Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-02-05T23:10:38.912Z Has data issue: false hasContentIssue false

ON INTERVAL AND INSTANT AVAILABILITY OF THE SYSTEM

Published online by Cambridge University Press:  02 March 2020

Jie Mi*
Affiliation:
Department of Mathematics and Statistics, Florida International University, Miami, FL 33199, USA E-mail: mi@fiu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article considers the interval availability and instant availability of the k-system. A certain relationship between the two types of availability is established. Some lower and upper bounds to interval availability are derived. It also provides a couple of conditions under which the availability of two systems can be compared. Several examples are given to show the complexity of comparisons of availability.

Type
Research Article
Copyright
© Cambridge University Press 2020

References

1.Barlow, R.E., & Proschan, F. (1981). Statistical theory of reliability and life testing: Probability models. Silver Springs, MD: To Begin With.Google Scholar
2.Biswas, A., & Sarkar, J. (2000). Availability of a system maintained through several imperfect repairs before a replacement or a perfect repair. Statistics & Probability Letters 50: 105114.CrossRefGoogle Scholar
3.Dorado, C., Hollander, M., & Sethuraman, J (1997). Nonparametric estimation for a general repair model. The Annals of Statistics 25: 11401160.CrossRefGoogle Scholar
4.Du, S., Zio, E., & Kang, R. (2018). New interval availability indexes for Markov repairable systems. IEEE Transactions on Reliability 67: 118128.CrossRefGoogle Scholar
5.Huang, K., & Mi, J. (2013). Properties and computation of interval availability of system. Statistics and Probability Letters 83: 13881396.CrossRefGoogle Scholar
6.Huang, K., & Mi, J. (2015). Study of instant system availability. Probability in the Engineering and Information Sciences 29: 117129.CrossRefGoogle Scholar
7.Karlin, S., & Taylor, H. (1975). A first course in stochastic processes, 2nd ed. New York, San Francisco, London: Academic Press.Google Scholar
8.Levitin, G., Xing, L.D., & Dai, Y.S. (2015). Optimal backup frequency in system with random repair time. Reliability Engineering & System Safety 144: 1222.CrossRefGoogle Scholar
9.Liu, Y., Zuo, M.J., Li, Y.F., & Huang, H.Z. (2015). Dynamic reliability assessment for multi-state systems utilizing system-level inspection data. IEEE Transactions on Reliability 64: 12871299.CrossRefGoogle Scholar
10.Mathew, A., & Balakrishna, N. (2014). Nonparametric estimation of the interval reliability. Journal of Statistical Theory and Applications 13: 356366.CrossRefGoogle Scholar
11.Naseri, M., Baraldi, P., Compare, M., & Zio, E. (2016). Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions. Reliability Engineering & System Safety 152: 6682.CrossRefGoogle Scholar
12.Ross, S.M. (1983). Stochastic processes. New York: John Williams & Sons.Google Scholar
13.Sabri-Laghaie, K., & Noorossana, R. (2016). Reliability and maintenance models for a competing-risk system subjected to random usage. IEEE Transactions on Reliability 65: 12711283.CrossRefGoogle Scholar
14.Shaked, M., & Shanthikumar, J.G. (2007). Stochastic orders. New York: Springer.CrossRefGoogle Scholar
15.Zio, E. (2017). An introduction to the basics of reliability and risk analysis. Singapore: World Scientific.Google Scholar