Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-02-06T07:06:30.841Z Has data issue: false hasContentIssue false

Multi-GGS Groups have the Congruence Subgroup Property

Published online by Cambridge University Press:  21 February 2019

Alejandra Garrido
Affiliation:
School of Mathematical and Physical Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia (alejandra.garrido@newcastle.edu.au)
Jone Uria–Albizuri
Affiliation:
Basque Center of Applied Mathematics, Mazarredo, 14, 48009, Bilbao, Basque Country, Spain (juria@bcamath.org)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We generalize the result about the congruence subgroup property for GGS groups in [3] to the family of multi-GGS groups; that is, all multi-GGS groups except the one defined by the constant vector have the congruence subgroup property. New arguments are provided to produce this more general proof.

MSC classification

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2019 

References

1Alexoudas, T., Klopsch, B. and Thillaisundaram, A., Maximal subgroups of multi-edge spinal groups, Groups Geom. Dyn. 10 (2016), 619648.Google Scholar
2Fernández-Alcober, G. A. and Zugadi-Reizabal, A., GGS-groups: order of congruence quotients and Hausdorff dimension, Trans. Amer. Math. Soc. 366 (2014), 19932007.Google Scholar
3Fernández-Alcober, G. A., Garrido, A. and Uria-Albizuri, J., On the congruence subgroup property for GGS-groups, Proc. Amer. Math. Soc. 145 (2017), 33113322.Google Scholar
4Grigorchuk, R. I., On Burnside's problem on periodic groups, Funktsional. Anal. i Prilozhen. 14(1) (1980), 5354.Google Scholar
5Gupta, N. and Sidki, S. N., On the Burnside problem for periodic groups,Math. Z. 182 (1983), 385388.Google Scholar