Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-11T01:48:51.613Z Has data issue: false hasContentIssue false

SHARP TWO-SIDED BOUNDS FOR DISTRIBUTIONS UNDER A HAZARD RATE CONSTRAINT

Published online by Cambridge University Press:  13 November 2008

Mark Brown
Affiliation:
Department of Mathematics, The City College, CUNY, New York, NY E-mail: cybergarf@aol.com
J. H. B. Kemperman
Affiliation:
Department of Statistics, Rutgers University, New Brunswick, NJ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Consider a continuous nonnegative random variable X with mean μ and hazard function h. Assume further that ah(t)≤b for all t≥0. Under these constraints, we obtain sharp two-sided bounds for . An application to birth and death processes is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

References

1.Aldous, D.J. & Brown, M. (1993). Inequalities for rare events in time-reversible Markov chains. In Shaked, Moshe and Tong, Y. L.(eds), Stochastic inequalities, IMS Lecture Notes Monograph Series, pp. 116, Hayward, California: Institute of Mathematical Statistics.Google Scholar
2.Barlow, R.E. & Proschan, F. (1975). Statistical theory of reliability and life testing. New York: Holt Rinehart and Winston.Google Scholar
3.Keilson, J. (1979). Markov chain models: Rarity and exponentiality. New York: Springer-Verlag.CrossRefGoogle Scholar
4.Marshall, A.W. & Olkin, I. (2007). Structure of life distributions: Nonparametric, semiparametric, and parametric families. New York: Springer-Verlag.Google Scholar
5.Taylor, H.M. & Karlin, S. (1994). An introduction to stochastic modeling, rev. ed. New York: Academic Press.Google Scholar