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This article considers the interval availability and instant availability of the k -system. A
certain relationship between the two types of availability is established. Some lower and
upper bounds to interval availability are derived. It also provides a couple of conditions
under which the availability of two systems can be compared. Several examples are given
to show the complexity of comparisons of availability.
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1. INTRODUCTION

In engineering, it is common to consider various repair policies in order to keep the system
highly reliable. One of these policies is perfect repair that repairs a failed system as good as
new. However, it is often practically infeasible to implement perfect repair due to technical
limitations. Moreover, comparing with other imperfect repair policies, the perfect repair
usually takes longer time and is more costly. On the other hand, imperfect repair may
reduce the lifetime of the system even though it takes shorter time and fewer resources.
Taking care of these issues, Dorado et al. [3] proposed a better-than-minimal repair model.
Biswas and Sarkar [2] further considered an intermediate repair policy in which several
imperfect repairs on successive failures are allowed before a replacement with a new system
or a perfect repair is performed. A more general model considered in Huang and Mi [5]
combines the two models studied in Biswas and Sarkar [2] and can be described as follows.

Consider systems each of which has only two states at any given time, namely “up”
if it is properly functioning and “down” if it is in the process of replacing or repairing.
These systems will perform the same job one after one consecutively. Precisely, let k ≥ 0
be a predetermined integer and {Si, 1 ≤ i ≤ k + 1} be a sequence of independent systems.
System S1 starts working at time t = 0 until it fails and it will be replaced by system S2. This
pattern will be continued until the failure of system Sk+1. Denote the lifetime of Si as Ui and
the needed replacement time at its failure as Di. Obviously, (Ui,Di), i ≥ 1 are independent
since the systems {Si, 1 ≤ i ≤ k + 1} are independent. We also assume that Ui and Di

are independent of each other. The time interval (0, U1 + D1] is called as cycle C1, and
time interval [

∑j−1
i=1 (Ui + Di),

∑j
i=1(Ui + Di)] is called as the j th cycle Cj , 2 ≤ j ≤ k + 1.

Finally, we assume that the process mentioned above will be renewed at the end of cycle
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Ck+1, i.e., iid copies of consecutive cycles Cj , 1 ≤ j ≤ k + 1 will be continued accordingly
at time

∑k+1
i=1 (Ui + Di), and the process develops in the same manner again and again as

time goes. Note that the word “replace(ment)” is used in the above description, but it can
readily be interpreted as “repair(ing)”. The two words will be used alternately whenever it
is convenient.

Denote the collection of the systems {Si, 1 ≤ i ≤ k + 1} along with their corresponding
lifetimes and repair times as S

(k) and call it as a k -system. The progress of S
(k) can be

characterized by a stochastic process that is renewed after the completion of k + 1 cycles.
A special case of the k -system is the 0-system S

(0) which is actually characterized by the
usual alternative renewal process {(U (n),D(n))} where {(U (n),D(n))} are iid copies of (U,D)
that are the lifetime and repair time of system S1.

At any time t, let binary random variable X(t) denotes the state of k -system S
(k), that

is X(t) = 1 means that a certain system Si or its an iid copy is in the “up” state, and
X(t) = 0 otherwise. The performance of S

(k) can be measured by two types of availability.
The instant availability of S

(k) at time t is A(t) ≡ P (X(t) = 1), and the interval availability
of S

(k) at time t is Aw(t) ≡ P (X(s) = 1, t ≤ s ≤ t + w) where w ≥ 0 is a given constant.
Clearly, A0(t) = A(t). Some recent works relevant to reliability engineering applications
of system availability can be found in Levitin et al. [8], Liu et al. [9], Naseri et al. [11],
Sabri-Laghaie and Noorossana [13], Zio [15], Du et al. [4], and references therein among
others.

Throughout this article, we further assume that for any k -system S
(k), (i) Ui has CDF

Fi and pdf fi and (ii) Di has CDF Gi but could be either a discrete or continuous random
variable. Denote the CDF of Ui + Di as Hi. It is easy to see that each Hi must have density
due to the property of convolution and the assumption that Fi has density. In the case of
k = 0, we simply use the notation F, G, and H since subscript is unnecessary.

The article is organized as follows. Section 2 will explore the relationship between
interval availability and instant availability of certain k -systems. Some bounds to the
0-system are studied in Section 3. Section 4 compares availabilities of two systems. Sev-
eral examples focusing on comparisons of system availabilities are given in Section 5. The
last section summarizes the results obtained in the article.

2. RELATIONSHIP BETWEEN INTERVAL AVAILABILITY AND INSTANT
AVAILABILITY

It is obvious that Aw(t) ≤ A(t) for any t ≥ 0. Moreover, the following result is true.

Theorem 2.1: It holds for any k-system S
(k) that limw→0+ Aw(t) = A(t), ∀t ≥ 0 and the

convergence is monotonically increasing.

Proof: For any 0 ≤ w1 < w2 clearly (X(s) = 1, t ≤ s ≤ t + w2) ⊆ (X(s) = 1, t ≤ s ≤ t +
w1) hence Aw2(t) ≤ Aw1(t). Therefore, A∗(t) ≡ limw→0+ Aw(t) must exist.

The interval availability of S
(k) was derived in Huang and Mi [5] as follows:

Aw(t) = cw(t) +
∫ t

0

Aw(t − s)d
(∗k+1

j=1Hj

)
(s) (2.1)

where Hj(t) ≡ (Fj ∗ Gj)(t) is the convolution of Fj and Gj ,

cw(t) =
k∑

i=0

[( ∗i
j=0 Hj

)
(t) − (( ∗i

j=0 Hj

) ∗ Fi+1(w + ·)) (t)
]
. (2.2)
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and (( ∗i
j=0 Hj

) ∗ Fi+1(w + ·)) (t) ≡
∫ t

0

Fi+1(w + t − s)d
( ∗i

j=0 Hj

)
(s). (2.3)

Particularly, the instant availability of the system is given as follows:

A(t) = c(t) +
∫ t

0

A(t − s)d
(∗k+1

j=1Hj

)
(s) (2.4)

where

c(t) =
k∑

i=0

[( ∗i
j=0 Hj

)
(t) − (( ∗i

j=0 Hj

) ∗ Fi+1

)
(t)
]

= F 1(t) +
k∑

i=1

[( ∗i
j=0 Hj

)
(t) − ((∗i

j=0Hj

) ∗ Fi+1

)
(t)
]
. (2.5)

From the above, we have

lim
w→0+

(( ∗i
j=0 Hj

) ∗ Fi+1(w + ·)) (t) = lim
w→0+

∫ t

0

Fi+1(w + t − s)d
( ∗i

j=0 Hj

)
(s)

=
∫ t

0

Fi+1(t − s)d
( ∗i

j=0 Hj

)
(s)

=
((∗i

j=0Hj

) ∗ Fi+1

)
(t)

and consequently,

A∗(t) = c(t) +
∫ t

0

A∗(t − s)d
(∗k+1

j=1Hj

)
(s). (2.6)

However, Eq. (2.4) has a unique solution, so it must be true that A∗(t) = A(t), ∀t ≥ 0. The
desired result thus follows. �

Theorem 2.2: For any integer k ≥ 0, let k-system S
(k) satisfies F ≡ F1 = F2 = . . . = Fk+1.

Then, the following are true for any t ≥ 0.

(a) If F ∈ NBU then Aw(t) ≤ A(t)F̄ (w);
(b) If F ∈ NWU then Aw(t) ≥ A(t)F̄ (w);
(c) If F has the exponential distribution with a failure rate λ, then Aw(t) = A(t)F̄ (w) =

A(t)e−λw.

Proof: Under the assumption F ≡ F1 = F2 = . . . = Fk+1, the functions cw(t) and c(t)
given in Eqs. (2.2) and (2.5) can be rewritten as follows:

cw(t) = [1 − F (t + w)] +
k∑

i=1

[( ∗i
j=1 Hj

)
(t) − (( ∗i

j=1 Hj

) ∗ F (w + ·)) (t)
]

= F̄ (t + w) +
k∑

i=1

∫ t

0

[1 − F (t + w − s)] d
( ∗i

j=1 Hj

)
(s)

= F̄ (t + w) +
k∑

i=1

∫ t

0

F̄ (t + w − s)d
( ∗i

j=1 Hj

)
(s) (2.7)

https://doi.org/10.1017/S026996482000008X Published online by Cambridge University Press

https://doi.org/10.1017/S026996482000008X


584 J. Mi

and

c(t) = F̄ (t) +
k∑

i=1

∫ t

0

F̄ (t − s)d
( ∗i

j=1 Hj

)
(s) (2.8)

To prove result (a), note that F ∈ NBU means F̄ (x + y) ≤ F̄ (x)F̄ (y), ∀x, y ≥ 0. The def-
initions of classes of lifetime distributions NBU (new better than used) and NWU (new
worse than used) can be found, for example, in Barlow and Proschan [1].

The NBU assumption as well as Eqs. (2.7) and (2.8) immediately imply that

cw(t) ≤ F̄ (t)F̄ (w) +
k∑

i=1

∫ t

0

F̄ (t − s)F̄ (w)d
( ∗i

j=1 Hj

)
(s)

=
[
F̄ (t) +

k∑
i=1

∫ t

0

F̄ (t − s)d
( ∗i

j=1 Hj

)
(s)
]
F̄ (w)

= c(t)F̄ (w). (2.9)

As shown in Eqs. (2.1 ) and (2.4), Aw(t) is the unique solution of the equation

Aw(t) = cw(t) +
∫ t

0

Aw(t − s)d
(∗k+1

i=1 Hi

)
(s) (2.10)

and A(t) is the unique solution of the following equation

A(t) = c(t) +
∫ t

0

A(t − s)d
(∗k+1

i=1 Hi

)
(s). (2.11)

Consider the equation

u(t) = c(t)F̄ (w) +
∫ t

0

u(t − s)d
(∗k+1

i=1 Hi

)
(s), ∀t ≥ 0. (2.12)

Clearly, A(t)F̄ (w) is the unique solution of Eq. (2.12) since according to Eq. (2.11) it holds
that

A(t)F̄ (w) = c(t)F̄ (w) +
∫ t

0

A(t − s)F̄ (w)d
(∗k+1

i=1 Hi

)
(s), ∀t ≥ 0. (2.13)

Let A∗
w(t) = A(t)F̄ (w) and Δ(t) ≡ Aw(t) − A∗

w(t). From Eqs. (2.10) and (2.13), we have

Δ(t) = δ(t) +
∫ t

0

Δ(t − s)d
(∗k+1

i=1 Hi

)
(s), ∀t ≥ 0, (2.14)

where δ(t) ≡ cw(t) − c(t)F̄ (w). Obviously, δ(t) ≤ 0,∀t ≥ 0 (see Eq. (2.9)). The solution for
the renewal Eq. (2.14) is given by (see, for example, [7])

Δ(t) = δ(t) +
∫ t

0

δ(t − s)dM(s)

where M(s) =
∑∞

n=1(∗k+1
i=1 Hi)(n) and (∗k+1

i=1 Hi)(n) is the nth fold convolution of ∗k+1
i=1 Hi.

Therefore, Δ(t) ≤ 0,∀t ≥ 0, and consequently Aw(t) ≤ A(t)F̄ (w).
If F ∈ NWU, then δ(t) ≥ 0, and consequently, Aw(t) ≥ A(t)F̄ (w), i.e., (b) is true.
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Finally, if F is exponential, then F is both NBU and NWU, i.e., δ(t) ≡ F̄ (t + w) −
F̄ (t)F̄ (w) = 0, ∀t, w ≥ 0. Therefore, Δ(t) = 0, ∀t ≥ 0. That is, Aw(t) = A(t)F̄ (w). �

Remark 2.3: In addition to the NBU and NWU classes, there are increasing (decreasing)
failure rate IFR (DFR) class, increasing (decreasing) failure rate average IFRA (DFRA)
class etc. Among these classes of lifetime distributions, the following inclusion relationship
holds

IFR ⊂ IFRA ⊂ NBU and DFR ⊂ DFRA ⊂ NWU.

Moreover, the IFRA property is preserved under formation of the coherent system, both
IFR and IFRA properties are preserved under convolution of distribution functions, and
both DFR and DFRA properties are preserved under mixture of distributions. Hence, the
NBU and NWU classes are huge and in fact most commonly applied lifetime distributions
belong to the two classes. The readers are referred to Barlow and Proschan [1] for the details.

Remark 2.4: A special case was mentioned in Mathew and Balakrishna [10] that when both
the lifetime U and repair time D are exponential, say U ∼ Exp(λ1) and D ∼ Exp(λ2) where
λ1 and λ2 are hazard rates, then

Aw(t) =
[

λ2

λ1 + λ2
+

λ1

λ1 + λ2
e−(λ1+λ2)t

]
e−λ1w =

[
λ2

λ1 + λ2
+

λ1

λ1 + λ2
e−(λ1+λ2)t

]

F̄ (w) = A(t)F̄ (w).

3. LOWER AND UPPER BOUNDS TO INTERVAL AVAILABILITY

For the rest of this article, we focus on the 0-system S
(0) and will just call it as system S

for simplicity. In this case, Eqs. (2.1) and (2.4) are reduced to

Aw(t) = F̄ (t + w) +
∫ t

0

Aw(t − s)dH(s) (3.1)

and

A(t) = F̄ (t) +
∫ t

0

A(t − s)dH(s) (3.2)

where H = F ∗ G.

Theorem 3.1: Suppose that F and H = F ∗ G have density functions f and h, and for a
given T>w, the following conditions are true

(a) f(t) increases in t ∈ [0, T − w];
(b) h(t) ≤ f(t),∀t ∈ [0, T − w].

Then, Aw(t) decreases in t ∈ [0, T − w].
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Proof: Taking derivative with respect to t on both the sides of Eq. (3.1), we have

aw(t) ≡ dAw(t)
dt

= −f(t + w) + Aw(0)h(t) +
∫ t

0

aw(t − s)h(s)ds

= [F̄ (w)h(t) − f(t + w)] +
∫ t

0

aw(t − s)h(s)ds.

From the assumptions, it is easy to see that for any t ∈ [0, T − w]

c(t) ≡ F̄ (w)h(t) − f(t + w) ≤ F̄ (w)h(t) − f(t) ≤ 0, ∀t ∈ [0, T − w].

From Karlin and Taylor [7], we have

aw(t) =
∫ t

0

c(t − s)dM(s) ≤ 0, ∀t ∈ [0, T − w],

where M(s) ≡∑∞
i=1 H(i)(s) and H(i)(·) is the ith fold convolution of H(·). This immediately

implies aw(t) ≤ 0, ∀t ∈ [0, T − w] and consequently Aw(t) decreases in t ∈ [0, T − w]. �

Remark 3.2: Let both f(·) and h(·) be continuous on (0,∞). Denote T0 ≡ inf{t > 0 : f(t) =
h(t)}. It was shown in Huang and Mi [6] that if T0 > 0, then f(t) > h(t), ∀t ∈ (0, T0).
Moreover, it is easy to see that h(0) = 0 is a sufficient condition for f(t) > h(t) to be true
in a neighborhood of t = 0.

As a matter of fact, due to the obvious order U ≤st U + D so if there is only one
crossing of the two density functions f(t) and h(t), then it must be true that f(t) > h(t)
before crossing.

Theorem 3.3: For any given T> 0, it holds that

min
0≤x≤T

F̄ (x + w)
H̄(x)

≤ Aw(t) ≤ max
0≤x≤T

F̄ (x + w)
H̄(x)

, ∀t ∈ [0, T ].

Proof: Let constant c be defined as follows:

c ≡ min
0≤x≤T

F̄ (x + w)
H̄(x)

.

From the fact that the following equation has a unique solution which is finite on any finite
interval

u(t) = cH̄(t) +
∫ t

0

u(t − s)dH(s) (3.3)

We see that the unique solution of Eq. (3.3) is u(t) = c, ∀t ≥ 0. Denote δ(t) ≡ Aw(t) − u(t).
It follows that

δ(t) = [F̄ (t + w) − cH̄(t)] +
∫ t

0

δ(t − s)dH(s).

This immediately implies δ(t) ≥ 0, ∀t ∈ [0, T ] since F̄ (t + w) − cH̄(t) ≥ 0, ∀t ∈ [0, T ]. That
is Aw(t) ≥ c, ∀t ∈ [0, T ].

The another claimed inequality can be shown in a similar way. �
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Corollary 3.4: For any given T> 0, it holds that

min
0≤x≤T

F̄ (x)
H̄(x)

≤ A(t) ≤ max
0≤x≤T

F̄ (x)
H̄(x)

, ∀t ∈ [0, T ].

The usual stochastic ordering ≤st and hazard rate ordering ≤hr will be used in this and
later sections. Their definitions and properties can be found, for instance, in Ross [12] and
Shaked and Shanthikumar [14].

Lemma 3.5: Suppose that non-negative random variable X has CDF and pdf and F ∈ IFR.
Then, for any non-negative random variable Y, it holds that X ≤hr X + Y , where ≤hr is
the hazard rate order.

Proof: Let Z =X +Y. We will denote the CDF, pdf, and the hazard rate of X as FX , fX ,
and rX , respectively. Similarly, we let FY and FZ be the CDFs of Y and Z, respectively.

In order to show that X ≤hr Z, it suffices to show that for any 0 ≤ t1 ≤ t2, it holds that

F̄Z(t2)F̄X(t1) − F̄Z(t1)F̄X(t2) ≥ 0. (3.4)

We have

F̄Z(t2)F̄X(t1) − F̄Z(t1)F̄X(t2)

=
∫ ∞

0

F̄X(t1)F̄X(t2 − u)dFY (u) −
∫ ∞

0

F̄X(t2)F̄X(t1 − u)dFY (u)

=
∫ ∞

0

F̄X(t1 − u)F̄X(t2 − u)
[

F̄X(t1)
F̄X(t1 − u)

− F̄X(t2)
F̄X(t2 − u)

]
dFY (u). (3.5)

Note that
F̄X(t1)

F̄X(t1 − u)
= exp

{
−
∫ t1

t1−u

rX(s)ds

}

and
F̄X(t2)

F̄X(t2 − u)
= exp

{
−
∫ t2

t2−u

rX(s)ds

}
.

Hence, in order to show Eq. (3.4), we need only to show

exp
{∫ t1

t1−u

rX(s)ds

}
≤ exp

{∫ t2

t2−u

rX(s)ds

}

or equivalently ∫ u

0

rX(w + t1 − u)dw ≤
∫ u

0

rX(w + t2 − u)dw. (3.6)

The inequality Eq. (3.6) is certainly true since F ∈ IFR. Therefore, Eq. (3.4) is true and
consequently the desired result follows. �

Theorem 3.6: Suppose that F ∈ IFR. Then, for any T ≥ 0, the following holds

F̄ (T + w)
H̄(T )

≤ Aw(t) ≤ F̄ (w), ∀t ∈ [0, T ].
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Proof: We have

d

dx

(
F̄ (x + w)

H̄(x)

)
=

−f(x + w)H̄(x) + F̄ (x + w)h(x)
H̄2(x)

=
F̄ (x + w)H̄(x)[rH(x) − rF (x + w)]

H̄2(x)
,

where rF (x) and rH(x) are the hazard rate functions of F (or U ) and H (or U +D),
respectively.

Clearly, rF (x) ≤ rF (x + w) since F ∈ IFR. By Lemma 1, it holds that rH(x) ≤ rF (x).
Thus, we obtain rH(x) ≤ rF (x + w). This implies that

d

dx

(
F̄ (x + w)

H̄(x)

)
≤ 0, ∀x ≥ 0.

That is, F̄ (x + w)/H̄(x) decreases in x ≥ 0. Therefore,

min
0≤x≤T

F̄ (x + w)
H̄(x)

=
F̄ (T + w)

H̄(T )
and max

0≤x≤T

F̄ (x + w)
H̄(x)

= F̄ (w).

Therefore, the result of the theorem follows. �

Remark 3.7: The upper bound to Aw(t) claimed in Theorem 5 is actually true for any
F ∈ NBU. To see this recall that by Theorem 4

Aw(t) ≤ max
0≤x≤T

F̄ (x + w)
H̄(x)

, ∀t ∈ [0, T ].

Note that F̄ (x + w) ≤ F̄ (x)F̄ (w) since F ∈ NBU. Furthermore, F̄ (x)/H̄(x) ≤ 1,∀x ≥ 0
since U ≤st U + D. Therefore,

Aw(t) ≤ max
0≤x≤T

F̄ (x + w)
H̄(x)

≤ max
0≤x≤T

F̄ (x)F̄ (w)
H̄(x)

≤ F̄ (w), ∀t ∈ [0, T ].

4. COMPARISONS OF INTERVAL AVAILABILITY

Let S and S
∗ be two repairable systems. Denote the lifetimes and repair times of S and S

∗

as U, D and U∗,D∗, respectively. Denote the interval availability of S and S
∗ as Aw(t) and

A∗
w(t). We will compare these interval availability functions under certain conditions in this

subsection.
The following two results can be shown in the similar way as Theorems 6 and 7 in

Huang and Mi [6] and so their proofs are omitted.

Theorem 4.1: Suppose U + D =st U∗ + D∗ and U ≤st U∗, here ≤st is the usual stochastic
ordering. Then Aw(t) ≤ A∗

w(t), ∀t ≥ 0.

Theorem 4.2: Let T ≥ w be such that F̄ (t) ≤ F̄ ∗(t) and h(t) ≤ h∗(t) for any t ∈ [0, T ),
where h(t) and h∗(t) are the density functions of convolutions H = F ∗ G and H = F ∗ ∗ G∗.
Then Aw(t) ≤ A∗

w(t),∀t ∈ [0, T − w).
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Definition 4.3: Let Aw(t) be the interval availability of repairable system S. The function
defined by

Kw(x) ≡
∫ x

0

Aw(t)dt, x ≥ 0

is called the cumulative interval availability of S.

Theorem 4.4: Suppose that F ≤st F ∗ and H ≥st H∗. Then, the cumulative interval avail-
ability of S is less than or equal to that of S

∗ on any interval (0, x), that is Kw(x) ≤
K∗

w(x),∀x ∈ [0,∞).

Proof: From Eq. (3.1), we have

Kw(x) =
∫ x

0

F̄ (t + w)dt +
∫ x

0

(∫ t

0

Aw(t − s)dH(s)
)

dt

=
∫ x

0

F̄ (t + w)dt +
∫ x

0

(∫ x

s

Aw(t − s)dt

)
dH(s)

=
∫ x

0

F̄ (t + w)dt +
∫ x

0

(∫ x−s

0

Aw(u)du

)
dH(s)

=
∫ x

0

F̄ (t + w)dt +
∫ x

0

Kw(x − s)dH(s)

=
∫ x

0

F̄ (t + w)dt + (H ∗ Kw)(x). (4.1)

Let c(x) =
∫ x

0
F̄ (t + w)dt, Again, from Karlin and Taylor [7], we have

Kw(x) = c(x) +
(
M ∗ c

)
(x) = c(x) +

∞∑
i=1

(
H(i) ∗ c

)
(x) (4.2)

where H(i) is the ith convolution of H. Similarly, we can obtain

K∗
w(x) = c∗(x) +

(
M∗ ∗ c∗

)
(x) = c∗(x) +

∞∑
i=1

(
H∗(i) ∗ c∗

)
(x), (4.3)

where c∗(x) =
∫ x

0
F̄ ∗(t + w)dt.

Note that

(H(i) ∗ c
)
(x) =

∫ x

0

c(x − s)dH(i)(s) =
∫ ∞

0

c(x − s)I(0,x)(s)dH(i)(s)

where IB(t) is the indicator function of set B ⊂ (0,∞). Clearly, H(i) ≥st H∗(i) for any i ≥ 1
since H ≥st H∗. Moreover, c(x − s)I(0,x)(s) is a decreasing function of s since c(t) is an
increasing function of t ≥ 0. Hence,

(H(i) ∗ c
)
(x) ≤ (H∗(i) ∗ c

)
(x), ∀x ≥ 0, i ≥ 1.

Therefore, from Eqs. (4.2) and (4.3), we see that

Kw(x) ≤ K∗
w(x), ∀x ≥ 0

since c(x) =
∫ x

0
F̄ (t + w)dt ≤ ∫ x

0
F̄ ∗(t + w)dt = c∗(x). �
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5. EXAMPLES

In the following examples, we assume that the system lifetime U ∼ Gamma(α, λ) has density
function

f(t;α, λ) =
λα

Γ(α)
tα−1e−λt, t ≥ 0

with various shape parameter α and scale parameter λ. Obviously, the Gamma(1, λ)
distribution is exactly the exponential distribution Exp(λ) with density function

f(t;λ) = λe−λt, t ≥ 0.

Note that even the facts revealed by the examples in this section are given in terms of
instant availability they are also valid for interval availability with sufficient small w > 0
due to Theorem 1.

Example 5.1: Let system S
∗ have lifetime U∗ ∼ Exp(λ∗

1) and repair time D∗ ∼ Exp(λ∗
2),

and system S have lifetime U ∼ Exp(λ1) and repair time D ∼ Exp(λ2). We claim that if
λ∗

1 < λ1 and λ∗
2 > λ2, then it holds that A∗(t) > A(t), ∀t > 0.

We have

Aw(t) =
λ2

λ1 + λ2
+

λ1

λ1 + λ2
e−(λ1+λ2)t.

So, if we define δ(t) ≡ A∗(t) − A(t), then δ(0) = 0. Note that λ∗
1/λ∗

2 < λ1/λ2, hence

A∗(∞) =
λ∗

2

λ∗
1 + λ∗

2

>
λ2

λ1 + λ2
= A(∞).

The derivative of δ(t) with respect to time t is

δ′(t) = −λ∗
1e

−(λ∗
1+λ∗

2)t + λ1e
−(λ1+λ2)t.

Hence, δ′(t) > 0 if and only if

λ1e
−(λ1+λ2)t > λ∗

1e
−(λ∗

1+λ∗
2)t

or

e[(λ1+λ2)−(λ∗
1+λ∗

2)]t <
λ1

λ∗
1

.

Case 1: λ1 + λ2 ≤ λ∗
1 + λ∗

2

In this case, obviously δ′(t) > 0, ∀t ≥ 0 since λ1/λ∗
1 > 1. It certainly implies that δ(t) >

0 or A∗(t) > A(t),∀t > 0.
Case 2: λ1 + λ2 > λ∗

1 + λ∗
2

Under this condition, we see that δ′(t) > 0 if and only if

t <
ln(λ1/λ∗

1)
(λ1 + λ2) − (λ∗

1 + λ∗
2)

≡ t0.

Obviously, t0 > 0. Hence, we have

δ′(t)

⎧⎨
⎩

> 0 if 0 < t < t0
= 0 if t = t0
< 0 if t0 < t < ∞

Note that δ(∞) = A∗(∞) − A(∞) > 0, so it must be true that δ(t) > 0 or A∗(t) >
A(t), ∀t > 0.
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In Example 5.1, when both lifetime and repair time are exponential, we see that U∗ ≥st

U and D∗ ≤st D. Intuitively, one believes that the system S
∗ is “stronger” than system

S in certain sense and so it is expected that A∗(t) > A(t),∀t > 0 and this is actually true
theoretically. However, if the conditions U∗ ≥st U and D∗ ≤st D do not hold simultaneously,
then the result in Example 5.1 will no longer be true as shown in the examples below.

Example 5.2: Let system S
∗ has lifetime U∗ ∼ Exp(1.4) and repair time D∗ ∼ Exp(1.6),

and system S has lifetime U ∼ Exp(1) and repair time D ∼ Exp(1). From these, we see
that U∗ ≤st U and D∗ ≤st D. It means that the lifetime of system S

∗ is shorter than that of
system S, and the repair time of S

∗ is also shorter than that of S in the sense of the usual
stochastic ordering. We will show that A∗(t) is not always greater or smaller than A(t) in
this case. Clearly,

A∗(t) =
1.6
3

+
1.4
3

e−3t

and

A(t) =
1
2

+
1
2
e−2t.

Define δ(t) ≡ A∗(t) − A(t). We have δ(0) = 0 and

δ′(t) = −1.4e−3t + e−2t.

It is easy to see that δ′(t) ≤ 0 if and only if

e−2t ≤ 1.4e−3t, or et ≤ 1.4, or t ≤ ln 1.4 ≈ 0.3364.

It can also be verified that δ(t) = 0 has a unique solution t0 ≈ 1.1863 in (0,∞). Therefore,
δ(0) = δ(t0) = 0,

δ(t) < 0 ∀t ∈ (0, t0) and δ(t) > 0 ∀t ∈ (t0,∞).

The graph of the function δ(t) is shown in Figure 1. Hence, A∗(0) = A(0), A∗(t0) = A(t0) ≈
0.5466,

A∗(t) < A(t) ∀t ∈ (0, t0) and A∗(t) > A(t) ∀t ∈ (t0,∞).

By the way A∗(ln 1.4) = 0.7034, A(ln 1.4) = 0.7551, and δ(ln 1.4) = −0.05170 < 0.

Example 5.3: U ∼ Gamma(2, λ) and D ∼ Exp(λ).

A(t;λ) =
2
3

+

[√
3

3
sin

(√
3

2
λt

)
+

1
3

cos

(√
3

2
λt

)]
e−

3
2 λt.

U∗ ∼ Gamma(3, λ) and D∗ ∼ Exp(λ).

A∗(t;λ) =
3
4

+
1
4
e−2λt.

In this example, clearly U∗ ≥st U , D∗ =st D, and A∗(∞;λ) = 3
4 > 2

3 = A(∞;λ). However,
these do not guarantee that A∗(t;λ) is always higher than A(t;λ) for all t as shown below.
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Figure 1. Example 5.2.

Figure 2. Example 5.3.

Suppose λ = 2. Define

Δ(t) ≡ A∗(t; 2) − A(t; 2).

Based on numerical computation, we can obtain the graph of Δ(t) displayed in Figure 2.
Let t0 = 0.6177, then the graph shows that

A∗(t; 2)

⎧⎨
⎩

< A(t; 2) if 0 < t < t0
= A(t; 2) if t = t0
> A(t; 2) if t0 < t < ∞
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Example 5.4: Let

U ∼ Gamma(3, λ) and D ∼ Exp(λ).

It can be obtained that

A(t;λ) =
3
4

+
1
4
e−2λt.

Obviously, for any fixed t> 0, the availability A(t;λ) is a strictly decreasing function of
λ > 0.

Now let

U∗ ∼ Gamma(3, λ∗) and D∗ ∼ Exp(λ∗),

t= 1, λ = 1, and λ∗ = 2. Then, we have

A(1; 1) =
3
4

+
1
4
e−2 >

3
4

+
1
4
e−4 = A∗(1; 2).

This example indicates that even the repair time D of S is longer than that of S
∗, the

availability of S can still be higher than that of S
∗ for some time t if the lifetime U of S is

longer than that of S
∗.

6. SUMMARY

The interval availability of k -system S
(k) and particularly system S

(0) is studied in this
article.

It is first established that the instant availability A(t) of any k -system is the limit of its
interval availability Aw(t) when w → 0+. This result allows one to derive various properties
of Aw(t) based on properties of A(t) and so provides a lot of convenience of the studies
in this article. Furthermore, the relationship between Aw(t) and A(t) is also obtained in
the case of identical lifetime distributions of all systems Si, 1 ≤ k + 1. It is still an open
question that whether the relationship in Theorem 2 holds when the Fi’s are not all the
same.

Both the lower and upper bounds of interval availability Aw(t) of system S
(0) are derived

in Section 3. It may provide certain useful or interesting information for practitioners.
However, it is unclear that if similar bounds can be derived for more general k -system S

(k)

with k ≥ 1.
Some comparison results of instant and interval availabilities are obtained in terms of

the usual stochastic order for different systems. Several examples are also presented for
illustrating the theorems.
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