Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-11T01:46:56.377Z Has data issue: false hasContentIssue false

AN IMPROVED TEST OF THE SQUARED SHARPE RATIO

Published online by Cambridge University Press:  13 January 2020

Wan-Yi Chiu*
Affiliation:
Department of Finance, National United University, Taiwan, Republic of China E-mail: wychiu@nuu.edu.tw
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The sample squared Sharpe ratio (SSR) is a critical statistic of the risk-return tradeoff. We show that sensitive upper-tail probabilities arise when the sample SSR is employed to test the mean-variance efficiency under different test statistics. Assuming the error's normality with a nonzero mean, we integrate the sample SSR and the arbitrage regression into a noncentral chi-square (χ2) test. We find that the distribution of the sample SSR based on the regression error is to the left of the F-distribution when assuming the returns' normality. Compared to two benchmarks that use the noncentral F-distribution and the central F-statistic, the χ2-statistic is more effective, competitive, significant, and locally robust when used to reject the upper-tailed mean-variance efficiency test using the usual parameters (sample size, portfolio size, and SSR).

Type
Research Article
Copyright
© Cambridge University Press 2020

References

1.Abhyankar, A., Basu, D., & Stremme, A. (2012). The optimal use of return predictability: an empirical study. Journal of Financial and Quantitative 47(5): 9731001.CrossRefGoogle Scholar
2.Affleck-Graves, J. & McDonald, B. (1989). Nonnormalities and tests of asset pricing theories. Journal of Finance 44(4): 889908.CrossRefGoogle Scholar
3.Britten-Jones, M. (1999). The sampling error in estimating of mean-variance efficient portfolio weights. Journal of Finance 54(2): 655671.CrossRefGoogle Scholar
4.DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?. Review of Financial Studies 22(5): 19151953.CrossRefGoogle Scholar
5.Elton, E.J. & Gruber, M.J. (1977). Risk reduction and portfolio size: an analytic solution. Journal of Business 50(4): 415437.CrossRefGoogle Scholar
6.Evans, J.L. & Archer, S.H. (1968). Diversification and the reduction of dispersion: an empirical analysis. Journal of Finance 23(5): 761767.Google Scholar
7.Frazzini, A., Kabiller, D., & Pedersen, L.H. (2018). Buffett's alpha. Financial Analysts Journal 74(4): 3555.CrossRefGoogle Scholar
8.Green, R.C. & Hollifield, B. (1992). When will mean-variance efficient portfolios be well diversified?. Journal of Finance 47(5): 17851809.CrossRefGoogle Scholar
9.Gibbons, M.R., Ross, S.A., & Shanken, J. (1989). A test of the efficiency of a given portfolio. Econometrica 57(5): 11211152.CrossRefGoogle Scholar
10.Jobson, J.D. & Korkie, B. (1980). Estimation for Markowitz efficient portfolios. Journal of the American Statistical Association 75(371): 544554.CrossRefGoogle Scholar
11.Jobson, J.D. & Korkie, B. (1983). Statistical inference in two-parameter portfolio theory with multiple regression software. Journal of Financial and Quantitative Analysis 18(2): 189197.CrossRefGoogle Scholar
12.Kan, R. & Smith, D.R. (2007). The distribution of the sample minimum-variance frontier. Management Science 54(7): 13641380.CrossRefGoogle Scholar
13.Kan, R. & Zhou, G. (2007). Optimal portfolio choice with parameter uncertainty. Journal of Financial and Quantitative 42(3): 621656.CrossRefGoogle Scholar
14.Kourtis, A. (2016). The Sharpe ratio of estimated efficient portfolios. Finance Research Letters 17: 7278.CrossRefGoogle Scholar
15.Kwon, Y.K. (1985). Derivation of the capital asset pricing model without normality or quadratic preference: a note. Journal of Finance 40(5): 15051509.CrossRefGoogle Scholar
16.MacKinlay, A.C. & Richardson, M. (1991). Using generalized method of moments to test mean-variance efficiency. Journal of Finance 46(2): 511527.CrossRefGoogle Scholar
17.Marie-Claude, D., Jean-Marie, B. & Lynda, K. (2007). Multivariate tests of mean-variance efficiency with possibly non-Gaussian errors: an exact simulation-based approach. Journal of Business and Economic Statistics 25: 398410.Google Scholar
18.Okhrin, Y. & Schmid, W. (2006). Distributional properties of portfolio weights. Journal of Econometrics 134(1): 235256.CrossRefGoogle Scholar
19.Peñaranda, F. (2016). Understanding portfolio efficiency with conditioning information. Journal of Financial and Quantitative 51(3): 9851011.CrossRefGoogle Scholar
20.Richardson, M. (1993). A test for multivariate normality in stock returns. Journal of Business 66(2): 295321.CrossRefGoogle Scholar
21.Seber, G.A.F. (1977). Linear regression analysis. New York: John Wiley & Sons.Google Scholar
22.Sharpe, W.F. (1966). Mutual fund performance. Journal of Business 39: 119138.Google Scholar
23.Statman, M. (1987). How many stocks make a diversified portfolio?. Journal of Financial and Quantitative Analysis 22(3): 353363.CrossRefGoogle Scholar
24.Tang, G.Y.N. (2004). How efficient is naive portfolio diversification? An educational note. Omega 32: 155160.CrossRefGoogle Scholar
25.Zhou, G. (1993). Asset-pricing tests under alternative distributions. Journal of Finance 48(5): 19271942.CrossRefGoogle Scholar