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Consider a continuous nonnegative random variable X with mean μ and hazard func-
tion h. Assume further that a ≤ h(t) ≤ b for all t ≥ 0. Under these constraints, we
obtain sharp two-sided bounds for F̄(t) = Pr(X > t). An application to birth and
death processes is discussed.

1. INTRODUCTION

The problem of bounding a distribution subject to constraints has been widely stud-
ied. The book by Marshall and Olkin [4] lucidly discusses many important results. An
earlier book by Barlow and Proschan [2, pp. 113–116] discusses bounds for various
reliabilty classes of distributions. Our motivation for studying this particular variation
of the problem arises from the study of first passage times for time-reversible Markov
chains. There, certain first passage time distributions of interest have easily com-
putable maximum hazard rates. In some examples, the minimum hazard rate as well
as the mean are also computable. In contrast, the survival function is often difficult to
compute. Our work provides the methodology for bounding the survival function in
these cases.
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2. MAIN RESULT

Our approach is to first consider the inverse problem. Suppose for a fixed t = t0 that
F̄(t0) = exp(−αt0), where

α = a + p(b − a) = qa + pb, (q = 1 − p). (1)

Because, exp(−bt0) ≤ F̄(t0) ≤ exp(−at0), F̄(t) is of the above form for a unique
p ε [0, 1]. Given p, we seek to find the smallest and largest values of μ, among
distributions in our class (a ≤ h(t) ≤ b).

LEMMA 1. For F̄(t0) = exp(−αt0), with α = qa + pb,

H∗(t) ≤ H(t) =
∫ t

0
h(x) dx ≤ H∗(t) for all t, (2)

where

H∗(t) =

⎧⎪⎨
⎪⎩

at, t ≤ qt0
qat0 + b(t − qt0), qt0 < t ≤ t0
αt0 + a(t − t0), t > t0

(3)

and,

H∗(t) =

⎧⎪⎨
⎪⎩

bt, t ≤ pt0
pbt0 + a(t − pt0), pt0 < t ≤ t0
αt0 + b(t − t0), t > t0.

(4)

PROOF: We prove that H ≥ H∗; the proof that H ≤ H∗ follows similarly. Since a ≤
h ≤ b, it follows that H(t) ≥ at = H∗(t) for t ≤ qt0.As H(t0) = αt0 (given), it follows
that H(t) ≥ αt0 + a(t − t0) = H∗(t) for t > t0. For qt0 < t ≤ t0,

αt0 − H(t) = H(t0) − H(t) =
∫ t0

t
h(x) dx ≤ b(t0 − t) = αt0 − H∗(t);

thus, H(t) ≥ H∗(t) in this range as well. �

It follows from Lemma 1 thatμ(p)
∗

def= ∫ ∞
0 exp[−H∗(t)] dt ≤ μ ≤ ∫ ∞

0 exp[−H∗(t)]
dt

def= μ∗(p). This solves the inverse problem, in that given p, we found the range of μ.
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Represent μ∗ and μ∗ by

μ∗(p) = 1

b
+

(
1

a
− 1

b

)
p∗(p) (5)

μ∗(p) = 1

b
+

(
1

a
− 1

b

)
p∗(p), (6)

respectively, where

p∗(p) = exp(−pbt0) − exp(−αt0) (7)

p∗(p) = 1 − exp(−qat0) + exp(−αt0). (8)

The function p∗(p) is strictly decreasing in p, with p∗(0) = 1 − exp(−at0) and
p∗(1) = 0. Thus, p−1∗ (p), the inverse function of p∗, is uniquely defined for 0 ≤ p ≤
1 − exp(−at0). Similarly, p∗ is strictly decreasing in p, p∗(0) = 1, p∗(1) = exp(−bt0),
and p∗−1(p) is uniquely defined for exp(−bt0) ≤ p ≤ 1.

Define

g∗(p) =
{

p−1∗ (p), 0 ≤ p ≤ 1 − exp(−at0)

0, 1 − exp(−at0) < p ≤ 1
(9)

and,

g∗(p) =
{

p∗−1(p), exp(−bt0) ≤ p ≤ 1

1, 0 ≤ p < exp(−bt0).
(10)

Now, we are prepared to address the original problem. Suppose that X ≥ 0 with
a ≤ h ≤ b and that EX = μ. Put μ in the form

μ = b−1 + (a−1 − b−1)p̃, (11)

with

p̃ = (μ − b−1)/(a−1 − b−1). (12)

As b−1 ≤ μ ≤ a−1, p̃ is uniquely defined by μ and lies in [0, 1].
Given μ, equivalently p̃, the range of F̄(t0) consists of

exp(−αt0) with α = qa + pb (13)

and p satisfying μ∗(p) ≤ μ ≤ μ∗(p). This in turn is equivalent to

exp[−t0(a + (b − a)g∗(p̃))] ≤ F̄(t0) ≤ exp[−t0(a + (b − a)g∗(p̃))], (14)

where p̃ is given by (12) and g∗ and g∗ are given by (9) and (10), respectively.
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To study (14) in greater detail, consider the case exp(−bt0) ≤ 1 − exp(−at0).
Here, we have the following:

(i) If p̃ < exp(−bt0), then

exp(−bt0) ≤ F̄(t0) ≤ exp(−t0(a + (b − a)p−1
∗ (p̃))).

(ii) If exp(−bt0) ≤ F̄(t0) ≤ 1 − exp(−at0), then

exp(−t0(a + (b − a)p∗−1(p̃))) ≤ F̄(t0) ≤ exp(−t0(a + (b − a)p−1
∗ (p̃))).

(iii) If p̃ > 1 − exp(−at0), then

exp(−t0)(a + (b − a)p∗−1(p̃)) ≤ F̄(t0) ≤ exp(−at0).

The inversion of p∗ and p∗ can be simply performed. For example, the Solver
program on the TI83 Plus calculator gives the solution quickly and accurately for any
choice of (a, b, t0, p̃).

3. BIRTH AND DEATH PROCESS APPLICATION

Consider a birth and death process with states {0, 1, 2, 3, 4}. The birth rates are given
by (λ0, λ1, λ2, λ3) = (5, 2, 2, 1) and the death rates are given by (μ1, μ2, μ3, μ4) =
(4, 1, 1, 10).

Define T to be the first passage time to state 2, starting from steady state restricted
to states {0, 1, 3, 4}. (This is known as the ergodic exit distribution.) This conditional
steady-state distribution works as

(π∗(0), π∗(1), π∗(3), π∗(4)) ≤ 1

31
(4, 5, 20, 2).

The hazard rate of T at time 0 is given by b = λ1π
∗(1) + λ3π

∗(3) = 30
31 . T is

known to be DFR (decreasing failure rate) [3]. The quantity b = h(0) = 30
31 is thus the

largest value of the hazard rate function of T .
It is also known [1, p. 8] that limt→∞ h(t) = a, where a is the smallest eigenvalue

of the matrix

−Q∗ =

⎛
⎜⎜⎝

5 −5 0 0
−4 6 0 0

0 0 2 −1
0 0 −10 10

⎞
⎟⎟⎠.

The value in this example is a = 6 − √
26. Thus,

6 − √
26 = a ≤ h(t) ≤ b = 30|31 (15)
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for all t ≥ 0. Next,

ET =
∑

iε{0,1,3,4}
π∗(i)EiT , (16)

where EiT is the mean of T starting in state i. By standard birth and death process
methodology [5, p. 351], these four quantities are computed and plugged into (16),
giving

μ = ET = 333/310.

Next, by (12),

p̃ = μ − b−1

a−1 − b
= 0.5336417988.

Applying our methodology to bound F̄(2), we find

g∗(p̃) = p−1
∗ (p̃) = 0.22938544945

g∗(p̃) = p∗−1(p̃) = 0.7311121555

and, consequently, that

0.1496312727 ≤ F̄(2) ≤ 0.159998765. (17)

In this example, the sharp DFR upper bound based on μ [2, p. 116], but not
utilizing a and b, equals 0.1976 to four decimal places. This significantly exceeds the
upper bound in (17). The simple bound

exp(−2b) ≤ F̄(2) ≤ exp(−2a),

which does not utilize μ, in this case works out to [0.1444, 0.1650] (to four decimal
places), which is about twice the width of (17).

With some computational effort, we can employ the spectral representation for
the distribution of T [1, p. 10] and find that F̄(2) = 0.1558, to four decimal places.
This is 0.0010 greater than the midpoint of (17).

We further remark that exp(−t|μ) lies in the interval given in (14) for all t.
Applying this to the above example,

|F̄(2) − exp(−2|μ)| ≤ max(0.1600 − 0.1554, 0.1554 − 0.1496)

= max(0.0046, 0.0058) = 0.0058.
(18)

The actual value in this case is F̄(2) − exp(−2|μ) = 0.0004. Thus, we can use this
method to bound the accuracy of approximating T by an exponential distribution with
mean ET . Of course, we would need to perform (18) for various values of t.

This method can be used for a general ergodic birth and death process to approx-
imate the probability that the first passage time to a state j, starting in steady state
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restricted to {j}c = {i �= j}, exceeds t. The most difficult aspect is to compute the lower
bound a, the smallest eigenvalue of −Q∗, where Q∗ is the restriction of the infinites-
imal matrix Q to {j}cx{j}c. There has been a great deal of fairly recent work relevant
to this problem by Diaconis and various co-workers. In contrast, the computation of
the exact distribution of T is considerably more difficult.
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