E:= H^1(\mathbb{R}^N)$ and
$V:\mathbb{R}^N\to\mathbb{R}$ is a potential satisfying the conditions:
$(V_1)$
$V\in L^\infty(\mathbb{R}^N)$;
$(V_2)$
$\displaystyle\lim_{|x|\rightarrow +\infty}V(x)=V_\infty \gt 0$;
$(V_3)$
$0\notin \sigma(L)$ and
$\inf\sigma(L) \lt 0$, where
$\sigma(L)$ is the spectrum of the operator
$L=-\Delta+V$.
$(V_4)$
$V(x) \leq V_\infty - Ce^{-\gamma_1|x|^{\gamma_2}}$, with
$\gamma_1 \gt 0$ and
$\gamma_2\in (0,1)$.
The conditions that we consider on the non-linearity $f\in C(\mathbb{R},\mathbb{R})$ are the following:
$(f_1)$
$\displaystyle\lim_{s\rightarrow 0}\displaystyle\frac{f(s)}{s}=0$ and
$f(s)=0$, for all
$s\in(-\infty, 0]$ ;
$(f_2)$ We have
$f(s)=0$ for
$s\leq 0$ and
$\displaystyle\frac{|f(s)|}{|s|} \lt m$ for all s ≠ 0;
$(f_3)$ If
$F(s):=\displaystyle\int_{0}^{s}f(t)\,{\rm d}t$ and
$Q(s):=\displaystyle\frac{1}{2}f(s)s-F(s)$, then for all
$s\in\mathbb{R}\setminus\{0\}$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU4.png?pub-status=live)
An important consequence of assumptions $(f_1)$ and
$(f_2)$ is that, given ɛ > 0 and
$2\leq p\leq 2^*$, there exists
$C_\varepsilon \gt 0$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn3.png?pub-status=live)
for all $s\in\mathbb{R}$.
One of our main results is the next theorem.
Theorem 1.1. Suppose that assumptions $(V_1)-(V_4)$ and
$(f_1)-(f_3)$ hold. Then, there exists
$\mu^* \gt 0$ such that, if
$\mu\geq \mu^*$, problem
$(P_\mu)$ has a nontrivial and nonnegative solution uµ in
$H^1(\mathbb{R}^N)$. Moreover, the limit problem
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn44.png?pub-status=live)
has a ground state solution u 0 such that, if $\nu\in\left(0,\sqrt{V_\infty}\right)$, then there exists
$C=C(m,\nu) \gt 0$ satisfying
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU6.png?pub-status=live)
We stress here that, in order to prove Theorem 1.1, we do not need any monotonicity hypothesis on function $s\mapsto f(s)/s$, as one can find in the literature about similar problems. One example of non-linearity that satisfies our assumptions but
$f(s)/s$, s ≠ 0, is not increasing is
$f(s)=\dfrac{s^7-1,5s^5+2s^3}{1+s^6}$ for
$s\in\mathbb{R}$. Then f satisfies our hypotheses; however,
$f(s)/s$, s ≠ 0, is not increasing.
This paper is organized into seven sections as follows. In § 2, we focus on providing the appropriate variational setting for the problem. In § 3, we obtain the geometry of a version of the Linking Theorem, and as a result, we obtain an appropriate Cerami sequence. This sequence is proven to be bounded in § 4. In § 5, we present the first part of the proof of Theorem 1.1, and in § 6, Appendix A, we present the second part of the proof and we also discuss the limit problem $(P_{\mu,\infty})$ and its ground state solution in detail. Finally, in Appendix B, § 7, we present a technical result on significant convergences.
2. Variational setting
Let $E:=H^1(\mathbb{R}^N)$. The energy functional
$I:E\rightarrow\mathbb{R}$ associated with equation (P) is given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU7.png?pub-status=live)
with $u\in E$. It is well known from conditions
$(V_2)$ and
$(V_3)$ that the eigenvalue problem
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn4.png?pub-status=live)
has a sequence of eigenvalues $\lambda_1 \lt \lambda_2\leq \cdots\leq \lambda_k \lt 0$ (see [Reference Egorov and Kondratiev6], Theorem 30, p. 150). We denote by ϕi the eigenfunction corresponding to λi,
$i\in\{1,2,\ldots,k\}$ in
$H^1(\mathbb{R}^N)$. Setting
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU8.png?pub-status=live)
we see that $E=E^+ \oplus E^-$. According to Stuart in [Reference Stuart15], Theorem 3.15, the essential spectrum of
$-\Delta +V$ is the interval
$[V_\infty,+\infty)$, and this implies that
$\dim E^- \lt \infty$. Having made these considerations, every function
$u\in E$ may be written as
$u=u^+ + u^-$ uniquely, where
$u^+\in E^+$ and
$u^-\in E^-$. Hence, by using the arguments in Lemma 1.2 of [Reference Costa and Tehrani5], we may introduce the new inner product
$\langle \cdot, \cdot\rangle$ in E, namely,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU9.png?pub-status=live)
such that the corresponding norm $\|\cdot\|$ is equivalent to
$\|\cdot\|_E$, the usual norm in
$E=H^1(\mathbb{R}^N)$. In addition, the functional I may be written as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU10.png?pub-status=live)
for every function $u=u^++u^-\in E$. We call the attention to the fact that, since
$\lambda_i\neq 0$ for all
$i\in\{1,2,\ldots,k\}$, it follows from (2.1) and the definition of ϕi that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn5.png?pub-status=live)
for all functions $u^+\in E^+$ and
$v^-\in E^-$.
To deal with compactness issues, we will prove several auxiliary results concerning the limit problem associated to $(P_\mu)$, namely,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn45.png?pub-status=live)
Hereafter, let us denote by $J_{\mu}: H^1(\mathbb{R}^N) \to \mathbb{R}$ the associated functional given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU12.png?pub-status=live)
Also, let us consider the level $d_\mu:=\inf\limits_{u\in\mathcal{N}_\mu}J_\mu(u)$, where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU13.png?pub-status=live)
3. Geometry of the Linking Theorem
In this section, we are going to show that functional Iµ satisfies the geometry of the following version of the Linking Theorem.
Theorem 3.1. [Reference Maia and Soares12, Theorem 1.2] Let E be a real Banach space with $E=V \oplus X$, where V is finite dimensional. Suppose there exist real constants
$R \gt \rho \gt 0,\ \alpha \gt \beta$ and there exists an
$e \in \partial B_{1} \cap X$ such that
$I \in C^{1}(E, \mathbb{R})$ satisfies
(I
$\left._{1}\right)$
$\left.\quad I\right|_{\partial B_{\rho} \cap X} \geq \alpha ;$
(I2) Setting
$M:=\left(\bar{B}_{R} \cap V\right) \oplus\{$re
$: 0 \leq r \leq R\}$, there exists an h
$_{0} \in C(M, E)$ such that
(i)
$\sup\limits_{w \in M} I\left(h_{0}(w)\right) \lt +\infty$,
(ii)
$\sup\limits_{w \in \partial M} I\left(h_{0}(w)\right)=\beta$,
(iii)
$h_{0}(\partial M) \cap\left(\partial B_{\rho} \cap X\right)=\emptyset$,
(iv) There exists a unique
$u\in h_{0}(M) \cap\left(\partial B_{\rho} \cap X\right)$ such that
\begin{equation*}\operatorname{deg}\left(h_{0}, \operatorname{int}(M), u\right) \neq 0.\end{equation*}
Then I possess a Cerami sequence on a level $c \geq \alpha$, which can be characterized as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU15.png?pub-status=live)
where $\Gamma:=\left\{h \in C(M, E):\left.h\right|_{\partial M}=h_{0}\right\}$.
To prove that functional Iµ has the geometry of Theorem 3.1, let $u_0\in H^1(\mathbb{R}^N)$ be a non-trivial ground state solution of problem
$(P_{\mu,\infty})$ given by Proposition 6.7 in Appendix A. By hypothesis
$(f_2)$, u 0 is nonnegative.
Given $w\in E$ and
$y\in\mathbb{R}^N$, to simplify the notation, we write
$w^+(\cdot-y)$ (or
$w^-(\cdot - y)$) referring to the projection in
$E^+$ (respectively, in
$E^-$) of the translated function
$w(\cdot-y)$.
Proceeding as Claim 4.5 in [Reference Maia, Junior and Ruviaro11], we may prove that $u_0^+(\cdot-y)$ is a non-trivial function just choosing
$y\in\mathbb{R}^N$ with norm sufficiently large. Now, let us consider R > 0, any non-trivial function
$e\in E^+$ with
$\|e\|=1$ and the sets
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU16.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU17.png?pub-status=live)
Defining
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU18.png?pub-status=live)
and $h_0(v^-) = |v^-|$, where
$u_0\in E$ is the non-trivial solution to the limit problem
$(P_\infty)$ found before and L > 0 to be chosen, we have the following lemmas. The first one proves item
$(I_1)$ from Theorem 3.1.
Lemma 3.2. There exists ρ > 0 such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU19.png?pub-status=live)
Proof. For ρ > 0, let $w^+\in E^+$ with
$\|w^+\|=\rho$. Then, from (1.2), for all ɛ > 0, there exists
$C_\varepsilon \gt 0$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU20.png?pub-status=live)
where we used Sobolev embeddings and the equivalence of the norms. It follows that, for $\varepsilon \lt \dfrac{1}{4\mu C}$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU21.png?pub-status=live)
Now, choosing $0 \lt \rho \lt \left( \dfrac{2^*}{4(1+2^*\mu C_\varepsilon C)} \right)^{\frac{1}{2^*-2}}$, the result follows.
The next result shows that item (ii) from Theorem 3.1 holds, choosing β = 0. Before stating this result, we remember an important result from spectral theory that characterizes the functions that belong to $E^-$ as follows:
$u\in E^-$ if and only if
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU22.png?pub-status=live)
Thus, if $u\in E^-$, then
$|u|\in E^-$.
In the sequel, we will denote $\|w\|^2_{V_\infty} = \displaystyle\int_{\mathbb{R}^N} (|\nabla w|^2+V_\infty w^2)\,{\rm d}x$ for any
$w\in H^1(\mathbb{R}^N)$.
Lemma 3.3. There exist R > 0 sufficiently large, which does not depend on µ, such that, for all µ > 0,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU23.png?pub-status=live)
Proof. Denoting by $\Upsilon^+(t)(x) = u_0^+\left(\frac{x - y}{tL}\right)$, let us separate this proof in three possible cases. If
$w=tRe+v^-$ with
$t\in [0,1]$ and
$\|v^-\|=R$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU24.png?pub-status=live)
for R > 0 large enough. Second, if $w=v^- \in \bar{B}_{R}(0) \cap E^-$, one has
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU25.png?pub-status=live)
To finish the proof, if $w=Re + v^-$, with
$\|v^-\|\leq R$, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU26.png?pub-status=live)
where we used the facts that, for L > 0 large enough, it holds that $J_\mu(\Upsilon(1)) \lt 0$; we also have for
$|y|$ sufficiently large that
$\left\|\Upsilon^{-}(1)\right\|$ is small enough such that
$J_\mu(\Upsilon(1)) \lt 0$ implies
$J_\mu\left(\Upsilon^{+}(1)\right) \leq 0$ and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU27.png?pub-status=live)
Moreover, we applied the non-decreasing condition for function F since $f(s)\geq 0$ for all s and for function
$s\mapsto s^{2^*}$, for s > 0.
Now, let us demonstrate that item (iii) from Theorem 3.1 also is valid.
Lemma 3.4. It holds that $h_{0}(\partial M) \cap\left(\partial B_{\rho} \cap E^+\right)=\emptyset$.
Proof. Observe that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU28.png?pub-status=live)
and that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU29.png?pub-status=live)
In addition, to guarantee that $\left(\bar{B}_{R} \cap E^-\right) \oplus\left\{\Upsilon^{+}(1)\right\} \cap E^+ \cap \partial B_{\rho}=\emptyset$, it is enough to choose a sufficiently large
$L,|y| \gt 0$ such that
$I_\mu(\Upsilon^{+}(1))\approx I_\mu(\Upsilon(1))\leq J_\mu(\Upsilon(1)) \lt -1$. Therefore, by Lemma 3.2, necessarily
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn6.png?pub-status=live)
where $\Upsilon^{+}(1)=u_0^{+}\left(\frac{x-y}{L}\right)$. Then, we conclude that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU30.png?pub-status=live)
The lemma follows.
Finally, let us prove that item (iv) from Theorem 3.1 is true.
Lemma 3.5. There exists a unique $u\in h_{0}(M) \cap\left(\partial B_{\rho} \cap E^+\right)$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU31.png?pub-status=live)
Proof. Consider the function $\psi:[0,1] \rightarrow \mathbb{R}$, given by
$\psi(t)=\left\|\Upsilon^{+}(t)\right\|$, is strictly increasing and hence injective. Moreover, ψ is continuous,
$\psi(0)=0$, and from (3.1), we have
$\psi(1) \gt \rho$. Thus, from the Intermediate Value Theorem, there exists some (unique, since ψ is injective)
$t_{0} \in(0,1)$ such that
$\psi\left(t_{0}\right)=\rho$. Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU32.png?pub-status=live)
and there exists an unique $w=\Upsilon^{+}\left(t_{0}\right) \in h_{0}(M) \cap\left(\partial B_{\rho} \cap E^+\right)$. Since
$Rte \mapsto h_{0}( Rte )=\Upsilon^{+}(t)$ is injective, there exists a unique
$u_{0}=R t_{0} e \in \operatorname{int}(M)$ such that
$h_{0}\left(u_{0}\right)=\Upsilon^{+}\left(t_{0}\right)$. Therefore,
$\operatorname{deg}\left(h_{0}, \operatorname{int}(M), w\right) \neq 0$, proving (iv).
4. Boundedness of Cerami sequences
We say that a sequence $(u_n)\subset E$ is a Cerami sequence at level c for functional Iµ if
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU33.png?pub-status=live)
as $n\rightarrow +\infty$. Before we state the next result, we note that, if
$(v_n)$ is a bounded sequence in E, then
$(v_n)$ satisfies either
(i) vanishing: for all r > 0,
$\displaystyle\limsup_{n\rightarrow \infty} \sup_{y\in\mathbb{R}^N}\int_{B(y,r)}|v_n|^2\,{\rm d}x = 0$
or
(ii) non-vanishing: there exist
$r,\eta \gt 0$ and a sequence
$(y_n)\subset\mathbb{R}^N$ such that
\begin{equation*} \displaystyle\limsup_{n\rightarrow \infty} \int_{B(y_n,r)}|v_n|^2\,{\rm d}x \gt \eta. \end{equation*}
Lemma 4.1. Let $(u_n)\subset E$ be a Cerami sequence at level c > 0. Then,
$(u_n)$ has a bounded subsequence.
Proof. Suppose by contradiction that $1\leq \|u_n\|\rightarrow \infty$ as
$n\to+\infty$. Consider
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU35.png?pub-status=live)
and note that $\|v_n\|=1$. The sequence
$(v_n)$ is bounded; however, we will show that neither (i) or (ii) is true. First, notice that from hypothesis
$(f_3)$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU3.png?pub-status=live)
which shows the boundedness of the sequence $\left(|u_n|_{2^*}\right)$. It will be used in the calculations that follows.
First, suppose that hypothesis (i) is satisfied for sequence $(v_n)$. Since the sequence
$(u_n)$ is a Cerami sequence, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn8.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn9.png?pub-status=live)
Subtracting equation (4.2) from (4.1), we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU36.png?pub-status=live)
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn10.png?pub-status=live)
provided $f(s)=0$ if
$s\leq 0$, where we define
$\Omega_n^+=\{x\in\mathbb{R}^N; \ u_n(x) \gt 0\}$. By equivalence of the norms, there exists a constant
$\nu_0 \gt 0$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn11.png?pub-status=live)
for any $w\in E$. Given
$0 \lt \varepsilon \lt \frac{1}{2}\nu_0$, by hypothesis
$(f_1)$, there exists δ > 0 such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU37.png?pub-status=live)
For each $n\in\mathbb{N}$, consider the set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU38.png?pub-status=live)
Thus, from (4.4) and by Hölder’s inequality,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU39.png?pub-status=live)
From (4.3), we conclude that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn12.png?pub-status=live)
Since the function $\displaystyle\frac{|f(\cdot)|}{|\cdot|}$ is bounded by
$(f_2)$, by Hölder’s inequality with exponent
$\displaystyle\frac{p}{2} \gt 1$, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn13.png?pub-status=live)
Assumption (i) and Lions’s Lemma ensure that $\|v_n\|_{L^p(\mathbb{R}^N)}\rightarrow 0$. Therefore, up to a subsequence, from (4.5), we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn14.png?pub-status=live)
Now we consider two disjoint subsets of $\Omega_n^+\setminus\tilde{\Omega}_n$. Hypothesis
$(f_3)$ implies that there exists R > 0 such that, if s > R,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU40.png?pub-status=live)
Without loss of generality, we assume $0 \lt \delta \lt R$. For each
$n\in\mathbb{N}$, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU41.png?pub-status=live)
and thus, by (4.1),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU42.png?pub-status=live)
which implies that the sequence $(|A_n|)$ is bounded. Consider also
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU43.png?pub-status=live)
Since $B_n = (\Omega_n^+\setminus\tilde{\Omega}_n)\setminus A_n$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU44.png?pub-status=live)
It follows from (4.7) and the boundedness of the sequence $(|A_n|)$ that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn15.png?pub-status=live)
Since the interval $[\delta, R]$ is compact and the functions f and F are continuous, we have by hypothesis
$(f_3)$ that
$\overline{\delta}:=\displaystyle\inf_{s\in[\delta,R]}\left(\displaystyle\frac{1}{2}f(s)s - F(s)\right) \gt 0$. Thus, from (4.8),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU45.png?pub-status=live)
We have a contradiction with the fact that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU46.png?pub-status=live)
Therefore, (i) does not hold for sequence $(v_n)$. Now, suppose that (ii) holds for sequence
$(v_n)$. By equivalence of the norms, there exist constants
$C_1,C_2 \gt 0$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn16.png?pub-status=live)
Let $(y_n)\subset\mathbb{R}^N$ be the sequence given by hypothesis (ii). Consider
$\tilde{v}_n(x)=v_n(x+y_n)$ and
$\tilde{u}_n(x)=u_n(x+y_n)$. Note that
$(\tilde{v}_n)$ is bounded in E. In fact, from (4.9), it follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU47.png?pub-status=live)
Thus, up to a subsequence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn17.png?pub-status=live)
We note that $\tilde{v}\neq 0$, since by (ii) and (4.10),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU48.png?pub-status=live)
By (4.9), $\|\tilde{u}_n\|\geq \displaystyle\frac{C_1}{C_2}\|u_n\|$, which goes to infinity as
$n\rightarrow \infty$. It follows from (4.10) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU49.png?pub-status=live)
with $|\Omega| \gt 0$ and
$\Omega\subset B(0,r)$. Since
$\|\tilde{u}_n\|\rightarrow\infty$, we have
$|\tilde{u}_n(x)|\rightarrow\infty$ a.e. in Ω. Thus, Fatou’s Lemma yields
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU50.png?pub-status=live)
However, this contradicts the fact that $(|u_n|_{2^*})$ is bounded. This implies that hypothesis (ii) does not hold for sequence
$(v_n)$. We conclude that, up to a subsequence,
$(u_n)$ is bounded.
In the sequel, since M is a closed and bounded subset of a finite dimensional space, we have that M is compact. Therefore, by the continuity of h 0 and Iµ, for each µ > 0, there exist $t_\mu \gt 0$ and
$v_\mu^-\in E^-$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU51.png?pub-status=live)
with $t_\mu Re+v_\mu^-\in M$. Let us prove that in fact
$t_\mu \gt 0$. Otherwise, if
$t_\mu=0$, then by the definition of Iµ, we have
$I_\mu(|v_\mu^-|)\leq 0$. However, by the proof of Lemma 3.2, we may choose several small values of t > 0 such that
$tRe \in M$ and
$\left\|u_0^+\left(\dfrac{\cdot-y}{tL} \right)\right\| \lt \rho$, satisfying
$I_\mu(h_0(tRe)) = I_\mu\left( u_0^+\left(\dfrac{\cdot-y}{tL} \right)\right) \gt 0$, contradicting the maximality of
$I_\mu(|v_\mu^-|)$. Therefore,
$t_\mu \gt 0$.
Lemma 4.2. It holds that $c_\mu\to 0$ as
$\mu\to+\infty$, where
$
c_\mu=\displaystyle\inf _{h \in \Gamma} \max _{w \in M} I_\mu(h(w)),
$ with
$\Gamma:=\left\{h \in C(M, E):\left.h\right|_{\partial M}=h_{0}\right\}$.
Proof. First, remember that $t_\mu \gt 0$ is not equal to zero. We claim that
$t_\mu Re+v_\mu^- \to 0$ as
$\mu\to +\infty$. In fact, since
$t_\mu Re+v_\mu^-\in M$ and M is a compact set, passing to a subsequence if necessary, we may suppose that
$t_\mu Re+v_\mu^-\to w_0:=t_0Re+v^-_0\in M$ strongly as
$\mu\to +\infty$. Let us show that
$w_0=0$. Otherwise, suppose
$w_0\neq 0$ and note that, by the equivalence of the norms,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU52.png?pub-status=live)
After a change of variables, since $0\leq t_\mu\leq 1$, it is possible to find a constant C > 0, which does not depend on µ, such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU53.png?pub-status=live)
for all µ > 0. At this moment, supposing $t_0 \gt 0$, since u 0 is positive and
$u_0^-(\cdot - y)\to 0$ strongly in E as
$|y|\to \infty$, we choose
$y\in\mathbb{R}^N$ with norm large enough to get
$F(h_0(w_0))=F(h_0(t_0Re+v^-_0))=F(u^+_0((\cdot - y)/t_0L)+|v_0^-|)\approx F(u_0((\cdot-y)/t_0L)+|v_0^-|) \gt 0$. Therefore, Fatou’s lemma provides
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU54.png?pub-status=live)
Then, we obtain for µ > 0 sufficiently large that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU55.png?pub-status=live)
which is an absurd. This contradiction shows that $w_0=0$ and proves our claim.
It follows from the continuity of the norm and of the function h 0 (using also that $h_0(0)=0$) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU56.png?pub-status=live)
as $\mu\to \infty$, and the result follows.
5. A nontrivial solution for
$(P_\mu)$
We begin with a technical result.
Lemma 5.1. If $\mu_{2} \gt \mu_{1}\geq0,$ there exists C > 0 such that, for all
$x_{1},x_{2}\in\mathbb{R}^{N}$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU57.png?pub-status=live)
Proof. Since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU58.png?pub-status=live)
we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU59.png?pub-status=live)
The proof follows.
Lemma 5.2. For every µ > 0, it holds that $c_\mu \lt d_\mu$.
Proof. For simplicity, C will denote a positive constant, not necessarily the same one. By the definitions of the functionals Iµ and Jµ and fixing $u_{\mu}=v_\mu^- + t_\mu R e$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn18.png?pub-status=live)
provided $|y|$ is large enough and F and
$s\mapsto s^{2^*}$, for s > 0, are non-decreasing.
Let us estimate the integral $\displaystyle\frac{1}{2}\displaystyle\int_{\mathbb{R}^N} \left(V(x) - V_\infty \right)(\Upsilon^+(t_\mu))^2\,{\rm d}x$. We begin remembering that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU60.png?pub-status=live)
for all $x,y\in\mathbb{R}^N$. Thus, replacing x by x + y, we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU2.png?pub-status=live)
for all $x,y\in\mathbb{R}^N$. Since
$\|\Upsilon^-(t)(x+y)\|_2=\|\Upsilon^-(t)\|_2\to 0$ as
$|y|\to\infty$ uniformly on
$t\in [0,1]$ (see (3.8) and (3.9) in [Reference Maia and Soares12] and note that we are considering for t = 0,
$\Upsilon^-(0)=0$), it yields the pointwise convergence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn20.png?pub-status=live)
We have from assumption $(V_4)$ that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn21.png?pub-status=live)
where we used that, for all $x,y\in\mathbb{R}^N$,
$|t_\mu L x+y|^{\gamma_2}\leq Ct_\mu^{\gamma_2} L^{\gamma_2} |x|^{\gamma_2} + C|y|^{\gamma_2}\leq C|x|^{\gamma_2}+C|y|^{\gamma_2}$ and the function
$s\mapsto -e^{-\gamma_1 s}, \ s \gt 0$, is increasing.
Now using (5.2) and the Lebesgue Theorem, we obtain as $|y|\to \infty$ that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU61.png?pub-status=live)
with $\alpha_0 \gt 0$ does not depending on y. It follows from this and (5.3) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn22.png?pub-status=live)
for $|y|$ large enough.
Therefore, from (5.1), we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn23.png?pub-status=live)
By Mean Value Theorem (choosing the points $a:=\Upsilon(t_\mu)$ and
$h:=-\Upsilon^-(t_\mu)$ that implies
$a+h=\Upsilon^+(t_\mu)$) and the growth of f, we have for
$2 \lt p \lt 2^*$ that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn24.png?pub-status=live)
where $r_t(x) \in (0,1)$. Following the same arguments, we arrive at
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn25.png?pub-status=live)
Now using the exponential decay of $\Upsilon(t_\mu)$ given by Proposition 6.10 in Appendix A, with ν > 0 to be chosen, we get from Lemma 5.1 that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn26.png?pub-status=live)
just choosing ν > 0 small enough. By the same arguments, we also have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn46.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn27.png?pub-status=live)
Now applying (5.8)–(5.10) in (5.6) and (5.7), and defining $\|\Upsilon^-(t_\mu)\|_{V_\infty}:=\beta_y$, one has
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn28.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn29.png?pub-status=live)
Choosing $0 \lt \varepsilon \lt \frac{1}{2}$, inequalities (5.11) and (5.12) provide
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU5.png?pub-status=live)
Since $\beta_y\to 0$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU63.png?pub-status=live)
taking $|y|$ sufficiently large. It follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn31.png?pub-status=live)
Thus, returning to (5.1) with (5.4) and (5.13), we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn32.png?pub-status=live)
with $|y|$ large enough. Since the function
${\rm e}^{-C|y|^{\gamma_2}}$ decays more slowly than the other terms of exponential functions (because
$0 \lt \gamma_2 \lt 1$), we conclude from (5.14) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU64.png?pub-status=live)
To finish the proof, we proceed as follows.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU65.png?pub-status=live)
We used the fact that the maximum $\displaystyle\max_{t\in [0,1]} J_{\mu}(\Upsilon(t))$ is achieved at the unique point t 0, where
$J_{\mu}^{\prime}(\Upsilon(t_0))\Upsilon(t_0) =0.$ This point t 0 is unique once
$J_{\mu}^{\prime}(\Upsilon(t_0))\Upsilon(t_0) =0$ is equivalent to
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU66.png?pub-status=live)
which has only one solution in t 0. Since u 0 is a non-trivial solution of $(P_{\mu,\infty})$, we can infer that the value of t 0 is
$t_0=\dfrac{1}{L}$. The proof is complete.
Lemma 5.3. Consider $(u_n)\subset E$, a
$(Ce)_c$ sequence for functional Iµ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU67.png?pub-status=live)
where C 1 is given by (4.9). Then, there exist a sequence $(y_n)\subset E$ and
$\rho,\eta \gt 0$, satisfying
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn33.png?pub-status=live)
Proof. Suppose, by contradiction, that (5.15) does not hold. Then, by [Reference Lions10, Lemma 8.4], we have, for $p\in(2,2^*)$, that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU68.png?pub-status=live)
Consequently, by (1.2) and $(f_3)$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn34.png?pub-status=live)
Since $u_n\rightharpoonup 0$ in
$H^1(\mathbb{R}^N)$ and
$\dim E^- \lt \infty$, then
$\|u^-_n\|\rightarrow 0$. Thus, using that
$I_\mu^{\prime}(u_n)u_n=o_n(1)$ and
$(u_n)$ is bounded in
$H^1(\mathbb{R}^N)$, we obtain by (5.16)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU69.png?pub-status=live)
Hence, by $(5.16)$ and inequality above,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn47.png?pub-status=live)
This implies that $l=Nc \gt 0$. Now considering S the best constant of the Sobolev embedding
$D^{1,2}(\mathbb{R}^N)\hookrightarrow L^{2^*}(\mathbb{R}^N$), we can conclude, by (4.9), that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU71.png?pub-status=live)
Using that l = Nc and inequality above, we obtain $c\geq\dfrac{1}{N{C_1^{\frac{N}{2}}}}S^\frac{N}{2}$, which contradicts our hypothesis.
Proposition 5.4. Let $(u_n)\subset E$ be a
$(Ce)_c$ sequence for functional Iµ. If
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU72.png?pub-status=live)
then problem $(P_\mu)$ has a non-trivial solution uµ.
Proof. Using Lemma 4, there is $u_\mu\in E$ such that
$u_n\rightharpoonup u_\mu$ in E and
$I^{\prime}_\mu(u_\mu)=0$. Suppose, by contradiction, that
$u_\mu\equiv 0$. Then, by Lemma 5.3, there are
$(y_n)\subset\mathbb{R}^N$ and
$\rho,\;\eta \gt 0$ such that (5.15) holds. Note that since
$\dim E^-$ is finite,
$\|u_n^-\|\rightarrow 0$ and, consequently, for all
$v\in E$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU73.png?pub-status=live)
which imply $I_\mu(u_n)=I_\mu(u^+_n)+o_n(1)$ and
$I^{\prime}_\mu(u_n^+)=o_n(1)$.
Let us prove that $\lim\limits_{n\to+\infty}|y_n|\rightarrow+\infty$ occurs. In fact, if there exists
$\overline{R} \gt 0$ such that
$B_{\rho}(y_n)\subset B_{\overline{R}}(0)\subset\mathbb{R}^N$, for all
$n\in\mathbb{N}$, then, since
$(u_n)$ converges strongly to 0 in
$L^2_{\rm loc}(\mathbb{R}^N)$, we see that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU74.png?pub-status=live)
contradicting (5.15).
Now define $w_n(x):=u_n^+(x+y_n)$, for all
$x\in \mathbb{R}^N$. Therefore,
$(w_n)$ is bounded in E, and there exists
$w_n \rightharpoonup w_\mu\in E$. Using the arguments above, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn48.png?pub-status=live)
We claim that $w_\mu\neq0$. In fact, by (5.15),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU76.png?pub-status=live)
Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU77.png?pub-status=live)
Therefore, uµ may not be trivial, and the proof of the lemma is complete.
At this moment, the first part of the proof of Theorem 1.1 may be presented. In § 2, we proved that Iµ satisfies all conditions in Theorem 3.1, what implies the existence of a Cerami sequence $(u_n)$ at level
$c_\mu \gt 0$, where
$
\displaystyle c_\mu=\inf _{h \in \Gamma} \max _{w \in M} I_\mu(h_0(w))
$ with
$\Gamma:=\left\{h \in C(M, E):\left.h\right|_{\partial M}=h_{0}\right\}$. This sequence is bounded by Lemma 4 and then
$(u_n)$ converges weakly to a solution uµ of
$(P_\mu)$. To show that uµ is non-trivial, we have from Lemma 5.2 that
$c_\mu \lt d_\mu$ and, from Lemma 4.2, we choose µ > 0 large enough to obtain
$c_\mu \lt \dfrac{1}{{C_1^{\frac{N}{2}}}N}S^\frac{N}{2}$ and apply Proposition 5.4 to get a non-trivial solution uµ of problem
$(P_\mu)$, which is non-negative because of hypothesis
$(f_2)$, as we wished to prove.
6. Appendix A: One ground state solution to the Limit Problem
$(P_{\mu,\infty})$ and some of its properties
To prove the existence of ground state solution to the limit problem $(P_{\mu,\infty})$, we consider
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn52.png?pub-status=live)
Hereafter, let us denote by $J_{\mu}: H^1(\mathbb{R}^N) \to \mathbb{R}$ the associated functional given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU79.png?pub-status=live)
In this section, we consider $H^1(\mathbb{R}^N)$ endowed with the following norm
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU80.png?pub-status=live)
Notice that weak solutions of problem $(P_{\mu,\infty})$ in
$H^1(\mathbb{R}^N)$ are critical points of functional
$J_\mu\in C^1(H^1(\mathbb{R}^N),\mathbb{R})$.
Let us show that functional Jµ has a mountain pass geometry.
Proposition 6.1. The following statements hold.
(i) There exist
$\alpha,\;\rho \gt 0$ such that
\begin{equation*} J_\mu(u)\geq\alpha,\ \text{for all} \ u\in H^1(\mathbb{R}^N), \ \text{with} \ \|u\|_{H^1}=\rho. \end{equation*}
(ii) For all
$u\in H^1(\mathbb{R}^N)\setminus\{0\}$, we have
\begin{equation*} \limsup\limits_{t\to+\infty}J_\mu(tu)\leq -\infty. \end{equation*}
Proof. Using $(1.2)$ and Sobolev embeddings, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU83.png?pub-status=live)
Choosing $\epsilon\in\left(0,\dfrac{1}{\mu C}\right)$ and taking
$\|u\|_{H^1}$ small enough, we can determine positive numbers α and ρ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU84.png?pub-status=live)
To prove the second item, let us consider u ≠ 0 and t > 0. Then, by $(f_3)$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU85.png?pub-status=live)
Letting $t\to+\infty$, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU86.png?pub-status=live)
We say that a sequence $(u_{n})\subset H^1(\mathbb{R}^N)$ is a Palais-Smale sequence at level bµ for the functional Jµ if
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU87.png?pub-status=live)
as $n\to\infty$, where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU88.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU89.png?pub-status=live)
Notice that Proposition 6.1 implies the existence of a Palais-Smale sequence at level bµ for the functional Jµ. Using this Palais-Smale sequence, we show the existence of non-trivial critical point for Jµ, but we need to show some technical results. First, let S > 0 be the best constant to the Sobolev embedding $D^{1,2}(\mathbb{R}^N)\hookrightarrow L^{2^*}(\mathbb{R}^N)$.
Lemma 6.2. Consider $(u_n)\subset H^1(\mathbb{R}^N)$ a Palais-Smale sequence at level bµ for the functional Jµ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU90.png?pub-status=live)
Then, there exist a sequence $(y_n)\subset\mathbb{R}^N$ and
$\rho,\eta \gt 0$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn35.png?pub-status=live)
Proof. One proceeds exactly as in Proposition 5.4.
Lemma 6.3. If $\mu \to +\infty$, then
$b_\mu\to 0$.
Proof. Consider a function $\varphi\in C^\infty_0(\mathbb{R}^N)$ such that
$\|\varphi\|^2_{H^1}=2$. Then, by Lemma 6.1, there exists
$t_\mu \gt 0$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU91.png?pub-status=live)
We are going to show that, up to subsequence, $t_\mu\to 0$ when
$\mu\to+\infty$. First, using the characterization of bµ and
$(f_3)$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU92.png?pub-status=live)
and this implies that $(t_\mu)\subset\mathbb{R}$ is bounded. Hence, up to a subsequence,
$(t_\mu)$ converges to some
$t_0\geq0$. To prove that
$t_0=0$, let us suppose, by contradiction, that
$t_0 \gt 0$. Then, by
$(f_3)$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU93.png?pub-status=live)
which implies that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU94.png?pub-status=live)
Therefore, up to a subsequence, $(t_\mu)$ converges to 0. Hence, by
$(f_3)$ one more time,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU95.png?pub-status=live)
for all µ > 0. This proves the lemma.
Proposition 6.4. There exists $\mu^* \gt 0$ such that the limit problem
$(P_{\mu, \infty})$ has a nontrivial solution.
Proof. By Proposition 6.1, we get a Palais-Smale sequence $(u_n)\subset H^1(\mathbb{R}^N)$ at level
$b_\mu \gt 0$. Using the proof of Lemma 4 with a slight modification, we can show that the sequence
$(u_n)$ is bounded in
$H^1(\mathbb{R}^N)$. Then, there exists
$u_\infty\in H^1(\mathbb{R}^N)$ such that, up to a subsequence,
$u_n\rightharpoonup u_0 \in H^1(\mathbb{R}^N)$.
If $u_0\neq 0$ then, using a density argument, we have a nontrivial solution of
$(P_{\mu,\infty})$. On the other hand, if
$u_0\equiv 0$, we can find
$\mu^* \gt 0$ such that, by Lemma 6.3,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU96.png?pub-status=live)
Then, by Lemma 6.2, there exist a sequence $(y_n)\subset\mathbb{R}^N$ and
$\rho,\eta \gt 0$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn36.png?pub-status=live)
Setting $w_n:=u_n(x+y_n)$ and, since the problem is invariant under translations, we have that
$(w_n)\subset\mathbb{R}^N$ is a bounded Palais-Smale sequence. Hence, there exists
$w_0\in H^1(\mathbb{R}^N)$ such that, up to a subsequence,
$w_n\rightharpoonup w_0 \in H^1(\mathbb{R}^N)$ and, by
$(6.2)$ and Sobolev embeddings,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU97.png?pub-status=live)
which implies that $w_0\neq 0$ and, using a density argument one more time, we have a non-trivial solution of
$(P_{\mu,\infty})$.
At this moment, we will concentrate in showing that the limit problem has a ground state solution. For this, let us consider
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU98.png?pub-status=live)
Before stating the results, observe that Lemmas 5.4 and 6.2 are still valid when we consider a sequence $(u_n)\subset\mathcal{N}_\mu$ instead of a
$(Ce)_c$ sequence for functional Jµ.
Lemma 6.5. Consider $\mu^* \gt 0$ given by Proposition 6.4. If
$\mu\geq\mu^*$, then the following proprieties hold.
(i)
$\mathcal{N}_\mu\neq \emptyset$.
(ii) There exists
$\rho_{\mu} \gt 0$ such that
\begin{equation*} \int_{\mathbb{R}^N}|u|^{2^*}\,{\rm d}x\geq\rho_{\mu} \gt 0,\quad \forall\ u\in\mathcal{N}_\mu. \end{equation*}
(iii) If
$u\in\mathcal{N}_\mu$, then
$J_\mu (u)\geq\dfrac{1}{N}\displaystyle\int_{\mathbb{R}^N}|u|^{2^*}\,{\rm d}x\geq \dfrac{\rho_\mu}{N} \gt 0$.
Proof. We deduce immediately item (i) from the existence of a non-trivial solution obtained by Proposition 6.4. To prove the second item, we are going to use $(1.2)$ to ensure that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU100.png?pub-status=live)
Then, considering $u\in\mathcal{N}_\mu$ and using Sobolev embeddings,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn37.png?pub-status=live)
Choosing $\epsilon\in\left(0,\dfrac{1}{\mu} \right) $, then there exists
$K_\mu \gt 0$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn38.png?pub-status=live)
Using again (6.3) and (6.4), we can find $\rho_\mu \gt 0$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU101.png?pub-status=live)
Let us show item (iii). Using $(f_3)$ and item (ii), we obtain, for
$u\in\mathcal{N}_\mu$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU102.png?pub-status=live)
The above Lemma ensures that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn49.png?pub-status=live)
The next result establishes the existence of a non-trivial ground state solution $w_\infty$ to problem
$(P_{\mu,\infty})$.
Lemma 6.6. If $\mathcal{N}_\mu\neq \emptyset$, let
$(u_n)\subset \mathcal{N}_\mu$ be a minimizing sequence for Jµ. Then
$(u_n)$ is bounded in
$H^1(\mathbb{R}^N)$. Moreover, there exists
$\mu^* \gt 0$ such that the infimum of Jµ on
$\mathcal{N}_\mu$ is attained for all
$\mu \gt \mu^*$.
Proof. The existence of a minimizing sequence $(u_n)\subset\mathcal{N}_\mu$ is assured by Lemma 6.5. Using the same arguments as in Lemma 4.1, we show that
$(u_n)$ is bounded in
$H^1(\mathbb{R}^N)$. Hence, by usual arguments and Sobolev embeddings, there exists
$w_{\infty}\in H^1(\mathbb{R}^N)$ such that, up to a subsequence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn39.png?pub-status=live)
The pointwise convergence of the gradient in (6.6) is guaranteed by Lemma 7.1 in the Appendix B.
By density arguments, $J_{\mu}^{\prime}(w_\infty)(w_\infty)=0$. Observe that, if
$w_\infty\neq 0$, then
$w_\infty\in\mathcal{N}_\mu$, and hence, by Fatou’s Lemma and
$(f_3)$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU104.png?pub-status=live)
Then, we conclude that $(u_n)$ converges strongly to
$w_\infty$ in
$H^1(\mathbb{R}^N)$ and hence
$J_{\mu}(w_\infty)=d_\mu$.
On the other hand, if $w_\infty\equiv 0$, we define
$w_n(x):=u_n(x+y_n)$. Then, arguing as we did in Lemmas 5.3, 5.4 and 6.3, there exists
$\mu^* \gt 0$ such that if
$\mu \gt \mu^*$, then there is
$\widetilde{w_{\mu,\infty}}\in\mathcal{N}_{\mu,\infty}$ satisfying, up to a subsequence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn50.png?pub-status=live)
Then, by Fatou’s Lemma and $(f_3)$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU106.png?pub-status=live)
which completes the proof.
Proposition 6.7. There exists $\mu^* \gt 0$ such that problem
$(P_{\mu,\infty})$ has a ground state solution
$u_0\in H^1(\mathbb{R}^N)$ for all
$\mu \gt \mu^*$.
Without loss of generality, we may suppose that $u_0\geq 0$ in
$\mathbb{R}^N$. To see this, it is enough to truncate the functional Jµ, considering
$(\max\{w,0\})^{2^*}$ in place of
$|w|^{2^*}$ and using hypothesis
$(f_2)$.
The next lemma is an important consequence of the standard regularity arguments. It will be used to apply the Divergence Theorem in the sequel.
Lemma 6.8. It holds that $u_0\in H^2(\mathbb{R}^N)$.
We also may suppose that $u_0\in H^1_{\text{rad}}(\mathbb{R}^N)$. Indeed, it is enough to solve problem
$(P_{\mu,\infty})$ in
$H^1_{\text{rad}}(\mathbb{R}^N)$ and use the Symmetric Criticality Principle. This implies the following lemma whose proof is an immediate consequence of Strauss inequality.
Lemma 6.9. There exists $C=C(N) \gt 0$ such that, for all x ≠ 0,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU107.png?pub-status=live)
The next result is the most important concerning the qualitative properties of u 0. It will guarantee that the solution u 0 has an appropriate exponential decay, which was used before to relate two important levels in order to obtain a strong convergence of a Cerami sequence. Recall that $\dfrac{|f(s)|}{|s|} \lt m$ for all
$s\in\mathbb{R}$ from hypothesis
$(f_2)$.
Proposition 6.10. If $\nu\in\left(0,\sqrt{V_\infty}\right)$ and
$\mu\geq \mu^*$, then there exists
$C=C(m,\nu) \gt 0$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU108.png?pub-status=live)
Proof. For x ≠ 0, we have that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn51.png?pub-status=live)
Define $C:= {\rm e}^{\nu R} \gt 0$, where R > 0 to be chosen, and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU110.png?pub-status=live)
By the definition of C, we get $w(x)\leq 0$ for
$|x|\leq R$. Let us prove that this inequality still holds for
$|x| \gt R$. For this end, consider the set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU111.png?pub-status=live)
where $w_+(x)=\max\{w(x),0\}$. Suppose, by contradiction, that
$\Omega\neq \emptyset$. Since
$w_+\in H^1(\mathbb{R}^N)$, it follows that Ω is a Lebesgue measurable set, which satisfies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU112.png?pub-status=live)
Therefore, by the Divergence Theorem (note that $w_+ =0$ on
$\partial D(R)$), we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU113.png?pub-status=live)
Using the definition of w and that u 0 is a solution of $(P_{\beta,\infty})$, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU114.png?pub-status=live)
where we used (1.2). Now, choosing ɛ > 0 such that $\mu\varepsilon+\nu^2-V_\infty \lt 0$, which implies in particular that
$\mu\varepsilon-V_\infty \lt 0$, we obtain from Lemma 6.9 that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU115.png?pub-status=live)
for some constants $c_1,c_2 \gt 0$ that do not depend on R > 0. We choose R > 0 sufficiently large such that, for
$|x| \gt R$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU116.png?pub-status=live)
Noting that $u_0(x) \gt C|u_0|_\infty {\rm e}^{-\nu|x|}$ in Ω, we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU117.png?pub-status=live)
If necessary, we take R > 0 even large so that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU118.png?pub-status=live)
what is possible in view of $\mu\varepsilon-V_\infty+\nu^2 \lt 0$. Then, we arrive at
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU119.png?pub-status=live)
an absurd. Thus, $\Omega=\emptyset$ and the proposition follows.
All this section proves the second and final part of Theorem 1.1.
7. Appendix B: A technical result
Lemma 7.1. Let $(u_n)\subset \mathcal{N}_\mu$ be a sequence satisfying
$u_n \rightharpoonup w_\infty$ in
$H^1(\mathbb{R}^N)$ for some
$w_\infty\in H^1(\mathbb{R}^N)$. Then, passing to a subsequence,
$\nabla u_n \to \nabla w_\infty$ strongly in
$[L^2_{\rm loc}(\mathbb{R}^N)]^N$ and
$\nabla u_n(x)\to \nabla w_\infty(x)$ almost everywhere
$x\in\mathbb{R}^N$.
Proof. We will adapt some ideas found in [Reference Alves and Figueiredo1]. Since $u_n\rightharpoonup w_\infty$ in
$H^1(\mathbb{R}^N)$, then, up to a subsequence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqn40.png?pub-status=live)
Given any R > 0, let $\psi\in C_0^\infty (\mathbb{R}^N,[0,1])$ be such that
$\psi\equiv 1$ in
$B_R(0)$ and
$\psi\equiv 0$ in
$\mathbb{R}^N\backslash B_{2R}(0)$. Then, by Cauchy–Schwarz inequality and the fact that
$\int_{\mathbb{R}^N} \psi \nabla w_\infty \nabla \left(u_n-w_\infty \right) \,{\rm d}x = o_n(1)$ (because of the weak convergence
$u_n \rightharpoonup w_\infty$), we have the following facts:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU120.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU121.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU122.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU123.png?pub-status=live)
where in the last convergence, we used the growth of f. Moreover, let $2^*-1 \lt s \lt 2^*$ and consider
$r=\dfrac{s}{2^*-1} \gt 1$. Then,
$r^{\prime}:=\dfrac{r}{r-1}$ satisfies
$r^{\prime}=\dfrac{s}{s-2^*+1} \lt 2^*$. By Hölder inequality with exponents r and r ʹ, we get from (7.1) and from the boundedness of
$(u_n)$ in
$L^s(\mathbb{R}^N)$ that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU124.png?pub-status=live)
Therefore, remembering that $u_n\in \mathcal{N}_\mu$, one obtains
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231121114831916-0352:S0013091523000330:S0013091523000330_eqnU125.png?pub-status=live)
Since R > 0 is arbitrary, this implies that, passing to a subsequence, $\nabla u_n \to \nabla w_\infty$ in
$[L^2_{\rm loc}(\mathbb{R}^N)]^N$.
To complete the proof of the lemma, let us show that $\nabla u_n(x)\to \nabla w_\infty(x)$ a.e.
$x\in\mathbb{R}^N$ by using a diagonal process. Since
$\nabla u_n \rightarrow \nabla w_\infty$ in
$[L^2(B_1(0))]^N$, there exists an infinite subset
$\mathbb{N}_1 \subset \mathbb{N}$ such that the subsequence
$\left(\nabla u_n(x)\right)_{n \in \mathbb{N}_1}$ converges to
$\nabla w_\infty(x)$ a.e.
$x\in B_1(0)$. Since
$\left(\nabla u_n\right)_{n \in \mathbb{N}_1}$ converges to
$\nabla w_\infty$ in
$[L^2(B_2(0))]^N$, we obtain a subsequence
$\left(\nabla u_n\right)_{n \in \mathbb{N}_2} \operatorname{with} \mathbb{N}_2 \subset \mathbb{N}_1$ such that
$\left(\nabla u_n(x)\right)_{n \in \mathbb{N}_2}$ converges to
$\nabla w_\infty(x)$ a.e.
$x\in B_2(0)$. Proceeding in this way, we find infinite subsets of indexes
$\mathbb{N}_{k+1} \subset \mathbb{N}_k \subset \mathbb{N}$ such that
$\left(\nabla u_n(x)\right)_{n \in \mathbb{N}_k}$ converges to
$\nabla w_\infty(x)$ a.e.
$x\in B_k(0)$. Consider
$\mathbb{N}^*=\left\{n_1^*, n_2^*, \ldots, n_k^*, \ldots\right\} \subset \mathbb{N}$ with
$n_k^*$ being the kth element of
$\mathbb{N}_k$. Therefore,
$\left(\nabla u_n(x)\right)_{n \in \mathbb{N} *}$ is, from its kth element, a subsequence of
$\left(\nabla u_n(x)\right)_{n \in \mathbb{N}_k}$ and hence converges to
$\nabla w_\infty(x)$ a.e.
$x\in B_k(0)$. For each
$k \in \mathbb{N}$, there exists
$Z_k \subset B_k(0)$ of zero measure such that
$\left(\nabla u_n(x)\right)_{n \in \mathbb{N}_k}$ converges to
$\nabla w_\infty(x)$ for all
$x \in B_k(0) \backslash Z_k$. Take
$Z:=\cup_{m=1}^{\infty} Z_m$. Then, Z has zero measure and, for all
$x \in \mathbb{R}^N \backslash Z$, we have
$x \in B_k(0) \backslash Z_k$ for some
$k \in \mathbb{N}$ and
$\left(\nabla u_n(x)\right)_{n \in \mathbb{N}^*}$ converges to
$\nabla w_\infty(x)$. This shows that, up to a subsequence,
$\nabla u_n(x)\to\nabla w_\infty(x)$ a.e.
$x\in \mathbb{R}^N$ and completes the proof.
Funding Statement
Gustavo S. A. Costa was supported by CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (grant number 163054/2020-7). Giovany M. Figueiredo was supported by FAPDF – Demanda Espontânea 2021 and CNPq Produtividade 2019.