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The sample squared Sharpe ratio (SSR) is a critical statistic of the risk-return tradeoff.
We show that sensitive upper-tail probabilities arise when the sample SSR is employed
to test the mean-variance efficiency under different test statistics. Assuming the error’s
normality with a nonzero mean, we integrate the sample SSR and the arbitrage regression
into a noncentral chi-square (χ2) test. We find that the distribution of the sample SSR
based on the regression error is to the left of the F-distribution when assuming the returns’
normality. Compared to two benchmarks that use the noncentral F-distribution and the
central F-statistic, the χ2-statistic is more effective, competitive, significant, and locally
robust when used to reject the upper-tailed mean-variance efficiency test using the usual
parameters (sample size, portfolio size, and SSR).

Keywords: arbitrage regression, chi-square risk model, mean-variance efficiency test, squared
sharpe ratio, upper-tail probability

1. INTRODUCTION

The squared Sharpe ratio (SSR, denoted by θ2) is a critical component in mean-variance
efficiency testing (MVET) that identifies whether the portfolio using a subset of assets is
statistically close to the optimal one based on a complete set of assets. The sample SSR
(denoted as θ̂2) is not only one of the efficient constants used to the asset pricing but also a
significant statistic in computing the power of testing a given portfolio. Explicitly speaking,
the test statistics of MVET can usually be expressed as a function of θ̂2 and θ2 (e.g., the
asymptotical F-statistic of Jobson and Korkie [11], the noncentral parameter of Gibbons
et al. [9], the central F-statistic of Britten-Jones [3], the noncentral F-distribution of the
mean-variance optimization discussed by Kan and Zhou [13]).

To apply the sample SSR to access the MVET, we need to identify the sampling dis-
tribution of θ̂2 based on certain assumptions. Note that the vast literature available on
the sampling distribution of the sample SSR describes all the key assumptions such as
the returns’ normality, independence, and constant volatility. However, widespread empiri-
cal evidence has been challenging the return’s normality. For instance, Affleck-Graves and
McDonald [2] indicate that the sample nonnormalities are severe, and the multivariate
analysis is reasonably robust for typical levels of nonnormality. Besides, the tests conducted
under weak distributional assumptions have a relatively more robust effect than the studies
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depending on the normality assumption [16]. Zhou [25] computes the p-value of the statistic
based on the other distributions. Richardson [20] presents evidence that the return’s nor-
mality does not correspond to the marginal and joint distributions of returns. Moreover,
Marie-Claude et al. [17] show that the MVETs reject the Gaussian error assumption.

The primary concern of the MVET is to check whether a particular portfolio, ωτ , is
statistically close to the mean-variance portfolio. In addition, investors are usually interested
in their portfolio’s gains ‘to the right’ of the specific benchmark, but they do not concern
about profits to the left of the benchmark. To perform the MVET relative to this particular
portfolio, we set up the upper-tailed test of the SSR as follows:

H0 : θ2 = θ2
τ against H1 : θ2 > θ2

τ . (1)

A significantly positive difference between θ̂2 and θ2
τ will yield a critical opportunity cost

from investing in this particular portfolio. All other things being equal (the sample size
and the portfolio size), we favor the rejection of the MVET when the difference between θ̂2

and θ2
τ increases more than a suitable amount. If not, the sample SSR is not significantly

different from the defaulted SSR. It seems reasonable to establish a portfolio based on
a smaller portfolio size because its management cost may be lower than the augmented
portfolio. Because it is difficult to compare the performance of various statistics expressed
in the different functions, the calculation of the upper-tail probability (UTP) curve provides
an alternative to shape the sample SSR under different statistics. In this case, we compare
the above significance test using various statistics.

Even though the return’s normality problem is addressed in the literature, abandoning
such an assumption does not eliminate model risk. The commonly predicated assump-
tion about the assets’ returns is that returns are independent and identically normally
distributed; however, this premise may be relaxed under certain conditions (e.g., Kwon
[15]). This typical assumption is broadly employed in portfolio analysis either because the-
oretical derivations are allowed to be made (with apparent advantages to the statistical
inferences of the model itself) or because the presumption can be overcome to not cause
substantial differences in the results (with the asymptotical distribution based on a larger
sample). Several recent studies also employ the returns’ normality assumption to estimate
the SSR. For instance, Kourtis [14] provides two approximated expectations of the SSR using
the first-order and the second-order Taylor series expansions under the returns’ normality.
Abhyankar et al. [1] assess the investor’s economic gains through the difference between
the conditional SSR and the unconditional SSR. Peñaranda [19] characterizes the certainty-
equivalent returns between the unconditional SSR of excess returns and the maximum
conditional SSR.

1.1. Benchmarks

The returns’ normality assumption immediately delivers two benchmarks for the statistical
inferences of the population SSR. The most obvious advantage is that the sample means
and covariance matrix have a multivariate normal distribution and Wishart distribution,
respectively, under the returns’ normality. As a result, Kan and Zhou [13] show that the
sample SSR has a noncentral F-distribution. We consider the noncentral F-distribution as
the first benchmark for evaluating the sample SSR and computing the expectation of the
sample SSR. For other references, see Jobson and Korkie [10], Kan and Smith [12] that
obtain the same expectation of the sample SSR with the adjustment of the parameters.

Another approach to computing the sample SSR’s expectation is indirectly to impose
the normal assumption on the regression error in which assuming the returns’ normality
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implies the normalized errors in linear regression. For example, Jobson and Korkie [11]
regress the constant return on the assets’ returns without intercept and present an asymp-
totical F-statistic for the MVET. Hereafter, we refer to the regression as the arbitrage
regression. Also, Gibbons et al. [9] obtain the F-test by performing a multivariate regression
of assets’ returns conditional on the excess returns for a particular portfolio. Britten-Jones
[3] expresses the sample SSR of the asset space and the restricted SSR relative to a subset of
assets as a function of the central F-statistic when the arbitrage regression error is normally
distributed with a zero mean. Furthermore, Britten-Jones shows that the GRS F-test for
the MVET of a given portfolio weight is equivalent to perform the F-statistic using the
arbitrage regression. Therefore, we consider the GRS F-test and Britten-Jones F-statistic
as the second benchmark for evaluating the sample SSR.

1.2. The chi-square statistic for evaluating the SSR

One particular point between the normality and the F-statistic (either exact or asymptoti-
cal) should be highlighted.

Britten-Jones assumes multivariate normal returns on the arbitrage regression, which
implies the error’s normality and derives the exact F-statistic. Note that the arbitrage
regression is not only without a constant but also has a nonstochastic dependent variable.
Note that if variables are measured in unstandardized scores, then the intercept becomes
very important. However, it is also worth noting that the arbitrage regression error is not
always zero. More importantly, the nonzero mean of the regression error may violate the
assumption of the F-statistic in the statistical sense.

To mitigate the impact of the zero regression mean in constructing the test statistics,
we relax the assumptions used by Jobson and Korkie [11] and Britten-Jones [3]. Com-
pared to those stronger assumptions, such as returns’ normality, independence, and constant
volatility, this paper assumes only that the regression errors are independent and normally
distributed with a nonzero mean. Such weaker normality on the error term is typical of
principles employed in regression analysis that can be applied to a broader class of risk
regressions. We have several findings on the statistical inference of the SSR based on the
modified arbitrage regression risk model:

• Using the weaker error’s normality of the regression error with a nonzero mean,
we integrate the sample SSR and the arbitrage regression into a noncentral chi-
square statistic (χ2-statistic) for testing the performance of a particular portfolio.
As a result, we extend the noncentral χ2-statistic to the MVET with probabilistic
properties comparable to that of popular benchmarks based on the stronger return’s
normality.

• We analytically derive the sample SSR as a functional form of the noncentral
χ2-statistic that allows us to calculate an alternative expectation of the sample SSR.
Consequently, we prove that the expectation of the sample SSR under the regres-
sion error with a nonzero mean is less than the expectations assuming the returns’
normality for the central F-statistic and the noncentral F-distribution.

• We compare the UTP of the sample SSR of the noncentral χ2-statistic with the
two popular benchmarks mentioned above. The simulated evidence indicates that
the UTP of the sample SSR under the χ2-statistic is to the left of the UTP when
assuming the returns’ normality. In this case, investors are more conservative to
reject the MVET using the central F-statistic and the noncentral F-distribution.
As a result, modifying the error’s normality assumption leads to the noncentral
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χ2-statistic being more practical to reject the MVET, unlike the central F-statistic
and the noncentral F-distribution.

• Note that the sample SSR is sensitive to portfolio size and sample size under various
normality assumptions. In other words, the power of the MVET (either compute
analytically or numerically) is affected by sample size and portfolio size. The illus-
trated figures reveal that the shifted UTP of the sample SSR based on the noncentral
χ2-statistic is locally robust relative to sample size and portfolio size. As a result,
the F-test may be conservative when rejecting a false null hypothesis.

• Based on the practical evidence, we suggest a parameters domain where the sample
size is between 60 and 600, the portfolio size is between 5 and 100, and the SSR is
from 0.01 to 1.00. We show that both the noncentral χ2-statistic and the Britten-
Jones F-statistic are superior to the noncentral F-statistic within our parameters
domain. Moreover, the noncentral χ2-statistic generally outperforms the Britten-
Jones F-statistic except for in tests that probably combine a smaller portfolio size
and a larger SSR.

Overall, the performance of all the sample SSR probability measures is validated using
both first-order moment (the expectation) and the UTP. Our study contributes to the
literature by investigating the impact of different probability measures on the sample SSR
and providing an effective and a locally robust χ2-statistic for the upper-tailed MVET based
on the weaker regression error’s normality and the parameters domain. The most obvious
advantage is that identifying the error’s normality can be easier than testing the returns’
multivariate normality.

The paper proceeds as follows. In Section 2, we review the properties of the sample
SSR and the arbitrage regression. In Section 3, we propose a noncentral χ2-statistic to test
the MVET relative to the particular portfolio. In addition, we validate the noncentral χ2-
statistic against the benchmarks (the noncentral F-distribution, and the central F-statistic)
based on the statistical inferences of the sample SSR under different distributions. Con-
clusions follow in Section 4. Finally, the expectations of the sample SSR under various
probability measures are derived in the Appendix. The distributions of the sample SSR
using the parameters domain are also presented in the Appendix.

2. THE SQUARED SHARPE RATIO

We begin this study by reviewing the SSR and two mean-variance optimizations. Assume
that the investment universe has N risky assets with N × 1 excess returns vector Rt at time
t. The excess return vector has the expectation μ and a positive definite covariance matrix
Σ. Given the N × 1 portfolio weight vector ω, the excess return on the portfolio weight
vector is Rpt = ω′Rt at time t. The portfolio has its expected excess return and variance as
ω′μ and ω′Σω, respectively. The investor is assumed to select ω to maximize mean-variance
utility

U(ω) = ω′μ − γ

2
ω′Σω, (2)

where γ is the coefficient of relative risk aversion. The optimal portfolio choice ω∗ = Σ−1μ/γ
is proportional to the ex ante tangency portfolio. The corresponding utility is expressed as
a function of the SSR and the coefficient of relative risk aversion

U(ω∗) =
θ2

2γ
, (3)
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where θ =
√

μ′Σ−1μ is the Sharpe ratio of the ex ante tangency portfolio of the risky assets
and θ2/2γ is the corresponding certainty-equivalent return. The certainty-equivalent return
shows if an investor is willing to accept the portfolio ω∗. The SSR is a standard parameter
of the mean-variance optimization that Kan and Zhou [13], and DeMiguel et al. [4], among
others, use to evaluate the performance of the portfolio choice. In addition, Abhyankar
et al. [1] assess the investor’s economic gains through the difference between the condi-
tional SSR and the unconditional SSR. Peñaranda [19] characterizes the certainty-equivalent
returns in terms of the unconditional SSR of excess returns and the maximum conditional
SSR.

2.1. Traditional estimation

Suppose we have T observations of N × 1 excess returns vector Rt, for t = 1, 2, . . . , T . The
commonly used estimates of μ and Σ are given by

μ̂ =
1
T

T∑
t=1

Rt and Σ̂ =
1
T

T∑
t=1

(Rt − μ̂)(Rt − μ̂)′. (4)

Under the normality assumption of returns, μ̂ and Σ̂ are mutually independent and
they have the N -dimensional normal distribution N(μ,Σ/T ) and the Wishart distribution
W (T − 1,Σ/T ) with T − 1 degrees of freedom and covariance matrix Σ/T , respectively.

Incorporating the sample counterparts μ̂ and Σ̂ into the SSR, the sample SSR is defined
as θ̂2 = μ̂′Σ̂−1μ̂. There are a few ways to obtain the expected value and the variance of
θ̂2. Kan and Zhou [13, p. 637] show that the sample SSR has the following noncentral
F-distribution with the noncentrality Tθ2:

θ̂2 ∼ N

T − N
FN,T−N,Tθ2 . (5)

In this case, the first two moments are denoted as ENF(θ̂2) and VNF(θ̂2), and the derivations
are straightforward.

Lemma 1: The expectation and the variance of θ̂2 are

ENF(θ̂2) =
N + Tθ2

T − N − 2
, VNF(θ̂2) =

2T 2θ4 + 2(T − 2)(N + 2Tθ2)
(T − N − 2)2(T − N − 4)

. (6)

There are other ways to compute the statistical moments of the sample SSR. With the
appropriate scaling adjustment of the factors, one possibility is how Kan and Smith [12]
rewrite the results in Jobson and Korkie [10] as Eq. (6). Other possibilities for deriving
the same results by conditioning the joint distribution of the efficiency set constants may
refer to Okhrin and Schmid [18]. All the derivations assume the normality in the assets’
returns.

2.2. Inferences based on the arbitrage regression

Alternatively, Jobson and Korkie [11] regress the constant return on the assets’ returns
without an intercept. In the empirical studies, the arbitrage regression takes the form:

� = Rω + ε, (7)
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where � denotes the nonstochastic arbitrage returns (dependent variable) with T × 1 vector
of one; the T × N matrix R only contains the excess returns of the N risky assets without
the intercept terms; the T × 1 vector ε is the regression error.

Specifically, Britten-Jones [3] provides regression analyses to infer the mean-variance
spanning based on linear restriction on the portfolio weights. Instead of citing the well-
known results, we explicitly outline some regression procedures. Thus, our discussion may
be a self-contained exposition of the properties of the sample SSR.

Jobson and Korkie derive the OLS estimator of the regression coefficient as:

ω̂ = (R′R)−1R′� =
Σ̂−1μ̂

1 + θ̂2
. (8)

Hereafter, we refer to the regression coefficients as the mean-variance efficient portfolio
(MVEP). Note that the regression coefficients may not sum to one. The scaling MVEP
will result in the sample’s tangency portfolio. It is evident that both the MVEP and the
sample’s tangency portfolio have the same SSR. Jobson and Korkie and Britten-Jones show
that the unrestricted sum of the squared errors from regression (7) is:

SSEu = (� − Rω̂)′(� − Rω̂) =
T

1 + θ̂2
. (9)

Expression (9) shows that the mean squared error (MSE), σ̂2 = SSEu/T , is inversely pro-
portional to the sample SSR. Geometrically, a steeper tangent line for the efficient frontier
produces a larger Sharpe ratio, which implies a significantly smaller MSE. Thus, the MVEP
has a good fit with the arbitrage regression and produces the largest SSR.

Britten-Jones also suggests that the restricted sum of the squared errors (SSEr) for
testing a particular portfolio ωτ can be obtained using the following univariate regression
with an appropriate parameter adjustment:

� = (Rωτ )β + ε. (10)

Thus, the estimators of the coefficients β and SSEr can be further expressed as:

β̂ =
(Rωτ )′�

(Rωτ )′(Rωτ )
,

SSEr =
(
� − (Rωτ )β̂

)′ (
� − (Rωτ )β̂

)
=

T

1 + θ2
τ

,

(11)

where θ2
τ is the SSR relative to the particular portfolio ωτ . In addition, Britten-Jones extends

the GRS F-statistic to an OLS F-statistic for use in testing a particular portfolio where the
null hypotheses are expressed in terms of the linear restrictions on the efficient portfolio
weights. In this study, we consider the portfolio ωτ examined in the MVET (1). When
normal multivariate returns are obtained, the regression’s error is normally distributed.
Britten-Jones integrates the features of the return’s normality and the arbitrage regression
into the following central F-statistic:

Lemma 2: The exact central F-statistic for testing a particular portfolio ωτ of Eq. (1) is
expressed as:

F =
(SSEr − SSEu)/N

SSEu/(T − N)
=

T − N

N
× θ̂2 − θ2

τ

1 + θ2
τ

∼ FN,T−N . (12)

Consequently, the large values of the F-statistic (values of SSEr larger than SSEu by a
suitable amount) favor the rejection of the mean-variance efficiency between the MVEP and
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the portfolio ωτ . With an appropriate scaling adjustment of the factors, Eq. (12) is similar
to the asymptotical F-statistic of Jobson and Korkie [11, Eq. (32) on p. 195].

3. MAIN RESULTS

Using the weaker error’s normality of the regression error with a nonzero mean, we integrate
the sample SSR and the arbitrage regression into a noncentral χ2-statistic for evaluating
the performance of a particular portfolio. To validate the noncentral χ2-statistic, we discuss
our findings for the moments, the significance tests of the SSR, and the robustness of the
statistics with the two popular benchmarks mentioned above.

3.1. Moment of the sample SSR under the χ2 distributions

The arbitrage regression can be written as:

1 = ω′Rt + εt. (13)

The MVEP of minimizing the expected MSE is ω = Σ−1μ/(1 + θ2). Moreover, the expected
MSE relative to the MVEP is:

E

[
1 − μ′Σ−1Rt

1 + θ2

]2

=
1

1 + θ2
. (14)

Conditional on the returns’ normality, the commonly used manner of characterizing infer-
ences in a linear regression is to assume that the regression error is normally distributed
with a zero mean and a finite variance, εt ∼ N(0, σ2). In the present situation, Seber [21,
p. 97] indicates that the ratio of SSEu to the error’s variance σ2 takes the form:

SSEu

σ2
∼ χ2

T−N . (15)

One particular point between the normality and the central F-statistic should be highlighted.
Britten-Jones notes that “the lack of an intercept in the arbitrage regression may result in
errors need not sum to zero,” (page 659). In fact, the error’s expectation is definitely not
zero since:

E(εt) = E

[
1 − μ′Σ−1Rt

1 + θ2

]
=

1
1 + θ2

. (16)

In addition, the error’s variance in (13) is given by:

σ2 = E

[
1 − μ′Σ−1Rt

1 + θ2
− 1

1 + θ2

]2

=
θ2

(1 + θ2)2
. (17)

Thus, it is more appropriate for us to assume that the regression error is normally distributed
as εt ∼ N(1/(1 + θ2), σ2). We modify the χ2-distribution as follows.
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Proposition 1: Conditional on the normal returns and on the i.i.d. errors, the ratio of
SSEu to the error’s variance σ2 is of the form:

SSEu

σ2
=

ε′ε
σ2

=
T (1 + θ2)2

θ2(1 + θ̂2)
∼ χ2

T−N,δ, (18)

where χ2
T−N,δ is the noncentral χ2-distribution with (T − N) degrees of freedom and has the

noncentrality parameter:

δ =
T∑

t=1

(E(εt/σ))2 =
T

(1 + θ2)2
× (1 + θ2)2

θ2
=

T

θ2
. (19)

At this point, the sample SSR is a function of the χ2-distribution:

θ̂2 =
T

σ2
× 1

SSEu/σ2
− 1 =

T (1 + θ2)2

θ2χ2
T−N,T/θ2

− 1. (20)

A significant concern when using the noncentral χ2-statistic in portfolio analysis is whether
to consider competitors when comparing moments. The following proposition shapes the
locations and measures the dispersions of the sample SSR among various distributions. A
notable feature is that the distribution of the sample SSR under the regression error with
a nonzero mean is to the left of the distribution when assuming the returns’ normality.

Proposition 2: Confining the SSR to the condition θ2 ≤ 1 and ignoring the higher orders
of δ, the moments of the sample SSR are approximated as:

ENC(θ̂2) � T (T − N)θ2 + (2T − N2 − 2N)
(T − N − 2)(T − N)

(21)

and

VNC(θ̂2) � 2T 2(T − N)θ4 + 4T 2(T − 2N)θ2 + 4T 2(−T − 3N)
(T − N)(T − N − 2)2(T − N − 4)

. (22)

Moreover, the moments of the sample SSR among the different distributions are:

ENC(θ̂2) < EBJ(θ̂2) < ENF(θ̂2) (23)

and {
VNC(θ̂2), VBJ(θ̂2)

}
< VNF(θ̂2), (24)

where the subscripts “BJ,” “NF,” and “NC” denote the moments based on the Britten-Jones
F-statistic, the noncentral F-statistic, and the noncentral χ2-statistic, respectively. (See the
Appendix.)

Using the normalization at the same confidence level, Proposition 2 shows that both the
concentral χ2-statistic and the Britten-Jones F-statistic have the lower critical values than
the noncentral F-statistic as T and N approach infinite. However, the comparison between
the concentral χ2-statistic and the Britten-Jones F-statistic should be validated case by
case. Note that the sensitive ranking of moments under different distributions depends on
the parameters (T,N, θ2). In particular, the determining factor of comparing those moments
is the SSR’s default value. There is one major reason for employing the restricted domain
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Table 1. Parameters domain in previous studies. This table contains the usual sample size
and portfolio size used in empirical studies and the realized Sharpe ratios across different
portfolios. Some important points follow: (1) DeMiguel et al. [4] assess a total of 84 portfolios
using the Sharpe ratio. Only the top two portfolios produce Sharpe ratios of 0.510 and 0.536,
respectively. The remaining 82 portfolios’ Sharpe ratios are all between −0.035 and 0.385.
(2) Frazzini et al. [7] report that the 2872 funds in CRSP data with at least 10-year history
during the period 1976–2011 have the median of 0.39, a 95th percentile of 0.62, and a
maximum of 0.99. In addition, the impressive Sharpe ratio of Warren Buffett’s Berkshire
Hathaway is 0.76; it is ranked in the top 11 and the 99.7% percentile. Note that the Berkshire
Hathaway portfolio holdings of 2019 Q2 consists of 47 leading stocks, such as AAPL, BAC,
KO, etc. (3) Gibbons et al. [9] report that the Sharpe ratio is 0.172 over the time period of
1926–1982. They also present 4 portfolios with a subperiod of 10 years in which the Sharpe
ratios range from 0.286 to 0.604. (4) Sharpe [22] also evaluates 34 mutual funds between
1954 and 1963 in which the Sharpe ratios range from 0.431 to 0.778. (5) Tang theoretically
uses 100 stocks to diversify a portfolio up to 99% of total diversifiable risk based on a
universe with infinite assets.

Literature Sample size (T) Portfolio size (N) Sharpe ratio

DeMiguel et al. [4, pp. 1918 & 1931] 264, 379, 497 3, 9, 11, 21, 24 (1)
497 21 0.510
497 24 0.536 (maximum)

Frazzini et al. [7, pp. 35 & 37] 432 47 0.790 (Buffett’s)
120–480 2872 Funds (2) 0.990 (maximum)

Gibbons et al. [9, pp. 1141 & 1132] 60, 120, 240 10, 20 N/A
684 10 0.172
120 10 (3)
84 10 0.538

Green and Hollifield [8, p. 1803] 60 10, 30, 50 N/A
Sharpe [22, pp. 125 & 136] 120 DOW30 0.667

120 34 Funds (4) 0.778 (maximum)
Tang [24] ∞ (5) 8–40, 20, 100 N/A
Parameters domain used in this paper 60, 120, 240 5, 10, 15, 20, 0.1, 0.2, 0.3,

360, 480, 600 25, 30, 35, 40, 0.4, 0.5, 0.6,
45, 50, 60, 70, 0.7, 0.8, 0.9,

80, 90, 100 1.0

(θ2 ≤ 1) instead of considering all possible values of this SSR: it is difficult to derive a closed-
form comparison between the noncentral χ2-statistic and the F-statistic. Alternatively, the
comparisons are best examined numerically using an operational domain of parameters.
Table 1 summarizes the usual sample size, the portfolio size used in empirical studies, and
the realized Sharpe ratios in different portfolios from several popular articles. This param-
eters domain is somewhat consistent with the practical SSR operation used by academic
researchers and financial practitioners.

For the sample size (time period), DeMiguel et al. [4, p. 1919] indicate that models are
typically estimated using only 60 or 120 months of data. However, Column 2 of Table 1
shows that sample sizes ranging from 60 months to a long horizon of 684 months have been
previously used. This may be because investors are concerned about the realized perfor-
mance of their portfolio in the most recent 5–10 years. However, researchers are interested
in precisely estimating the return and evaluating the portfolio performance from the long
run perspective. In sum, this paper sets the sample size between 60 and 600.

For portfolio size, Column 2 of Table 1 indicates that empirical studies usually use a
number of assets between 3 and 100. Notably, Tang [24] summarizes the optimal number
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Table 2. The test statistic of SSR under various distributions. Given a particular crit-
ical value (C ), we compute the upper-tailed probabilities under various distributions.
Conversely, we can compute the critical values under various distributions at the same
significance level (α).

Test statistic Critical value Upper-tailed probability

Noncentral χ2
T−N,T/θ2

τ
CNC =

T (1 + θ2
τ )2

θ2
τ × χ2

T−N,T/θ2
τ ;α

− 1 PNC

(
χ2

T−N,T/θ2
τ
≤ T (1 + θ2

τ )2

θ2
τ (1 + C)

)

Britten-Jones FN,T−N CBJ =
N(1 + θ2

τ )FN,T−N ;α

T − N
+ θ2

τ PBJ

(
FN,T−N ≥ (T − N)(C − θ2

τ )

N(1 + θ2
τ )

)

Noncentral FN,T−N,Tθ2
τ

CNF =
N × FN,T−N,Tθ2

τ ;α

T − N
PNF

(
FN,T−N,Tθ2

τ
≥ C(T − N)

N

)

of assets for diversification purposes drawing on 10 investment textbooks and 10 financial
management textbooks. Across the 20 books, the smallest number is 8, and the largest is
approximately 40. Most of these textbooks’ reviews are based on papers from Evans and
Archer [6], Elton and Gruber [5], and Statman [23]. However, given an universe of infinite
stocks, Tang also analytically shows that at least 20 stocks are required to eliminate 95% of
the diversifiable risk on average. However, investors need a portfolio size of 100 to diversify
up to 99% of total diversifiable risk. Note that a portfolio size between 8 and 40 is primarily
influenced by the portfolio’s management cost, and a larger portfolio size, such as 100 stocks,
indicates a well-diversified portfolio. In sum, this paper set the portfolio size as a range from
5 to 100.

For the Sharpe ratios, Frazzini et al. [7] present a comprehensive investigation of mutual
funds’ Sharpe ratios where all 2872 funds in the CRSP data with at least 10-year history
in the period 1976–2011 have a median of 0.39, a 95th percentile of 0.62, and a maximum
of 0.99. In particular, the impressive Sharpe ratio of Warren Buffett’s Berkshire Hathaway
is 0.76, which is ranked in the top 11 and the 99.7% percentile. Of course, some mutual
funds with the higher Sharpe ratios over one possibly exist, but they often survive for only
short time. Table 1 indicates that only a tiny number of mutual funds could outperform
the Berkshire Hathaway portfolio holdings over the long horizon. Moreover, there are many
miles to go in searching for better tests for the cases θ2 > 1 since the sample SSR using all
the three distributions is poorly behaved for these cases. For example, based on the calcu-
lations of Table 2, the noncentral χ2, the Britten-Jones F, and the noncentral F require
CVNC = 23.292, CVBJ = 51.664, and CVNF = 54.046 to reject H0 : θ2 = 2.00 in the
case (T,N) = (120, 100). The justification is unacceptable due to the extremely unre-
alistic critical values. Therefore, we summarize the above meaningful information and
focus on the reasonable Sharpe ratios such as θ = 0.1, 0.2, . . . , 1.0 (i.e., θ2 ∈ Θ2

τ =
{0.01, 0.04, 0.09, . . . , 0.81, 1.00}).

3.2. Significance test of the SSR

Another major concern of the mean-variance efficiency analysis is whether a particular
portfolio, ωτ , is statistically close to the MVEP. In a situation such as this, we may compare
the portfolio ωτ with the MVEP based on the arbitrage regression. Thus, we set up the
null hypothesis (1) that the SSR equals the estimated SSR of the portfolio ωτ (H0 : θ2 = θ2

τ

against H1 : θ2 > θ2
τ ). We hope to reject the hypothesis by obtaining a sample SSR of the

MVEP that is statistically larger than θ2
τ . According to the noncentral χ2-statistic (18), we

propose the following test statistic.
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Table 3. The upper-tail probabilities of the sample SSR under various distribu-
tions for T = 120 and N = 30. Taking the case θ2

τ = 0.09 at the UTP = 0.002 as an
example, this means that πNC(0.09) = PNC(θ̂2 ≥ 0.30|θ2

τ = 0.09) = 0.002. In addition,
πBJ(0.09) = PBJ(θ̂2 ≥ 0.90|θ2

τ = 0.09) = PBJ(θ̂2 ≥ 1.00|θ2
τ = 0.09) = πNF(0.09) = 0.002.

The default SSR under (H0 : θ2 = θ2
τ )

Critical value 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00

Panel A: Noncentral χ2-statistic
0.05 0.024 0.505 0.874 0.982 0.999 1.000 1.000 1.000 1.000 1.000
0.10 0.000 0.101 0.594 0.913 0.991 0.999 1.000 1.000 1.000 1.000
0.20 0.000 0.000 0.080 0.514 0.883 0.987 0.999 1.000 1.000 1.000
0.30 0.000 0.000 0.002 0.128 0.568 0.902 0.990 1.000 1.000 1.000
0.40 0.000 0.000 0.000 0.015 0.230 0.677 0.937 0.995 1.000 1.000
0.50 0.000 0.000 0.000 0.001 0.060 0.384 0.794 0.968 0.998 1.000
0.60 0.000 0.000 0.000 0.000 0.011 0.164 0.568 0.889 0.987 0.999
0.70 0.000 0.000 0.000 0.000 0.001 0.055 0.337 0.741 0.950 0.996
0.80 0.000 0.000 0.000 0.000 0.000 0.015 0.168 0.547 0.870 0.982
0.90 0.000 0.000 0.000 0.000 0.000 0.003 0.072 0.356 0.740 0.946
1.00 0.000 0.000 0.000 0.000 0.000 0.001 0.027 0.205 0.577 0.876
1.10 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.107 0.412 0.770
1.20 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.051 0.271 0.637
1.30 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.023 0.165 0.494
1.40 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.094 0.360

Panel B: Britten-Jones F -statistic
0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.20 0.961 0.991 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.30 0.671 0.812 0.955 0.999 1.000 1.000 1.000 1.000 1.000 1.000
0.40 0.292 0.430 0.682 0.930 0.999 1.000 1.000 1.000 1.000 1.000
0.50 0.090 0.155 0.324 0.646 0.943 1.000 1.000 1.000 1.000 1.000
0.60 0.023 0.044 0.113 0.314 0.700 0.975 1.000 1.000 1.000 1.000
0.70 0.005 0.011 0.032 0.116 0.379 0.812 0.995 1.000 1.000 1.000
0.80 0.001 0.002 0.008 0.036 0.159 0.520 0.928 1.000 1.000 1.000
0.90 0.000 0.001 0.002 0.010 0.056 0.260 0.719 0.988 1.000 1.000
1.00 0.000 0.000 0.000 0.003 0.018 0.109 0.445 0.902 1.000 1.000
1.10 0.000 0.000 0.000 0.001 0.005 0.040 0.227 0.698 0.987 1.000
1.20 0.000 0.000 0.000 0.000 0.002 0.014 0.101 0.448 0.912 1.000
1.30 0.000 0.000 0.000 0.000 0.000 0.004 0.041 0.246 0.736 0.992
1.40 0.000 0.000 0.000 0.000 0.000 0.001 0.015 0.119 0.510 0.943

Panel C: Noncentral F -statistic
0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.20 0.955 0.979 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000
0.30 0.665 0.784 0.906 0.976 0.997 1.000 1.000 1.000 1.000 1.000
0.40 0.297 0.436 0.648 0.850 0.962 0.995 1.000 1.000 1.000 1.000
0.50 0.095 0.176 0.351 0.609 0.843 0.963 0.995 1.000 1.000 1.000
0.60 0.025 0.057 0.152 0.356 0.639 0.871 0.973 0.997 1.000 1.000
0.70 0.006 0.016 0.056 0.176 0.416 0.710 0.911 0.985 0.999 1.000
0.80 0.001 0.004 0.019 0.077 0.238 0.517 0.796 0.949 0.993 0.999
0.90 0.000 0.001 0.006 0.031 0.122 0.338 0.639 0.875 0.975 0.997

(continued)
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Table 3. Continued

The default SSR under (H0 : θ2 = θ2
τ )

Critical value 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00

1.00 0.000 0.000 0.002 0.011 0.058 0.201 0.472 0.762 0.935 0.990
1.10 0.000 0.000 0.001 0.004 0.026 0.111 0.322 0.623 0.864 0.971
1.20 0.000 0.000 0.000 0.001 0.011 0.058 0.205 0.477 0.764 0.934
1.30 0.000 0.000 0.000 0.000 0.004 0.029 0.124 0.344 0.643 0.873
1.40 0.000 0.000 0.000 0.000 0.002 0.014 0.071 0.236 0.515 0.789

Figure 1. The UTPs of the sample SSR under various statistics. This graph depicts the
UTP curves of the sample SSR for the case that is generated by the χ2-statistic versus
when the UTP curves of the sample SSR is plotted under the central and noncentral F
distributions, keeping the parameters (T, N, θ2) = (120 observations, 30 stocks, 0.25 SSR)
to be the same in three distributions.

Proposition 3: For testing the hypothesis (1), the test statistic is given by:

χ2 =
T (1 + θ2

τ )2

θ2
τ (1 + θ̂2)

∼ χ2
T−N,T/θ2

τ
. (25)

Moreover, given the (critical value, sample size, portfolio size) is (C, T,N), the upper-tail
probability (UTP) of the sample SSR under the null hypothesis is defined as:

πNC(θ2
τ ) = PNC(θ̂2 ≥ C|θ2

τ , T,N) = P

(
χ2

T−N,T/θ2
τ
≤ T (1 + θ2

τ )2

θ2
τ (1 + C)

)
. (26)

Note that the small values of the χ2-statistic (values of θ̂2 larger than θ2
τ by a suit-

able amount) favor rejection of the mean-variance efficiency between the MVEP and the
portfolio ωτ . It is not easy to compare the probability density functions of various statistics
expressed in the forms of totally different functions. To characterize the impact of three
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Figure 2. The shifted UTPs of the sample SSR with respect to the SSR. This graph
depicts that the UTP curves of the sample SSR generated using (T,N, θ2) = (120, 30, 0.36)
move toward the right side of the UTPs based on (T,N, θ2) = (120, 30, 0.25). Keeping the
sample size and the portfolio size to be the same in both cases, the solid curves indicate
the UTPs of various statistics based on the SSR θ2 = 0.25. The dotted curves indicate the
UTPs of various statistics using the SSR θ2 = 0.36 for the cases where (T,N) is fixed to
(120, 30).

alternative distributions on the sample SSR, the UTP curve provides another way to shape
the sample SSR under different statistics. Therefore, we also compute the UTPs of the
sample SSR using the noncentral F-statistic and the Britten-Jones F-statistic. For the case
of the noncentral F-statistic (5), the sample SSR under the null hypothesis (1) has the
following UTP:

πNF(θ2
τ ) = PNF(θ̂2 ≥ C|θ2

τ , T,N) = P

(
FN,T−N,Tθ2

τ
≥ C(T − N)

N

)
. (27)

Alternatively, under the null hypothesis (1), the Britten-Jones F-statistic (12) has the
following UTP for the sample SSR:

πBJ(θ2
τ ) = PBJ(θ̂2 ≥ C|θ2

τ , T,N) = P

(
FN,T−N ≥ (T − N)(C − θ2

τ )
N(1 + θ2

τ )

)
. (28)

For comparison, Table 2 summarizes the formulas that simultaneously compute the critical
value for rejecting the upper-tailed MVET (1) for satisfying a particular UTP (or the
significance level) under various distribution. As an example, Table 3 summarizes the UTPs
of the sample SSR for the parameters T = 120, N = 30, and θ2

τ ∈ Θ2
τ . To better illustrate

the impact of (T,N, θ2
τ ) on the UTPs using Eqs. (26)–(28), Figure 1 depicts the UTPs in

relation to the sample SSR for the noncentral χ2-statistic, the noncentral F-statistic, and
the Britten-Jones F-statistic. In Figure 1, we vary the sample SSR on the horizontal axis and
report the corresponding UTP on the vertical axis given θ2 = 0.25. Each curve presents the
value of the sample SSR and the corresponding UTP. The crossover point is the intersection

https://doi.org/10.1017/S0269964819000482 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000482


AN IMPROVED TEST OF THE SQUARED SHARPE RATIO 417

Figure 3. The shifted UTPs of the sample SSR with respect to the portfo-
lio size. This graph depicts that the UTP curves of the sample SSR generated
using (T,N, θ2) = (120, 40, 0.25) move toward the right side of the UTPs based on
(T,N, θ2) = (120, 30, 0.25). Keeping the sample size and the SSR to be the same in both
cases, the solid curves indicate the UTPs of various statistics based on the portfolio size
N = 30. The dotted curves indicate the UTPs of various statistics using the portfolio size
N = 40 for the cases where (T, θ2) is fixed to (120, 0.25).

of the UTPs between the noncentral F-statistic and the Britten-Jones F-statistic. We see
that the crossover point is near the point (θ̂2, π) = (0.67, 0.51) in the case of (120, 30, 0.25).
We also observe that the horizontal coordinate of the crossover point is quite near to the
average of ENF(θ̂2) = 0.682 and EBJ(θ̂2) = 0.676. If the critical value is at the left (or right)
side of the crossover point such as C = 0.6 (or C = 0.8), Figure 1 and Table 3 indicate that
πNC(0.25) < πNF(0.25) < πBJ(0.25) (or πNC(0.25) < πBJ(0.25) < πNF(0.25)).

Figure 1 also shows how much the statistics shift the significance levels for rejecting the
MVET. Taking the particular SSR θ2 = 0.09 as an example, Column 4 of Table 3 reports
that the UTP is 0.002 for πNC(0.09) = PNC(θ̂2 ≥ 0.30|θ2

τ = 0.09), πBJ(0.09) = PBJ(θ̂2 ≥
0.90|θ2

τ = 0.09), and πNF(0.09) = PBJ(θ̂2 ≥ 1.00|θ2
τ = 0.09). This implies that the noncen-

tral and central F statistics will be more conservative in regard to rejecting the MVET at
the 5% significance level Compared to the noncentral χ2-statistic.

To illustrate the impact of sample size and portfolio size on the critical values using
various statistics, we plot the UTPs relative to sample size, portfolio size, and default SSR.
Figure 2 depicts the shifted UTPs with respect to the values of θ2

τ , and we plot the UTPs
for the cases where (T,N) is fixed to (120, 30), and the value of θ2

τ changes from 0.25 to
0.36. We observe that the UTPs using θ2

τ = 0.36 move toward the right side of the UTPs
using θ2

τ = 0.25. This is evident because all the expectations EBJ(θ̂2), ENF(θ̂2), and ENC(θ̂2)
increase as the value of θ2

τ increases from 0.25 to 0.36. Figure 3 depicts the shifted UTPs
with respect to the number of assets, and we plot the UTPs for the case where (N, θ2

τ )
is fixed to (120, 0.25), but where the portfolio size changes from 30 to 40. We observe
that the UTPs using N = 40 are located to the right of the UTPs using N = 30. When
the portfolio size is small and the sample size is fixed, e.g., N = 30, the degrees of freedom,
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Figure 4. The shifted UTPs of the sample SSR with respect to the sample size. This graph
depicts that the UTP curves of the sample SSR generated using (T,N, θ2) = (60, 30, 0.25)
move toward the right side of the UTPs based on (T,N, θ2) = (120, 30, 0.25). Keeping the
portfolio size and the SSR to be the same in both cases, the solid curves indicate the UTPs
of various statistics based on the sample size T = 120. The dotted curves indicate the UTPs
of various statistics using the sample size T = 60 for the cases where (N, θ2) is fixed to
(30, 0.25).

T −N, become very large. Thus, the probability density function of the sample SSR is more
positively skewed than the case of N = 40. Figure 4 depicts the shifted UTPs with respect
to the number of observations, and we plot the UTPs for the case where (N, θ2

τ ) is fixed to
(120, 0.25), but where the sample size changes from 60 to 120. We observe that the UTPs
using T = 120 move toward the left side of the UTPs using T = 60. The reason is similar to
that of Figure 3. When the sample size is large and the portfolio size is fixed, e.g., T = 120,
the degrees of freedom, T −N, become very large.

3.3. Effective test compared to the F-statistics

Analyzing Figures 3 and 4 more closely reveals the local robustness of the noncentral
χ2-statistic. We observe that the UTP’s larger change in the F-statistics increases with
sample size (holding portfolio size and SSR constant) as well as with portfolio size (holding
sample size and SSR constant). For a comprehensive examination of methods at the 5% sig-
nificance level, we calculate six distributions for the sample SSR based on our parameters
domain.1 The most apparent advantage of using distributions of the sample SSR is that the
investor is more directly interested in knowing whether the sample SSR is greater than the
hypothesized SSR and is not indirectly interested in the sample SSR’s UTP using different
critical values in Table 3. For the sake of brevity, we do not include similar results using
the 1% and 10% significance levels. We consider the case θ = 0.25 and set up the following

1 To prevent the tables of distributions from taking up space and affecting the complete comparison, these
six tables are numbered Tables 5–10 and include them in the Appendix.
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Table 4. Noncentral χ2’s performance relative to F-statistics. This table summarizes the
cases where one approach outperforms the other methods. For the case of T = 120 in Panel A
based on the critical values in Table 6, we observe that 94 cases of the noncentral χ2-statistic
are superior to the F-statistics for rejecting H0. Conversely, only 6 cases of the Britten-Jones
F-statistic can defeat the χ2-statistic, and none of the noncentral F-statistics are better than
the other two statistics. Similarly, for the case N = 50, summarized from Tables 5–10, we
see that 57 cases of the noncentral χ2-statistic outperform the other statistics. Only 3 cases
of the Britten-Jones F-statistic are better than the noncentral χ2-statistic. For the case
θ = 0.16 summarized in Tables 5–10, we see that 51 cases of the noncentral χ2-statistic out-
perform the other statistics. Only 4 cases of Britten-Jones F-statistic are better than the
noncentral χ2-statistic. The numbers in parentheses denote the fraction of cases with supe-
rior performance to the other methods. The range is the difference between the maximum
and the minimum of critical values given in the parameters (the sample size or portfolio
size or SSR).

Noncentral χ2-statistic Britten-Jones F-statistic Noncentral F-statistic

Attributes Number Ratio Range Number Ratio Range Number Ratio Range

Panel A: Categorized using the sample size (T )
60 49 (98%) 4.250 1 (2%) 27.142 0 (0%) 28.450
120 94 (94%) 3.563 6 (6%) 19.880 0 (0%) 20.575
240 88 (88%) 1.934 12 (12%) 2.839 0 (0%) 3.051
360 84 (84%) 1.596 16 (16%) 1.939 0 (0%) 2.100
480 80 (80%) 1.448 20 (20%) 1.626 0 (0%) 1.763
600 76 (76%) 1.363 24 (24%) 1.468 0 (0%) 1.591

Panel B: Categorized using the portfolio size (N)
10 24 (40%) 1.929 36 (60%) 1.768 0 (0%) 2.250
20 44 (73%) 2.299 16 (27%) 2.774 0 (0%) 3.272
30 46 (77%) 2.774 14 (23%) 4.593 0 (0%) 5.160
40 54 (90%) 3.404 6 (10%) 8.863 0 (0%) 9.595
50 57 (95%) 4.281 3 (5%) 27.235 0 (0%) 28.552
60 49 (98%) 2.371 1 (2%) 3.908 0 (0%) 4.260
70 50 (100%) 2.610 0 (0%) 5.177 0 (0%) 5.561
80 50 (100%) 2.885 0 (0%) 7.219 0 (0%) 7.654
90 50 (100%) 3.205 0 (0%) 10.977 0 (0%) 11.499
100 50 (100%) 3.580 0 (0%) 19.798 0 (0%) 20.500

Panel C: Categorized using the SSR (θ2
τ )

0.01 55 (100%) 0.039 0 (0%) 13.285 0 (0%) 13.296
0.04 55 (100%) 0.104 0 (0%) 13.680 0 (0%) 13.726
0.09 53 (96%) 0.201 2 (4%) 14.338 0 (0%) 14.449
0.16 51 (93%) 0.343 4 (7%) 15.259 0 (0%) 15.459
0.25 49 (89%) 0.544 6 (11%) 16.443 0 (0%) 16.758
0.36 45 (82%) 0.819 10 (18%) 17.889 0 (0%) 18.339
0.49 42 (76%) 1.190 13 (24%) 19.600 0 (0%) 20.203
0.64 41 (75%) 1.679 14 (25%) 21.573 0 (0%) 22.348
0.81 39 (71%) 2.310 16 (29%) 23.809 0 (0%) 24.773
1.00 33 (60%) 3.109 22 (40%) 26.308 0 (0%) 27.478
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Table 5. Distributions of the sample SSR using 60 monthly returns at the 5% significance
level. This table reports the critical value of rejecting H0 : θ2 = θ2

τ against H1 : θ2 > θ2
τ

at the 5% significance level. Taking the case (N, θ2
τ ) = (30, 0.25) at the UTP = 0.05 into

consideration, this means that πNC(0.25) = PNC(θ̂2 ≥ 0.711|θ2
τ = 0.25) = 0.05. In addition,

PBJ(θ̂2 ≥ 2.551|θ2
τ = 0.25) = PBJ(θ̂2 ≥ 2.728|θ2

τ = 0.25) = 0.05. The boldface number indi-
cates that the statistic is the best among three statistics. The more the boldface area
is, the better the statistic is. Thus, in this table, the noncentral χ2 outperforms the
F-statistics except for the seven cases of N = 5, θ2

τ = 0.25, 0.36, 0.49, 0.64, 0.81, 1.00, and
(N, θ2

τ ) = (10, 1.00).

The default value of SSR under the hypothesis H0 : θ2 = θ2
τ

Size (N ) 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00

Panel A: Noncentral χ2-statistic
5 0.055 0.136 0.244 0.380 0.544 0.737 0.958 1.209 1.488 1.796
10 0.056 0.140 0.254 0.398 0.575 0.784 1.026 1.302 1.610 1.953
15 0.057 0.144 0.263 0.417 0.607 0.834 1.099 1.403 1.745 2.127
20 0.058 0.148 0.273 0.436 0.640 0.886 1.177 1.513 1.895 2.323
25 0.059 0.152 0.283 0.456 0.675 0.942 1.261 1.634 2.061 2.545
30 0.060 0.156 0.293 0.476 0.711 1.001 1.352 1.766 2.248 2.798
35 0.060 0.160 0.303 0.497 0.749 1.064 1.450 1.913 2.458 3.089
40 0.061 0.164 0.314 0.519 0.788 1.131 1.557 2.076 2.697 3.428
45 0.062 0.168 0.325 0.541 0.829 1.202 1.673 2.258 2.971 3.828
50 0.063 0.172 0.335 0.564 0.873 1.278 1.801 2.463 3.289 4.305

Panel B: Britten-Jones F -statistic
5 0.229 0.265 0.326 0.411 0.521 0.655 0.813 0.995 1.202 1.433
10 0.419 0.461 0.532 0.630 0.757 0.911 1.094 1.305 1.543 1.810
15 0.648 0.697 0.778 0.893 1.040 1.219 1.431 1.676 1.953 2.263
20 0.939 0.996 1.092 1.227 1.399 1.610 1.860 2.148 2.474 2.839
25 1.326 1.395 1.510 1.671 1.878 2.132 2.431 2.777 3.168 3.606
30 1.869 1.955 2.097 2.295 2.551 2.864 3.233 3.659 4.142 4.682
35 2.686 2.795 2.978 3.233 3.562 3.963 4.438 4.985 5.605 6.299
40 4.038 4.187 4.437 4.786 5.235 5.783 6.432 7.180 8.028 8.975
45 6.645 6.872 7.250 7.780 8.462 9.294 10.278 11.414 12.700 14.138
50 13.327 13.753 14.462 15.455 16.732 18.292 20.137 22.264 24.676 27.371

Panel C: Noncentral F -statistic
5 0.242 0.311 0.414 0.546 0.707 0.896 1.113 1.359 1.634 1.937
10 0.429 0.498 0.607 0.750 0.927 1.136 1.378 1.652 1.959 2.298
15 0.657 0.730 0.848 1.007 1.204 1.439 1.712 2.021 2.368 2.753
20 0.947 1.028 1.160 1.339 1.563 1.832 2.145 2.500 2.900 3.342
25 1.334 1.426 1.578 1.785 2.047 2.361 2.727 3.145 3.614 4.135
30 1.878 1.987 2.167 2.415 2.728 3.107 3.548 4.053 4.621 5.253
35 2.695 2.830 3.053 3.362 3.755 4.229 4.785 5.420 6.137 6.933
40 4.047 4.226 4.521 4.932 5.454 6.087 6.830 7.682 8.642 9.711
45 6.657 6.919 7.353 7.957 8.729 9.667 10.769 12.035 13.464 15.055
50 13.344 13.817 14.605 15.702 17.108 18.819 20.834 23.151 25.771 28.692

right-tailed hypothesis (MVET) at the 5% significance level (in terms of 5% UTP) as an
illustration.

H0 : θ2 = 0.25 against H1 : θ2 > 0.25.
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Table 6. Distributions of the sample SSR using 120 monthly returns at the 5% significance
level.

The default value of SSR under the hypothesis H0 : θ2 = θ2
τ

Size (N ) 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00

Panel A: Noncentral χ2-statistic
10 0.042 0.107 0.198 0.313 0.455 0.622 0.815 1.034 1.280 1.552
20 0.043 0.111 0.207 0.330 0.482 0.664 0.874 1.115 1.386 1.686
30 0.044 0.115 0.216 0.347 0.511 0.708 0.938 1.202 1.501 1.834
40 0.044 0.119 0.225 0.365 0.541 0.754 1.006 1.297 1.628 2.000
50 0.045 0.123 0.234 0.383 0.572 0.803 1.079 1.400 1.769 2.186
60 0.046 0.126 0.244 0.402 0.605 0.855 1.157 1.513 1.925 2.396
70 0.047 0.130 0.253 0.421 0.638 0.910 1.242 1.637 2.100 2.635
80 0.048 0.134 0.263 0.441 0.674 0.968 1.333 1.774 2.297 2.910
90 0.049 0.138 0.273 0.461 0.710 1.030 1.432 1.925 2.521 3.230
100 0.050 0.142 0.283 0.482 0.749 1.096 1.539 2.094 2.777 3.605

Panel B: Britten-Jones F -statistic
10 0.186 0.221 0.280 0.362 0.468 0.597 0.750 0.926 1.126 1.349
20 0.349 0.389 0.455 0.549 0.669 0.816 0.990 1.190 1.417 1.671
30 0.544 0.590 0.666 0.773 0.911 1.079 1.278 1.507 1.767 2.057
40 0.790 0.843 0.932 1.056 1.216 1.411 1.641 1.907 2.208 2.545
50 1.114 1.177 1.281 1.428 1.616 1.846 2.118 2.432 2.788 3.186
60 1.560 1.636 1.762 1.940 2.168 2.447 2.776 3.156 3.587 4.069
70 2.213 2.309 2.468 2.690 2.977 3.327 3.740 4.217 4.758 5.363
80 3.257 3.384 3.595 3.890 4.269 4.733 5.281 5.913 6.630 7.431
90 5.169 5.352 5.658 6.085 6.635 7.307 8.101 9.017 10.055 11.216
100 9.638 9.954 10.481 11.218 12.166 13.325 14.694 16.274 18.064 20.066

Panel C: Noncentral F -statistic
10 0.195 0.251 0.338 0.451 0.591 0.756 0.948 1.165 1.409 1.679
20 0.355 0.413 0.505 0.628 0.781 0.963 1.175 1.417 1.688 1.988
30 0.550 0.612 0.712 0.847 1.018 1.222 1.460 1.731 2.035 2.373
40 0.796 0.864 0.976 1.129 1.321 1.553 1.824 2.133 2.481 2.867
50 1.119 1.197 1.325 1.501 1.724 1.992 2.307 2.666 3.071 3.520
60 1.565 1.656 1.807 2.015 2.280 2.600 2.974 3.403 3.886 4.424
70 2.219 2.330 2.515 2.770 3.096 3.491 3.954 4.485 5.084 5.750
80 3.264 3.408 3.646 3.978 4.402 4.916 5.521 6.214 6.997 7.869
90 5.176 5.380 5.718 6.189 6.791 7.524 8.385 9.376 10.495 11.741
100 9.647 9.990 10.559 11.354 12.371 13.611 15.071 16.751 18.651 20.770

Table 6 reports the critical values for the case (T,N) = (120, 30) at the 5% significance level
as follows:

CNC = 0.511 < CBJ = 0.911 < CNF = 1.018

For the above upper tail test of the SSR, it is evident that not only is the noncentral χ2

best when compared to F-statistics, but both the Britten-Jones’ F, and noncentral F are
conservative in rejecting the MVET at the same significance level. However, the greatest
limitation with the F-statistics is the smaller sample size and the larger portfolio size. For
example, given the 0.05 UTP for the case (T,N) = (60, 50) in Table 5, it is notable that
the noncentral χ2, Britten-Jones’ F, and noncentral F will require θ̂2 > 0.873, θ̂2 > 16.732,
and θ̂2 > 17.108 to reject the null hypothesis H0 : θ2 = 0.25, respectively. Similarly, for
the case (T,N) = (120, 80) in Table 6, note that the noncentral χ2, Britten-Jones’ F, and
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Table 7. Distributions of the sample SSR using 240 monthly returns at the 5% significance
level.

The default value of SSR under the hypothesis H0 : θ2 = θ2
τ

Size (N ) 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00

Panel A: Noncentral χ2-statistic
10 0.032 0.086 0.163 0.262 0.384 0.529 0.698 0.890 1.105 1.344
20 0.033 0.088 0.167 0.270 0.397 0.548 0.724 0.924 1.150 1.400
30 0.033 0.090 0.171 0.278 0.409 0.567 0.750 0.960 1.196 1.459
40 0.033 0.092 0.175 0.286 0.422 0.586 0.778 0.998 1.245 1.520
50 0.034 0.093 0.180 0.294 0.436 0.607 0.807 1.036 1.296 1.585
60 0.034 0.095 0.184 0.302 0.449 0.627 0.836 1.077 1.349 1.653
70 0.035 0.097 0.188 0.310 0.463 0.648 0.867 1.119 1.405 1.725
80 0.035 0.099 0.193 0.318 0.477 0.670 0.898 1.162 1.463 1.801
90 0.036 0.101 0.197 0.327 0.491 0.692 0.930 1.208 1.524 1.881
100 0.036 0.103 0.202 0.335 0.506 0.715 0.964 1.255 1.589 1.966

Panel B: Britten-Jones F -statistic
10 0.092 0.125 0.179 0.254 0.352 0.471 0.611 0.773 0.957 1.163
20 0.159 0.193 0.250 0.331 0.434 0.560 0.709 0.881 1.076 1.294
30 0.228 0.265 0.326 0.411 0.520 0.654 0.812 0.995 1.201 1.432
40 0.304 0.343 0.407 0.498 0.614 0.756 0.924 1.117 1.337 1.582
50 0.387 0.428 0.497 0.593 0.716 0.867 1.046 1.252 1.485 1.746
60 0.479 0.523 0.596 0.699 0.830 0.991 1.182 1.401 1.650 1.929
70 0.582 0.629 0.707 0.817 0.958 1.130 1.334 1.569 1.835 2.133
80 0.699 0.749 0.833 0.951 1.102 1.287 1.506 1.758 2.044 2.364
90 0.832 0.886 0.977 1.104 1.267 1.466 1.702 1.974 2.283 2.627
100 0.985 1.044 1.142 1.280 1.457 1.673 1.929 2.223 2.557 2.931

Panel C: Noncentral F -statistic
10 0.100 0.149 0.224 0.322 0.443 0.587 0.754 0.945 1.159 1.397
20 0.164 0.213 0.289 0.391 0.517 0.668 0.843 1.043 1.267 1.517
30 0.233 0.283 0.361 0.467 0.599 0.757 0.940 1.150 1.387 1.649
40 0.308 0.359 0.440 0.551 0.689 0.855 1.049 1.270 1.518 1.795
50 0.391 0.443 0.528 0.644 0.790 0.965 1.169 1.402 1.665 1.957
60 0.483 0.537 0.626 0.748 0.902 1.087 1.304 1.551 1.829 2.139
70 0.586 0.643 0.737 0.866 1.029 1.225 1.455 1.718 2.015 2.344
80 0.702 0.763 0.862 0.999 1.173 1.382 1.628 1.908 2.225 2.577
90 0.835 0.900 1.006 1.152 1.338 1.562 1.825 2.126 2.465 2.843
100 0.989 1.058 1.171 1.328 1.528 1.770 2.053 2.377 2.743 3.151

noncentral F will require θ̂2 > 0.674, θ̂2 > 4.269, and θ̂2 > 4.402, respectively, to reject the
null hypothesis H0 : θ2 = 0.25. Compared to the noncentral χ2 approach, we observe that
the critical values of the sample SSR using the F-statistic methods are overly conservative
and extremely unrealistic for rejecting the null hypothesis H0 : θ2 = 0.25 when checking the
cases using the smaller sample size and the larger portfolio size.

Collectively, these six distributions of the sample SSR summarized in Table 4 that
presents the noncentral χ2’s performance relative to F-statistics at the 5% significance level.
We have several observations. First, the boldface areas in Tables 5–10 and the winning ratios
in Table 4 show that both the noncentral χ2-statistic and the Britten-Jones F-statistic are
definitely superior to the noncentral F-statistic within our parameters domain. Second,
holding constant the portfolio size and the SSR, the critical value decreases as the sample
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Table 8. Distributions of the sample SSR using 360 monthly returns at the 5% significance
level.

The default value of SSR under the hypothesis H0 : θ2 = θ2
τ

Size (N ) 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00

Panel A: Noncentral χ2-statistic
10 0.028 0.077 0.148 0.241 0.356 0.493 0.652 0.834 1.039 1.266
20 0.028 0.078 0.151 0.246 0.364 0.505 0.669 0.856 1.067 1.301
30 0.028 0.080 0.154 0.251 0.372 0.517 0.686 0.879 1.096 1.337
40 0.029 0.081 0.156 0.256 0.380 0.529 0.703 0.901 1.125 1.374
50 0.029 0.082 0.159 0.261 0.389 0.542 0.720 0.925 1.156 1.412
60 0.029 0.083 0.162 0.267 0.397 0.554 0.738 0.949 1.187 1.452
70 0.030 0.084 0.165 0.272 0.406 0.567 0.756 0.973 1.219 1.493
80 0.030 0.086 0.168 0.277 0.414 0.580 0.775 0.999 1.252 1.535
90 0.030 0.087 0.170 0.282 0.423 0.593 0.794 1.025 1.286 1.579
100 0.031 0.088 0.173 0.288 0.432 0.607 0.813 1.051 1.321 1.624

Panel B: Britten-Jones F -statistic
10 0.064 0.095 0.148 0.222 0.316 0.432 0.569 0.727 0.906 1.106
20 0.105 0.138 0.193 0.269 0.368 0.488 0.630 0.795 0.981 1.188
30 0.147 0.181 0.238 0.318 0.420 0.545 0.692 0.863 1.056 1.272
40 0.191 0.226 0.285 0.368 0.474 0.603 0.757 0.934 1.134 1.358
50 0.237 0.273 0.335 0.420 0.531 0.665 0.825 1.008 1.216 1.449
60 0.285 0.324 0.387 0.476 0.591 0.731 0.896 1.087 1.304 1.545
70 0.337 0.377 0.443 0.536 0.655 0.801 0.973 1.171 1.396 1.648
80 0.393 0.434 0.503 0.599 0.724 0.875 1.055 1.261 1.496 1.758
90 0.452 0.495 0.567 0.668 0.797 0.955 1.142 1.358 1.602 1.876
100 0.516 0.561 0.636 0.742 0.877 1.042 1.237 1.462 1.717 2.003

Panel C: Noncentral F -statistic
10 0.071 0.117 0.187 0.279 0.393 0.529 0.688 0.869 1.073 1.299
20 0.111 0.156 0.227 0.321 0.438 0.578 0.742 0.929 1.139 1.372
30 0.152 0.197 0.269 0.366 0.486 0.631 0.799 0.992 1.209 1.450
40 0.195 0.241 0.314 0.413 0.538 0.687 0.861 1.060 1.283 1.532
50 0.241 0.287 0.362 0.464 0.592 0.746 0.926 1.132 1.363 1.621
60 0.289 0.337 0.414 0.519 0.651 0.810 0.996 1.209 1.449 1.715
70 0.341 0.389 0.469 0.577 0.714 0.879 1.071 1.292 1.540 1.817
80 0.396 0.446 0.528 0.640 0.782 0.952 1.152 1.381 1.639 1.926
90 0.455 0.507 0.591 0.708 0.855 1.032 1.239 1.477 1.745 2.043
100 0.519 0.573 0.660 0.781 0.933 1.118 1.334 1.581 1.860 2.171

size increases for all the statistics considered. Similarly, holding constant the sample size
and the SSR, the critical value increases as the portfolio size increases. Holding constant
the sample and portfolio sizes, the larger the SSR, the greater the critical value. Third,
another comparison of advantages and disadvantages between methods can be observed
through the critical value’s range. The range is the difference in critical values between the
maximum and the minimum relative to the sample size, the portfolio size, and the SSR
based on different tables. For example, the noncentral χ2’s range (2.371) of N = 60 in Panel
A of Table 4 is computed as the maximum (2.396) from Panel A in Table 6 deducting the
minimum (0.025) from Panel A in Table 10. Table 4 indicates that the noncentral χ2’s
ranges are from 1.363 to 4.250, from 1.929 to 3.580, from 0.039 to 3.109 using T, N, and θ2

τ ,
respectively. Table 4 similarly reports that the Britten-Jones F’s ranges are between 1.468
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Table 9. Distributions of the sample SSR using 480 monthly returns at the 5% significance
level.

The default value of SSR under the hypothesis H0 : θ2 = θ2
τ

Size (N ) 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00

Panel A: Noncentral χ2-statistic
10 0.025 0.072 0.140 0.229 0.340 0.473 0.627 0.804 1.002 1.223
20 0.026 0.073 0.142 0.233 0.346 0.481 0.639 0.820 1.023 1.249
30 0.026 0.074 0.144 0.236 0.352 0.490 0.651 0.836 1.043 1.274
40 0.026 0.075 0.146 0.240 0.358 0.499 0.664 0.852 1.064 1.301
50 0.026 0.075 0.148 0.244 0.364 0.508 0.676 0.869 1.086 1.328
60 0.027 0.076 0.150 0.248 0.370 0.517 0.689 0.886 1.108 1.355
70 0.027 0.077 0.152 0.252 0.376 0.526 0.702 0.903 1.130 1.384
80 0.027 0.078 0.154 0.255 0.382 0.535 0.715 0.921 1.153 1.413
90 0.027 0.079 0.156 0.259 0.389 0.545 0.728 0.939 1.177 1.442
100 0.027 0.080 0.158 0.263 0.395 0.554 0.742 0.957 1.201 1.473

Panel B: Britten-Jones F -statistic
10 0.050 0.081 0.133 0.206 0.299 0.414 0.549 0.705 0.881 1.079
20 0.080 0.112 0.166 0.240 0.337 0.454 0.593 0.754 0.935 1.139
30 0.110 0.143 0.198 0.275 0.374 0.495 0.637 0.802 0.989 1.198
40 0.141 0.174 0.231 0.310 0.412 0.536 0.683 0.852 1.044 1.259
50 0.172 0.207 0.265 0.346 0.451 0.578 0.729 0.903 1.101 1.321
60 0.205 0.241 0.300 0.384 0.491 0.622 0.777 0.956 1.159 1.386
70 0.239 0.276 0.337 0.423 0.533 0.668 0.828 1.012 1.220 1.454
80 0.275 0.313 0.376 0.464 0.578 0.716 0.881 1.070 1.284 1.524
90 0.312 0.351 0.416 0.507 0.624 0.767 0.936 1.131 1.352 1.598
100 0.352 0.392 0.459 0.552 0.673 0.820 0.994 1.195 1.422 1.676

Panel C: Noncentral F -statistic
10 0.057 0.101 0.168 0.256 0.367 0.499 0.653 0.829 1.027 1.247
20 0.085 0.129 0.196 0.287 0.399 0.534 0.692 0.871 1.074 1.300
30 0.114 0.158 0.226 0.318 0.433 0.571 0.732 0.916 1.123 1.354
40 0.145 0.188 0.258 0.351 0.469 0.610 0.774 0.963 1.175 1.411
50 0.176 0.220 0.290 0.386 0.506 0.650 0.819 1.012 1.229 1.471
60 0.208 0.253 0.325 0.422 0.545 0.693 0.865 1.063 1.286 1.534
70 0.242 0.287 0.361 0.460 0.586 0.737 0.914 1.117 1.346 1.600
80 0.278 0.324 0.398 0.500 0.629 0.784 0.966 1.174 1.408 1.669
90 0.315 0.362 0.438 0.543 0.675 0.834 1.020 1.234 1.475 1.743
100 0.354 0.402 0.480 0.587 0.723 0.886 1.078 1.297 1.545 1.820

and 27.142, between 1.768 and 19.798 as well as between 13.285 and 26.308. By focusing on
the parameters domain considered, we observe that the range of the noncentral χ2-statistic
is locally robust compared to the F-statistics.

Finally, another expression used to demonstrate the local robustness of the noncentral
χ2-statistic is graphing the tradeoff between sample size (X -axis), portfolio size (Y -axis),
and critical values (Z -axis). The table-based Figure 2 shows how the critical values of the
sample SSR are affected by the sample size and the portfolio size in rejecting the hypothesis
H0 : θ2 = 0.25 at the 5% significance level. As shown in Figure 5, the upper (steeper and
colorful) plane indicates the critical values of the sample SSR using the noncentral F-
statistic over the sample size and the portfolio size provided in Tables 5–10, and then we plot
the result as a surface. The lower (smoother) plane indicates corresponding results based
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Table 10. Distributions of the sample SSR using 600 monthly returns at the 5%
significance level.

The default value of SSR under the hypothesis H0 : θ2 = θ2
τ

Size (N ) 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00

Panel A: Noncentral χ2-statistic
10 0.024 0.068 0.134 0.221 0.329 0.459 0.611 0.784 0.979 1.196
20 0.024 0.069 0.136 0.224 0.334 0.466 0.620 0.796 0.995 1.215
30 0.024 0.070 0.137 0.227 0.339 0.473 0.630 0.809 1.011 1.235
40 0.024 0.071 0.139 0.230 0.343 0.480 0.639 0.821 1.027 1.256
50 0.024 0.071 0.141 0.233 0.348 0.487 0.649 0.834 1.044 1.277
60 0.025 0.072 0.142 0.236 0.353 0.494 0.659 0.848 1.061 1.298
70 0.025 0.073 0.144 0.239 0.358 0.501 0.669 0.861 1.078 1.319
80 0.025 0.073 0.146 0.242 0.363 0.508 0.679 0.874 1.095 1.341
90 0.025 0.074 0.147 0.245 0.368 0.515 0.689 0.888 1.113 1.364
100 0.025 0.075 0.149 0.248 0.372 0.523 0.699 0.902 1.131 1.387

Panel B: Britten-Jones F -statistic
10 0.042 0.073 0.124 0.196 0.289 0.403 0.537 0.691 0.867 1.063
20 0.065 0.097 0.150 0.224 0.318 0.435 0.572 0.730 0.909 1.110
30 0.089 0.121 0.175 0.250 0.347 0.466 0.606 0.768 0.951 1.156
40 0.112 0.145 0.200 0.277 0.376 0.498 0.641 0.806 0.993 1.202
50 0.136 0.170 0.226 0.305 0.406 0.530 0.676 0.845 1.036 1.250
60 0.161 0.195 0.253 0.333 0.437 0.563 0.712 0.885 1.080 1.299
70 0.186 0.221 0.280 0.362 0.468 0.597 0.750 0.926 1.126 1.349
80 0.212 0.248 0.308 0.392 0.500 0.632 0.789 0.969 1.173 1.401
90 0.239 0.276 0.338 0.424 0.534 0.669 0.829 1.013 1.221 1.454
100 0.268 0.305 0.368 0.456 0.569 0.707 0.870 1.058 1.272 1.510

Panel C: Noncentral F -statistic
10 0.048 0.091 0.156 0.243 0.350 0.480 0.631 0.803 0.998 1.214
20 0.070 0.113 0.178 0.266 0.376 0.507 0.661 0.836 1.034 1.255
30 0.093 0.135 0.201 0.290 0.402 0.535 0.692 0.871 1.072 1.297
40 0.116 0.158 0.225 0.315 0.429 0.565 0.724 0.906 1.112 1.340
50 0.140 0.182 0.250 0.342 0.457 0.595 0.758 0.943 1.152 1.385
60 0.164 0.207 0.275 0.369 0.486 0.627 0.792 0.981 1.195 1.432
70 0.189 0.232 0.302 0.397 0.516 0.660 0.828 1.021 1.239 1.481
80 0.215 0.259 0.330 0.426 0.548 0.694 0.866 1.063 1.284 1.531
90 0.242 0.286 0.358 0.456 0.580 0.730 0.905 1.106 1.332 1.584
100 0.270 0.315 0.388 0.488 0.615 0.767 0.946 1.151 1.382 1.639

on the noncentral χ2-statistic. Additionally, the difference between two surfaces steeply
increases in the cases T = 120, 240, 360, 480, 600, and N = 10, 20, 30, . . . , 90, 100. In these
cases, the lower surface is smooth and robust, but the upper surface shows the abrupt UTP
changes.

Overall, the noncentral χ2-statistic reveals the consistency relative to portfolio size,
sample size, and SSR compared to the F statistics. From the perspective of rejecting
the upper-tailed hypothesis of SSR, Table 4 and Figure 5 show that our noncentral χ2

approach is more competitive, significant, and locally robust when compared to the param-
eters domain suggested. In addition, note that the Britten-Jones’ F-statistic could likely
apply to the test combining the smaller portfolio and the larger SSR.
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Figure 5. Critical values with respect to the sample size and the portfolio size. This
table-based graph plots how the critical values of the sample SSR are affected by the sample
size and the portfolio size in rejecting the right-tailed hypothesis at the 5% significance level.
The surfaces are generated using θ2 = 0.25, T = 120, 240, . . . , 600, and N = 10, 20, . . . , 100
under the noncentral F- and χ2-statistics. The upper (colorful) plane indicates the critical
values of the noncentral F-statistic over the sample and portfolio sizes provided and then
plot the result as a surface. The lower plane indicates the critical values of the noncentral
χ2-statistic in terms of the same sample size and the same portfolio size.

4. CONCLUSION

The traditional MVET (either the noncentral F-distribution or the central F-statistic) based
on the sample SSR employs the returns’ normality, independence, and constant volatility.
However, the rejection regions of the sample SSR using F tests are not only affected by the
returns’ normality but also the sample and portfolio sizes. Note that the upper-tailed MVET
of a particular portfolio may result in entirely different conclusions under various normality
assumptions. Thus, investors have the critical opportunity cost using the inappropriate
sampling distribution of the sample SSR.

This paper proposes a new sampling distribution for identifying the upper-tailed MVET
using the noncentral χ2-statistic of the sample SSR. We compare our method against two
popular methods (the noncentral F-distribution and the Britten-Jones F-statistic). Under
the error’s normality, we integrate the regression error with a nonzero mean and the arbi-
trage regression into a noncentral χ2-statistic. In this framework, the evidence shows that
the sampling distribution of the sample SSR is to the left of the sampling distributions
of the noncentral F-distribution and the Britten-Jones F-statistic. Compared to these two
benchmarks when using stronger returns’ normality assumptions, the noncentral χ2-statistic
is more effective, significant, and locally robust in rejecting the upper-tailed MVET for a
particular portfolio with the parameters domain employed as usual.

This study also finds that when using the sample SSR for the MVET, the following
principles should be remarked:

• Both the noncentral χ2-statistic and the Britten-Jones F-statistic are superior to
the noncentral F-statistic within our parameters domain. Moreover, the noncentral
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χ2-statistic generally outperforms the Britten-Jones F-statistic except for in tests
that probably combine a smaller portfolio size and a larger SSR.

• If returns have the multivariate normal distribution, the sample SSR theoretically
follows the noncentral F-distribution. To employ the exact noncentral F-distribution
for the MVET, we should first perform the returns’ multivariate normality test.

• If the F-statistic in the arbitrage regression is used to implement the MVET, the
regression error’s normality (including the zero mean) should be tested. Note that the
UTP’s difference between the noncentral F-distribution and the central F-statistic
is small.

• When the regression error’s zero mean is not tenable; the noncentral χ2-statistic of
the sample SSR could be a locally robust test for implementing the MVET.

Acknowledgments

The author is thankful to the Editor and two anonymous reviewers for helpful suggestions which have
improved the presentation in the paper. The author also gratefully acknowledges partial financial support
from the National United University through project 108NUUPRJ-03.

References

1. Abhyankar, A., Basu, D., & Stremme, A. (2012). The optimal use of return predictability: an empirical
study. Journal of Financial and Quantitative 47(5): 973–1001.

2. Affleck-Graves, J. & McDonald, B. (1989). Nonnormalities and tests of asset pricing theories. Journal
of Finance 44(4): 889–908.

3. Britten-Jones, M. (1999). The sampling error in estimating of mean-variance efficient portfolio weights.
Journal of Finance 54(2): 655–671.

4. DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is
the 1/N portfolio strategy?. Review of Financial Studies 22(5): 1915–1953.

5. Elton, E.J. & Gruber, M.J. (1977). Risk reduction and portfolio size: an analytic solution. Journal of
Business 50(4): 415–437.

6. Evans, J.L. & Archer, S.H. (1968). Diversification and the reduction of dispersion: an empirical analysis.
Journal of Finance 23(5): 761–767.

7. Frazzini, A., Kabiller, D., & Pedersen, L.H. (2018). Buffett’s alpha. Financial Analysts Journal 74(4):
35–55.

8. Green, R.C. & Hollifield, B. (1992). When will mean-variance efficient portfolios be well diversified?.
Journal of Finance 47(5): 1785–1809.

9. Gibbons, M.R., Ross, S.A., & Shanken, J. (1989). A test of the efficiency of a given portfolio.
Econometrica 57(5): 1121–1152.

10. Jobson, J.D. & Korkie, B. (1980). Estimation for Markowitz efficient portfolios. Journal of the American
Statistical Association 75(371): 544–554.

11. Jobson, J.D. & Korkie, B. (1983). Statistical inference in two-parameter portfolio theory with multiple
regression software. Journal of Financial and Quantitative Analysis 18(2): 189–197.

12. Kan, R. & Smith, D.R. (2007). The distribution of the sample minimum-variance frontier. Management
Science 54(7): 1364–1380.

13. Kan, R. & Zhou, G. (2007). Optimal portfolio choice with parameter uncertainty. Journal of Financial
and Quantitative 42(3): 621–656.

14. Kourtis, A. (2016). The Sharpe ratio of estimated efficient portfolios. Finance Research Letters 17:
72–78.

15. Kwon, Y.K. (1985). Derivation of the capital asset pricing model without normality or quadratic
preference: a note. Journal of Finance 40(5): 1505–1509.

16. MacKinlay, A.C. & Richardson, M. (1991). Using generalized method of moments to test mean-variance
efficiency. Journal of Finance 46(2): 511–527.

17. Marie-Claude, D., Jean-Marie, B. & Lynda, K. (2007). Multivariate tests of mean-variance efficiency
with possibly non-Gaussian errors: an exact simulation-based approach. Journal of Business and
Economic Statistics 25: 398–410.

https://doi.org/10.1017/S0269964819000482 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000482


428 Wan-Yi Chiu

18. Okhrin, Y. & Schmid, W. (2006). Distributional properties of portfolio weights. Journal of Econometrics

134(1): 235–256.
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APPENDIX A.

In this appendix, we provide the derivations of Eqs. (21)–(24). We first compare the noncen-
tral F-distribution to the Britten-Jones’ F-statistic. Using Eq. (20), the moments of θ̂2 under the
Britten-Jones’ model are:

EBJ(θ̂2) =
N(1 + θ2)

(T − N)
E(FN,T−N ) + θ2 =

N + (T − 2)θ2

T − N − 2
< ENF(θ̂2) (A.1)

and

VBJ(θ̂2) =
N2(1 + θ2)2

(T − N)2
V (FN,T−N )

=
2(T − 2)Nθ4 + 2(T − 2)(N + 2Nθ2)

(T − N − 2)2(T − N − 4)

<
2T 2θ4 + 2(T − 2)(N + 2Tθ2)

(T − N − 2)2(T − N − 4)

= VNF(θ̂2). (A.2)

To derive the moments of a noncentral χ2, for simplicity, let X ∼ χ2
h,δ denote a noncentral

χ2-distribution with h degrees of freedom and with the noncentrality parameter δ. Thus, the pdf
of χ2

h,δ is given by:

fχ2
h
(x; δ) =

∞∑
i=0

e−δ/2(δ/2)i

i!
fχ2

h+2i
(x; 0),

where fχ2
h+2i

(x; 0) is the pdf of χ2
h+2i(0).

Assume that the power series has a positive radius of convergence. Changing the order of
summation and the integration, the expectation of 1/X is:

E

(
1

X

)
=

∞∑
i=0

e−δ/2(δ/2)i

i!

∫ ∞

0

x[(h+2i)/2]−2e−x/2

Γ
(

h+2i
2

)
2(h+2i)/2

dx

=

∞∑
i=0

e−δ/2(δ/2)i

i!
× 1

h + 2i − 2

=
∞∑

i=0

e−δ/2(δ/2)i

i!
×

∫ 1

0
xh+2i−3dx
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= e−δ/2
∫ 1

0
xh−3e(x2δ/2)dx

=
e−δ/2

2

∫ 1

0
u(h−4)/2euδ/2du

Integrating by parts sequentially gives:

E

(
1

X

)
=

1

h − 2
− δ

(h − 2)h
+

δ2

(h − 2)h(h + 2)
− · · · =

∞∑
m=1

(−1)m+1δm−1

Πm
n=1(h + 2n − 4)

.

The procedures previously stated also apply to the expectation of 1/X2.

E

(
1

X2

)
=

∞∑
i=0

e−δ/2(δ/2)i

i!
× 1

(h + 2i − 2)(h + 2i − 4)

=
∞∑

i=0

[
e−δ/2(δ/2)i

i!
×

∫ 1

0

∫ 1

0
sh+2i−3th+2i−5dsdt

]

= e−δ/2
∫ 1

0

[∫ 1

0

∞∑
i=0

(s2t2δ/2)i

i!
× sh−3ds

]
th−5dt

= e−δ/2
∫ 1

0

[∫ 1

0
e(s2t2δ/2)sh−3ds

]
th−5dt

=
e−δ/2

2

∫ 1

0

[∫ 1

0
e(ut2δ/2)u(h−4)/2du

]
th−5dt

� e−δ/2

2

∫ 1

0

[
e(t2δ/2) 2

h − 2
− e(t2δ/2)

(
t2δ

2

)
22

(h − 2)h

+ e(t2δ/2)
(

t2δ

2

)2
23

(h − 2)h(h + 2)

]
th−5dt

= e−δ/2
∫ 1

0

[
e(t2δ/2)th−5

h − 2
− e(t2δ/2)δth−3

(h − 2)h
+

e(t2δ/2)δ2th−1

(h − 2)h(h + 2)

]
dt

=
e−δ/2

2

∫ 1

0

[
e(vδ/2)v(h−6)/2

h − 2
− e(vδ/2)δv(h−4)/2

(h − 2)h
+

e(vδ/2)δ2v(h−2)/2

(h − 2)h(h + 2)

]
dv

� 1

h − 2

[
1

h − 4
− δ

(h − 4)(h − 2)
+

δ2

(h − 4)(h − 2)h

]

− δ

(h − 2)h

[
1

h − 2
− δ

(h − 2)h

]
+

δ2

(h − 2)h(h + 2)

[
1

h

]

=
1

(h − 2)(h − 4)
− 2δ

h(h − 2)(h − 4)
+

3δ2

(h + 2)h(h − 2)(h − 4)
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As a result, we can express the variance of 1/X as

V

(
1

X2

)
=

[
1

(h − 2)(h − 4)
− 1

(h − 2)2

]
+

[
− 2δ

h(h − 2)(h − 4)
+

2δ

h(h − 2)2

]

+

[
3δ2

(h + 2)h(h − 2)(h − 4)
− δ2

(h − 2)2h2
− 2δ2

(h − 2)2h(h + 2)

]
+ · · ·

=
2

(h − 2)2(h − 4)
− 4δ

h(h − 2)2(h − 4)
+

4δ2

h2(h − 2)2(h − 4)

− 4δ3

(h + 2)h2(h − 2)2(h − 4)
+ · · · (A.3)

By replacing the random variance X with the random variable χ2
T−N,δ, we obtain the expectation

of the sample SSR.

ENC(θ̂2) =
T

σ2
E

[
1

χ2
T−N,δ

]
− 1

=

[
T (1 + θ2)2

(T − N − 2)θ2
− T 2(1 + θ2)2

(T − N − 2)(T − N)θ4

+
T 3(1 + θ2)2

(T − N − 2)(T − N)(T − N + 2)θ6
− · · ·

]
− 1

Ignoring the higher orders of θ under the convergent condition, we can approximate ENC(θ̂2) as
follows.

ENC(θ̂2) � T (1 + θ2)2

(T − N − 2)θ2
− T 2(1 + θ2)2

(T − N − 2)(T − N)θ4
− 1

� T (2 + θ2)

(T − N − 2)
− T 2

(T − N − 2)(T − N)
− 1

=
Tθ2

(T − N − 2)
+

2T (T − N) − T 2 − (T − N − 2)(T − N)

(T − N − 2)(T − N)

=
Tθ2

(T − N − 2)
+

2T − N2 − 2N

(T − N − 2)(T − N)

=
(T − 2)θ2 + N

(T − N − 2)
+

2θ2 − N

(T − N − 2)
+

2T − N2 − 2N

(T − N − 2)(T − N)

=
(T − 2)θ2 + N

(T − N − 2)
+

2θ2(T − N) − N(T − N) + (2T − N2 − 2N)

(T − N − 2)(T − N)

<
(T − 2)θ2 + N

(T − N − 2)
+

2θ2(T − N) − N(T − N) + (2T − N2 − 2N)

(T − N − 2)(T − N)

=
(T − 2)θ2 + N

(T − N − 2)
+

2(T − N) − N(T − N) + (2T − N2 − 2N)

(T − N − 2)(T − N)

= EBJ(θ̂2) − T (N − 4) + N2 + 2N + 2

(T − N − 2)(T − N)

< EBJ(θ̂2) (A.4)
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Based on Eq. (A.3), we obtain that

VNC(θ̂2) =
T 2

σ4
V

[
1

χ2
T−N,δ

]

� T 2

σ4

[
2

(T − N − 2)2(T − N − 4)
− 4δ

(T − N)(T − N − 2)2(T − N − 4)

]

=
2T 2(1 + θ2)4

(T − N − 2)2(T − N − 4)θ4
− 4T 3(1 + θ2)4

(T − N)(T − N − 2)2(T − N − 4)θ6

� 2T 2(θ4 + 4θ2 + 6)

(T − N − 2)2(T − N − 4)
− 4T 3(θ2 + 4)

(T − N)(T − N − 2)2(T − N − 4)

=
2T 2(T − N)θ4 + 4T 2(2T − 2N − T )θ2 + 4T 2(3T − 3N − 4T )

(T − N)(T − N − 2)2(T − N − 4)

=
2T 2(T − N)θ4 + 4T 2(T − 2N)θ2 + 4T 2(−T − 3N)

(T − N)(T − N − 2)2(T − N − 4)

<
2T 2(T − N)θ4 + 4T (T − 2)(T − N)θ2 + 2(T − 2)N(T − N)

(T − N)(T − N − 2)2(T − N − 4)

=
(2T 2θ4 + 2(T − 2)(N + 2Tθ2))(T − N)

(T − N)(T − N − 2)2(T − N − 4)

= VNF(θ̂2) (A.5)
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