Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-02-11T08:42:38.756Z Has data issue: false hasContentIssue false

REPETITIVE EQUIVALENCES AND TILTING THEORY

Published online by Cambridge University Press:  06 December 2019

JIAQUN WEI*
Affiliation:
Department of Mathematics, Northwest Normal University, Lanzhou730070, China Institution of Mathematics, School of Mathematics Science, Nanjing Normal University, Nanjing210023, China email weijiaqun@njnu.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Let $R$ be a ring and $T$ be a good Wakamatsu-tilting module with $S=\text{End}(T_{R})^{op}$. We prove that $T$ induces an equivalence between stable repetitive categories of $R$ and $S$ (i.e., stable module categories of repetitive algebras $\hat{R}$ and ${\hat{S}}$). This shows that good Wakamatsu-tilting modules seem to behave in Morita theory of stable repetitive categories as that tilting modules of finite projective dimension behave in Morita theory of derived categories.

Type
Article
Copyright
© 2019 Foundation Nagoya Mathematical Journal

1 Introduction

Tilting theory plays an important role in the representation theory of Artin algebras. The classical tilting modules were introduced in the early 1980s by Brenner–Butler [Reference Brenner and Butler6], Bongartz [Reference Bongartz5] and Happel and Ringel [Reference Happel and Ringel19]. Beginning with Miyashita [Reference Miyashita23] and Happel [Reference Happel and Ringel19], the defining conditions for a classical tilting module were relaxed to tilting modules of arbitrary finite projective dimension, and further were relaxed to arbitrary rings and infinitely generated modules by many authors such as Colby and Fuller [Reference Colby and Fuller12], Colpi and Trlifaj [Reference Colpi and Trlifaj14], Angeleri-Hügel and Coelho [Reference Angeleri-Hügel and Coelho1], Bazzoni [Reference Bazzoni4], etc.

One important result in tilting theory is the famous Brenner–Butler Theorem which shows that a classical tilting module induces a torsion theory counter equivalence (later named in [Reference Colby and Fuller11, Reference Colpi, D’Este and Tonolo13]). Precisely, if $T$ is a classical tilting $R$-module with the endomorphism algebra $S$, then there is a torsion pair $({\mathcal{B}},{\mathcal{A}})$ in the $R$-module category and a torsion pair $({\mathcal{G}},{\mathcal{K}})$ in the $S$-module category such that there is an equivalence between ${\mathcal{A}}$ and ${\mathcal{G}}$ and an equivalence between ${\mathcal{K}}$ and ${\mathcal{B}}$. In this sense, tilting theory may be viewed as a far-reaching way of generalization of the Morita theory of equivalences between module categories. More interesting, when considering the derived category of an algebra, which contains the module category of the algebra as a full subcategory, Happel [Reference Happel18] and later Cline, Parshall and Scott [Reference Cline, Parshall and Scott10] proved that a tilting module of finite projective dimension induces an equivalence between the bounded derived category of the ordinary algebra and the derived category of the endomorphism algebra of the tilting module. This leads to the study of the Morita theory for derived categories, which were completely solved by Rickard [Reference Rickard24] through the notion of tilting complexes and by Keller [Reference Keller21] through dg-categories.

A further generalization of tilting modules to tilting modules of possibly infinite projective dimension was given by Wakamatsu [Reference Wakamatsu25]. Following [Reference Green, Reiten and Solberg17], such tilting modules of possibly infinite projective dimension are called Wakamatsu-tilting modules. It is known that Wakamatsu-tilting modules also induce some equivalences between certain subcategories of module categories [Reference Wakamatsu26]. But Wakamatsu-tilting modules do not induce derived equivalences in general.

However, we will show in this paper that Wakamatsu-tilting modules make more sense when we consider a more general category than the derived category of an algebra, namely, the stable module category of the repetitive algebra of an algebra. Let us call the latter category the stable repetitive category of the algebra. The stable repetitive category is a triangulated category. Moreover, by Happel’s result [Reference Happel18], for an Artin algebra $R$, there is a fully faithful triangle embedding of the bounded derived category of $R$ into the stable repetitive category of $R$. Moreover, this embedding is an equivalence if and only if the global dimension of $R$ is finite; see [Reference Yamaura28] for a generalization and a simple proof of this result.

We say that two algebras are repetitive equivalent if there is an equivalence between their stable repetitive categories. It should be noted that repetitive equivalences are more general than derived equivalences. In fact, by results in [Reference Asashiba2, Reference Chen7, Reference Rickard24], etc., if two algebras are derived equivalent, then their repetitive algebras are derived equivalent, and hence stably equivalent. Thus, derived equivalences always induce repetitive equivalences. However, repetitive equivalences need not be derived equivalences (see Example 5.3).

The following is the main theorem of this paper.

Theorem 1. Let $R$ be an Artin algebra. If $T$ is a good Wakamatsu-tilting $R$-module with $S=\text{End}(T_{R})^{op}$, that is, bimodules $_{S}T_{R}$ and $_{R}DT_{S}$ represent a cotorsion pair counter equivalence between a complete hereditary cotorsion pair $({\mathcal{B}},{\mathcal{A}})$ in $\text{mod}R$ and a complete hereditary cotorsion pair $({\mathcal{G}},{\mathcal{K}})$ in $\text{mod}S$, then $R$ and $S$ are repetitive equivalent. The equivalence can be chosen to restrict to the equivalence between ${\mathcal{A}}$ and ${\mathcal{G}}$.

Remark.

  1. (1) The definition of good Wakamatsu-tilting modules is given in Section 3.2. It is still a question for us whether or not all Wakamatsu-tilting modules are good Wakamatsu-tilting modules in general. For algebras of finite representation type, the answer is affirmative.

  2. (2) In a subsequent paper [Reference Chen and Wei9] collaborated with Chen, we can prove that the equivalence in the main theorem is indeed a triangle equivalence.

  3. (3) The result shows that good Wakamatsu-tilting modules seem to behave in the Morita theory of stable repetitive categories as that tilting modules of finite projective dimension behave in the Morita theory of derived categories. We hope that this paper could give some spark on the study of the Morita theory of stable repetitive categories, which is clearly a new area and far from being solved.

Conversely, we have the following result.

Proposition 2. Let $R$ and $S$ be Artin algebras. Assume that there is a triangle equivalence between their stable repetitive categories and that this equivalence restricts to an equivalence between a covariantly finite coresolving subcategory ${\mathcal{A}}$ in $\text{mod}R$ and a contravariantly finite resolving subcategory ${\mathcal{G}}$ in $\text{mod}S$. Let $T$ be the preimage in $\text{mod}R$ of $S$. Then $T$ is a good Wakamatsu-tilting $R$-module with $S\simeq \text{End}(T_{R})^{op}$.

The paper is organized as follows. After the introduction, we provide basic knowledge on Wakamatsu-tilting modules and repetitive categories in Section 2. Then in Section 3, we introduce good Wakamatsu-tilting modules through cotorsion pair counter equivalences. Some properties and characterizations of good Wakamatsu-tilting modules are presented. Section 4 is devoted to the proof of the main theorem and the proposition in Section 1. Though the proof of the theorem is a little complicated, the main idea is inspired by constructions in [Reference Happel18, Lemma 4.1 in Chap. 3] and [Reference Wakamatsu26, Section 1]. Finally, we provide some examples in the last section. In particular, it is shown that every Wakamatsu-tilting module over an algebra of finite representation type is a good Wakamatsu-tilting module and hence induces a repetitive equivalence. We also provide an example of repetitive equivalences but not derived equivalences.

Conventions. Throughout this paper, we always work over Artin algebras and finitely generated right modules unless we claim otherwise. For an algebra $R$, we denote by $\text{mod}R$ the category of all finitely generated $R$-modules and by $\text{proj}R$ (resp., $\text{inj}R$) the category of finitely generated projective (resp., injective) $R$-modules. We denote the usual duality over an Artin algebra $R$ by $D$.

Let ${\mathcal{A}}$ be an additive category and $T\in {\mathcal{A}}$, we use $\text{add}_{{\mathcal{A}}}T$ to denote the additive closure of $T$ in ${\mathcal{A}}$, that is, the class of all objects in ${\mathcal{A}}$ which is isomorphic to a direct summand of finite direct sums of some copies of $T$.

For two functors $\text{F}:{\mathcal{A}}\rightarrow {\mathcal{B}}$ and $\text{G}:{\mathcal{B}}\rightarrow {\mathcal{C}}$, we use $\text{GF}$ to denote their composition. While we use $f\cdot g$, or simply just $fg$, to denote the composition of two homomorphisms $f:A\rightarrow B$ and $g:B\rightarrow C$.

Let ${\mathcal{A}}$ and ${\mathcal{B}}$ be two additive categories and $\text{F}:{\mathcal{A}}\rightarrow {\mathcal{B}}$ be an additive functor, we use $\text{KerF}$ to denote the subcategory of $A\in {\mathcal{A}}$ such that $\text{F}(A)=0$. Moreover, if $\text{F}_{i}:\text{A}\rightarrow {\mathcal{B}}$, $i\in I$, is a class of functors, we denote $\text{KerF}_{I}=\bigcap _{i\in I}\text{KerF}_{i}$. For instance, $\text{KerExt}_{R}^{{\geqslant}1}(T,-)$ is the subcategory of all $M\in \text{mod}R$ such that $\text{Ext}_{R}^{i}(T,M)=0$ for all $i\geqslant 1$.

We write the elements of direct sums as row vectors.

2 Wakamatsu-tilting modules and repetitive categories

2.1 Wakamatsu-tilting modules

Recall that an $R$-module $T\in \text{mod}R$ is Wakamatsu-tilting [Reference Wakamatsu25] provided that

  1. (1) $\text{End}(\text{}_{S}T)^{op}\simeq R$, where $S:=\text{End}(T_{R})^{op}$, and

  2. (2) $\text{Ext}_{R}^{i}(T,T)=0=\text{Ext}_{S}^{i}(T,T)=0$ for all $i>0$.

These two conditions are also equivalent to the following two conditions [Reference Wakamatsu25, Proposition 3.5]:

  1. (1) $\text{Ext}_{R}^{i}(T,T)=0$ for all $i>0$ and

  2. (2) there is an exact sequence $0\rightarrow R\rightarrow T_{0}\rightarrow T_{1}\rightarrow \cdots \,$, where $T_{i}\in \text{add}_{\text{mod}R}T$ for all $i$, which stays exact after applying the functor $\text{Hom}_{R}(-,T)$.

Note that if $T$ is Wakamatsu-tilting and $S=\text{End}(T_{R})^{op}$, then $_{S}T$ is a Wakamatsu-tilting left $S$-module. In this case, we say that $T$ is a Wakamatsu-tilting $S$-$R$-bimodule. It is easy to see that $DT$ is a Wakamatsu-tilting $R$-$S$-bimodule in the mean time.

2.1.1 Auslander–Reiten class and co-Auslander–Reiten class

Let $T\in \text{mod}R$ be a Wakamatsu-tilting module with $S=\text{End}(T_{R})^{op}$. There are the following two interesting classes associated with Wakamatsu-tilting modules.

The Auslander–Reiten class in $\text{mod}R$ with respect to the Wakamatsu-tilting module $T_{R}$, denoted by ${\mathcal{X}}_{T}$, is defined as follows [Reference Auslander and Reiten3].

${\mathcal{X}}_{T}:=\{M\in \text{mod}R|$ there is an infinite exact sequence $0\rightarrow M\stackrel{f_{0}}{\longrightarrow }T_{0}\stackrel{f_{1}}{\longrightarrow }T_{1}\stackrel{f_{2}}{\longrightarrow }\cdots \,$ such that $\text{Im}f_{i}\in \text{KerExt}_{R}^{{\geqslant}1}(-,T)$ for each $i\geqslant 0$, where $T_{i}\in \text{add}_{\text{mod}R}T$ for all $i\}$.

Obviously, it holds that ${\mathcal{X}}_{T}\subseteq \text{KerExt}_{R}^{{\geqslant}1}(-,T)$. Moreover, these two classes coincide with each other provided that $T$ is a cotilting $R$-module.

Dually, the co-Auslander–Reiten class in $\text{mod}R$ with respect to the Wakamatsu-tilting $R$-module $T$, denoted by $_{T}{\mathcal{X}}$, is defined as follows.

$_{T}{\mathcal{X}}:=\{M\in \text{mod}R|$ there is an infinite exact sequence $\cdots \stackrel{f_{2}}{\longrightarrow }T_{1}\stackrel{f_{1}}{\longrightarrow }T_{0}\stackrel{f_{0}}{\longrightarrow }M\rightarrow 0$ such that $\text{Im}f_{i}\in \text{KerExt}_{R}^{{\geqslant}1}(T,-)$ for each $i\geqslant 0$, where $T_{i}\in \text{add}_{\text{mod}R}T$ for all $i\}$.

Similarly, we have that $_{T}{\mathcal{X}}\subseteq \text{KerExt}_{R}^{{\geqslant}1}(T,-)$ and they coincide with each other provided that $T$ is a tilting $R$-module.

The following result gives some properties about the Auslander–Reiten class and the co-Auslander–Reiten class for a Wakamatsu-tilting module [Reference Auslander and Reiten3, Reference Mantese and Reiten22, Reference Wakamatsu26, Reference Wakamatsu27].

Proposition.

Let $T$ be a Wakamatsu-tilting $R$-module with $S=\text{End}(T_{R})^{op}$.

  1. (1) The Auslander–Reiten class ${\mathcal{X}}_{T}$ is a resolving subcategory, that is, it contains all projective $R$-modules and is closed under extensions, kernels of epimorphisms and direct summands.

  2. (2) The co-Auslander–Reiten class $_{T}{\mathcal{X}}$ is a coresolving subcategory, that is, it contains all injective $R$-modules and is closed under extensions, cokernels of monomorphisms and direct summands.

  3. (3) $\text{KerExt}_{R}^{1}({\mathcal{X}}_{T},-)=\text{KerExt}_{R}^{{\geqslant}1}({\mathcal{X}}_{T},-)\subseteq _{T}{\mathcal{X}}$.

  4. (4) $\text{KerExt}_{R}^{1}(-,_{T}{\mathcal{X}})=\text{KerExt}_{R}^{{\geqslant}1}(-,_{T}{\mathcal{X}})\subseteq {\mathcal{X}}_{T}$.

  5. (5) $\text{Hom}_{R}(T,-)$ and $-\!\otimes _{S}T$ induce an (additive) equivalence between the co-Auslander–Reiten class $_{T}{\mathcal{X}}$ in $\text{mod}R$ and the Auslander–Reiten class ${\mathcal{X}}_{DT}$ in $\text{mod}S$. The equivalence restricts to an (additive) equivalence between the class $\text{KerExt}_{R}^{{\geqslant}1}({\mathcal{X}}_{T},-)$ and the class $\text{KerExt}_{S}^{{\geqslant}1}(-,_{DT}{\mathcal{X}})$.

Proof. (1) and (2) follow from [Reference Auslander and Reiten3, Section 5]; see also [Reference Mantese and Reiten22].

(3) and (4) follow from [Reference Wakamatsu27, Lemma 1.4 and Proposition 1.6].

(5) follows from [Reference Wakamatsu26, Proposition 2.14]. ◻

We remark that in case $T=R$, the class ${\mathcal{X}}_{T}={\mathcal{X}}_{R}$ is just the class of all Gorenstein projective $R$-modules. Dually, in case $T=DR$, the class $_{T}{\mathcal{X}}=_{DR}{\mathcal{X}}$ is just the class of all Gorenstein injective modules. We refer to [Reference Enochs and Jenda15] for more on Gorenstein projective and Gorenstein injective modules.

2.1.2

The following is a characterization of the Auslander–Reiten class and the co-Auslander–Reiten class, by [Reference Wakamatsu26, Section 2].

Lemma.

Let $T$ be a Wakamatsu-tilting $R$-module with $S=\text{End}(T_{R})^{op}$. Assume $X\in \text{mod}R$.

  1. (1) $X\in _{T}{\mathcal{X}}$ if and only if $X\in \text{KerExt}_{R}^{{>}0}(T,-)$, $\text{Hom}_{R}(T,X)\otimes _{S}T\simeq X$ and $\text{Hom}_{R}(T,X)\in \text{KerTor}_{{>}0}^{S}(-,T)$ canonically.

  2. (2) $X\in {\mathcal{X}}_{T}$ if and only if $X\in \text{KerExt}_{R}^{{>}0}(-,T)$, $\text{Hom}_{S}(\text{Hom}_{R}(X,T),T)$$\simeq X$ and $\text{Hom}_{R}(X,T)\in \text{KerExt}_{S}^{{>}0}(-,T)$ canonically.

2.1.3 Useful isomorphisms

Let $T$ be a Wakamatsu-tilting $S$-$R$-bimodule. Then we have the following isomorphisms of bimodules:

$$\begin{eqnarray}_{S}DS_{S}\simeq _{S}T\otimes _{R}DT_{S}\qquad \text{and}\qquad _{R}DR_{R}\simeq _{R}DT\otimes _{S}T_{R}.\end{eqnarray}$$

Given an adjoint pair $(\text{F},\text{G})$ of functors, we denote by $\boldsymbol{\unicode[STIX]{x1D6E4}}$ the natural adjoint isomorphism

$$\begin{eqnarray}\boldsymbol{\unicode[STIX]{x1D6E4}}:\text{Hom}(\text{F}(-),-)\simeq \text{Hom}(-,\text{G}(-)).\end{eqnarray}$$

Moreover, for a homomorphism $f:\text{F}(X)\rightarrow Y$, we denote by $\boldsymbol{\unicode[STIX]{x1D6E4}}(f):X\rightarrow \text{G}(Y)$ the image of $f$ under the isomorphism $\boldsymbol{\unicode[STIX]{x1D6E4}}$. We denote by $\unicode[STIX]{x1D702}$ and $\unicode[STIX]{x1D716}$ the unit and counit of this adjoint pair, respectively, that is,

$$\begin{eqnarray}\displaystyle & \unicode[STIX]{x1D702}_{X}=\boldsymbol{\unicode[STIX]{x1D6E4}}^{T}(1_{F(X)}):X\rightarrow GF(X)\qquad \text{and} & \displaystyle \nonumber\\ \displaystyle & \unicode[STIX]{x1D716}_{Y}=(\boldsymbol{\unicode[STIX]{x1D6E4}}^{T})^{-1}(1_{G(Y)}):FG(Y)\rightarrow Y. & \displaystyle \nonumber\end{eqnarray}$$

In particular, associated with an $S$-$R$-bimodule $T$, we have the following adjoint isomorphism:

$$\begin{eqnarray}\boldsymbol{\unicode[STIX]{x1D6E4}}^{T}:\text{Hom}_{R}(-\!\otimes _{S}T,-)\simeq \text{Hom}_{S}(-,\text{Hom}_{R}(T,-)).\end{eqnarray}$$

We denote by $\unicode[STIX]{x1D702}^{T}$ and $\unicode[STIX]{x1D716}^{T}$ the unit and counit of this adjoint pair, respectively, that is, for $X\in \text{mod}S$ and $Y\in \text{mod}R$, respectively,

$$\begin{eqnarray}\displaystyle & \unicode[STIX]{x1D702}_{X}^{T}=\boldsymbol{\unicode[STIX]{x1D6E4}}^{T}(1_{X\otimes _{S}T}):X\rightarrow \text{Hom}_{R}(T,X\otimes _{S}T)\qquad \text{and} & \displaystyle \nonumber\\ \displaystyle & \unicode[STIX]{x1D716}_{Y}^{T}=(\boldsymbol{\unicode[STIX]{x1D6E4}}^{T})^{-1}(1_{\text{Hom}_{R}(T,Y)}):\text{Hom}_{R}(T,Y)\otimes _{S}T\rightarrow Y. & \displaystyle \nonumber\end{eqnarray}$$

By the naturality of the isomorphism $\boldsymbol{\unicode[STIX]{x1D6E4}}$, for all homomorphisms $f:X_{1}\rightarrow X_{2}$$g:\text{F}(X_{2})\rightarrow Y_{1}$ and $h:Y_{1}\rightarrow Y_{2}$, it holds that $\boldsymbol{\unicode[STIX]{x1D6E4}}(\text{F}(f)\cdot g\cdot h)=f\cdot \boldsymbol{\unicode[STIX]{x1D6E4}}(g)\cdot \text{G}(h)$.

In particular, for a morphism $g:F(X)\rightarrow Y$, by applying $\boldsymbol{\unicode[STIX]{x1D6E4}}$ to the composition $F(X)\stackrel{1_{F(X)}}{\rightarrow }F(X)\stackrel{g}{\rightarrow }Y$, we have that $\boldsymbol{\unicode[STIX]{x1D6E4}}(g)=\boldsymbol{\unicode[STIX]{x1D6E4}}(1_{F(X)})\cdot \text{G}(g)=\unicode[STIX]{x1D702}_{X}\cdot \text{G}(g)$. Dually, for a morphism $f:X\rightarrow G(Y)$, we have that $\boldsymbol{\unicode[STIX]{x1D6E4}}^{-1}(f)=F(f)\unicode[STIX]{x1D716}_{Y}$.

2.2 Repetitive algebras and repetitive categories

2.2.1

We recall some basic facts on repetitive algebras mainly from [Reference Happel18].

Let $R$ be an Artin algebra. The repetitive algebra $\widehat{R}$ of $R$ was first introduced in [Reference Hughes and Waschbüsch20] and is defined to be the direct sum $\widehat{R}=\bigoplus _{n\in \mathbb{Z}}R\oplus \bigoplus _{n\in \mathbb{Z}}DR$ with the multiplication given by

$$\begin{eqnarray}(a_{n},\unicode[STIX]{x1D711}_{n})(b_{n},\unicode[STIX]{x1D713}_{n})_{n}=(a_{n}b_{n},a_{n+1}\unicode[STIX]{x1D713}_{n}+\unicode[STIX]{x1D711}_{n}b_{n})_{n}.\end{eqnarray}$$

The repetitive algebra $\widehat{R}$ can be interpreted as the following infinite matrix algebra (without the identity):

$$\begin{eqnarray}\left(\begin{array}{@{}ccccc@{}}\ddots & & & & \\ \ddots & R & & & \\ & DR & R & & \\ & & DR & R & \\ & & & \ddots & \ddots \end{array}\right).\end{eqnarray}$$

2.2.2

Consider the following two categories:

  1. (1) ${\mathcal{R}}{\mathcal{C}}^{\otimes }(R):=\{X=\{X_{i},\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\}_{i\in \mathbb{Z}}\mid X_{i}\in \text{mod}R$ such that almost all $X_{i}$ are 0 and $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X):X_{i}\otimes _{R}DR\rightarrow X_{i-1}$ satisfying $(\unicode[STIX]{x1D6FF}_{i+1}^{\otimes }(X)\otimes _{R}DR)\cdot \unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)=0$, for each $i\}$, where a morphism between two objects $X$ and $Y$ is given by $f=\{f_{i}:X_{i}\rightarrow Y_{i}\}$ such that $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\cdot f_{i-1}=f_{i}\otimes _{R}DR\cdot \unicode[STIX]{x1D6FF}_{i}^{\otimes }(Y)$ for all $i$.

  2. (2) ${\mathcal{R}}{\mathcal{C}}^{\text{H}}(R):=\{X=\{X_{i},\unicode[STIX]{x1D6FF}_{i}^{\text{H}}(X)\}_{i\in \mathbb{Z}}\mid X_{i}\in \text{mod}R$ such that almost all $X_{i}$ are 0 and $\unicode[STIX]{x1D6FF}_{i}^{\text{H}}(X):X_{i}\rightarrow \text{Hom}_{R}(DR,X_{i-1})$ satisfying $\unicode[STIX]{x1D6FF}_{i+1}^{\text{H}}(X)\cdot \text{Hom}_{R}(DR,\unicode[STIX]{x1D6FF}_{i}^{\text{H}}(X))=0$, for each $i\}$, where a morphism between two objects $X$ and $Y$ is given by $f=\{f_{i}:X_{i}\rightarrow Y_{i}\}$ such that $\unicode[STIX]{x1D6FF}_{i}^{\text{H}}(X)\cdot \text{Hom}_{R}(DR,f_{i-1})=f_{i}\cdot \unicode[STIX]{x1D6FF}_{i}^{\text{H}}(Y)$ for all $i$.

One can check that these two categories ${\mathcal{R}}{\mathcal{C}}^{\otimes }(R)$ and ${\mathcal{R}}{\mathcal{C}}^{\text{H}}(R)$ are both abelian categories. Moreover, they are indeed equivalent to each other as abelian categories, via the adjoint pair $(-\!\otimes _{R}DR,\text{Hom}_{R}(DR,-))$. Indeed, an object $X=\{X_{i},\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\}\in {\mathcal{R}}{\mathcal{C}}^{\otimes }(R)$ is equivalent to an object $X=\{X_{i},\boldsymbol{\unicode[STIX]{x1D6E4}}^{DR}(\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X))\}\in {\mathcal{R}}{\mathcal{C}}^{\text{H}}(R)$. We will freely use this equivalence. In particular, we often view objects $X$ in these two categories being of the following form with almost all terms $X_{i}=0$

$$\begin{eqnarray}\cdots \stackrel{\unicode[STIX]{x1D6FF}_{i+1}}{{\rightsquigarrow}}X_{i}\stackrel{\unicode[STIX]{x1D6FF}_{i}}{{\rightsquigarrow}}X_{i-1}\stackrel{\unicode[STIX]{x1D6FF}_{i-1}}{{\rightsquigarrow}}\cdots \,,\end{eqnarray}$$

where $\unicode[STIX]{x1D6FF}_{i}$ means $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)$ (resp., $\unicode[STIX]{x1D6FF}_{i}^{\text{H}}(X)$) if $X\in {\mathcal{R}}{\mathcal{C}}^{\otimes }(R)$ (resp., $X\in {\mathcal{R}}{\mathcal{C}}^{\text{H}}(R)$). We call it a (bounded chain) repe-complex with the repe-difference $\unicode[STIX]{x1D6FF}$ and denote by ${\mathcal{R}}{\mathcal{C}}(R)$ the category of all such repe-complexes and call it the repetitive category over $R$. Note that there is an obvious automorphism $[1]:{\mathcal{R}}{\mathcal{C}}(R)\rightarrow {\mathcal{R}}{\mathcal{C}}(R)$ defined by $(X[1])_{i}=X_{i-1}$ for each $i$.

Note that if $X=\{X_{i}\}$ is a repe-complex, then $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\cdot \unicode[STIX]{x1D6FF}_{i-1}^{\text{H}}(X)=0$ since $\boldsymbol{\unicode[STIX]{x1D6E4}}^{DR}(\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\cdot \unicode[STIX]{x1D6FF}_{i-1}^{\text{H}}(X))=\unicode[STIX]{x1D6FF}_{i}^{\text{H}}(X)\cdot \text{Hom}_{R}(DR,\unicode[STIX]{x1D6FF}_{i-1}^{\text{H}}(X))=0$.

We say that a repe-complex $X=\{X_{i},\unicode[STIX]{x1D6FF}_{i}\}\in {\mathcal{R}}{\mathcal{C}}(R)$ is trivial if each $\unicode[STIX]{x1D6FF}_{i}=0$. The full subcategory of all trivial repe-complexes is denoted by ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)$. Note that there is a natural forgetful functor from ${\mathcal{R}}{\mathcal{C}}(R)$ to ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)$ by forgetting the repe-difference.

Let ${\mathcal{C}}$ be a class of $R$-modules, we denote by ${\mathcal{R}}{\mathcal{C}}({\mathcal{C}})$ the class of repe-complexes with terms in ${\mathcal{C}}$. The notation ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{C}})$ is defined similarly.

The connection between the repetitive category and the algebra $\widehat{R}$ is that the repetitive category is equivalent to $\text{mod}\widehat{R}$, that is, the module category of the algebra $\widehat{R}$, as abelian categories; see [Reference Happel18] for details. Thus, we may identify ${\mathcal{R}}{\mathcal{C}}(R)=\text{mod}\widehat{R}$.

2.2.3

As shown in [Reference Happel18], $\widehat{R}$ is a self-injective algebra and then the category ${\mathcal{R}}{\mathcal{C}}(R)(=\text{mod}\widehat{R})$ is a Frobenius category, where the projective (and also injective) objects are of the form

$$\begin{eqnarray}\cdots \stackrel{\unicode[STIX]{x1D6FF}_{i+1}}{{\rightsquigarrow}}P_{i}\oplus I_{i}\stackrel{\unicode[STIX]{x1D6FF}_{i}}{{\rightsquigarrow}}P_{i-1}\oplus I_{i-1}\stackrel{\unicode[STIX]{x1D6FF}_{i-1}}{{\rightsquigarrow}}\cdots \,,\end{eqnarray}$$

where $P_{i}\in \text{proj}R$, $I_{i}\in \text{inj}R$ and $\unicode[STIX]{x1D6FF}_{i}=\big(\begin{smallmatrix}0 & \unicode[STIX]{x1D6FF}_{i}^{\prime }\\ 0 & 0\end{smallmatrix}\big)$ such that $\unicode[STIX]{x1D6FF}_{i}^{\prime }:P_{i}\otimes _{R}DR\rightarrow I_{i-1}$ is an isomorphism (considered in ${\mathcal{R}}{\mathcal{C}}^{\otimes }(R)$) or, equivalently, $\unicode[STIX]{x1D6FF}_{i}^{\prime }:P_{i}\rightarrow \text{Hom}_{R}(DR,I_{i-1})$ is an isomorphism (considered in ${\mathcal{R}}{\mathcal{C}}^{\text{H}}(R)$). Thus, its stable category $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$ is a triangulated category. We will call it the stable repetitive category of $\text{mod}R$ (or simply, of $R$).

It was shown in [Reference Happel18] that there is a fully faithful triangle embedding from the derived category ${\mathcal{D}}^{b}(\text{mod}R)$ to the stable repetitive category $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$. Moreover, there is a triangle equivalence between ${\mathcal{D}}^{b}(\text{mod}R)$ and $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$ if and only if $R$ has finite global dimension. We note that this result was generalized in [Reference Yamaura28] and also a simple proof of this result was presented there.

For basic knowledge on triangulated categories, derived categories and the tilting theory, we refer to [Reference Happel18].

3 Cotorsion pairs and good Wakamatsu-tilting modules

3.1 Cotorsion pair counter equivalences

A pair of subcategories $({\mathcal{B}},{\mathcal{A}})$ in $\text{mod}R$ is called a cotorsion pair, if ${\mathcal{B}}=\text{KerExt}_{R}^{1}(-,{\mathcal{A}})$ and ${\mathcal{A}}=\text{KerExt}_{R}^{1}({\mathcal{B}},-)$. A cotorsion pair $({\mathcal{B}},{\mathcal{A}})$ is called hereditary provided that ${\mathcal{B}}$ is resolving, or equivalently, ${\mathcal{A}}$ is coresolving. Moreover, a cotorsion pair $({\mathcal{B}},{\mathcal{A}})$ is called complete provided that, for each $X\in \text{mod}R$, there exist exact sequences $0\rightarrow X\rightarrow A\rightarrow B\rightarrow 0$ and $0\rightarrow A^{\prime }\rightarrow B^{\prime }\rightarrow X\rightarrow 0$ for some $A,A^{\prime }\in {\mathcal{A}}$ and $B,B^{\prime }\in {\mathcal{B}}$. We refer to the book [Reference Göbel and Trlifaj16] for general results on cotorsion pairs.

Let $({\mathcal{B}},{\mathcal{A}})$ be a cotorsion pair in $\text{mod}R$ and $({\mathcal{G}},{\mathcal{K}})$ be a cotorsion pair in $\text{mod}S$. Similar to torsion theory counter equivalences in the Brenner–Butler theorem (see [Reference Colby and Fuller11, Reference Colpi, D’Este and Tonolo13]), we say that there is a cotorsion pair counter equivalence between $({\mathcal{B}},{\mathcal{A}})$ and $({\mathcal{G}},{\mathcal{K}})$ provided that there is an equivalence $\text{H}:{\mathcal{A}}~_{\longleftarrow }^{\longrightarrow }{\mathcal{G}}:\text{T}$ and an equivalence $\text{H}^{\prime }:{\mathcal{K}}~_{\longleftarrow }^{\longrightarrow }{\mathcal{B}}:\text{T}^{\prime }$, all as additive categories. Moreover, we say that two bimodules $_{S}V_{R}$ and $_{R}V_{S}^{\prime }$ represent the cotorsion pair counter equivalence if $\text{H}=\text{Hom}_{R}(V,-)$, $\text{T}=-\!\otimes _{S}V$ and $\text{H}^{\prime }=\text{Hom}_{S}(V^{\prime },-)$, $\text{T}^{\prime }=-\!\otimes _{R}V^{\prime }$.

There are close relations between Wakamatsu-tilting modules and cotorsion pair counter equivalences, as shown in the following proposition.

Proposition.

Let $T$ be a Wakamatsu-tilting $R$-module with $S=\text{End}(T_{R})^{op}$.

  1. (1) Both pairs $(\text{KerExt}_{R}^{1}(-,_{T}{\mathcal{X}}),_{T}{\mathcal{X}})$ and $({\mathcal{X}}_{T},\text{KerExt}_{R}^{1}({\mathcal{X}}_{T},-))$ are hereditary cotorsion pairs.

  2. (2) The bimodules $_{S}T_{R}$ and $_{R}DT_{S}$ represent a cotorsion pair counter equivalence between the cotorsion pair $(\text{KerExt}_{R}^{1}(-,_{T}{\mathcal{X}}),_{T}{\mathcal{X}})$ in $\text{mod}R$ and the cotorsion pair $({\mathcal{X}}_{DT},\text{KerExt}_{S}^{1}({\mathcal{X}}_{DT},-))$ in $\text{mod}S$.

  3. (3) The bimodules $_{R}DT_{S}$ and $_{S}T_{R}$ represent a cotorsion pair counter equivalence between the cotorsion pair $(\text{KerExt}_{S}^{1}(-,_{DT}{\mathcal{X}}),_{DT}{\mathcal{X}})$ in $\text{mod}S$ and the cotorsion pair $({\mathcal{X}}_{T},\text{KerExt}_{R}^{1}({\mathcal{X}}_{T},-))$ in $\text{mod}R$.

Proof.

  1. (1) follows from [Reference Mantese and Reiten22, Proposition 3.1] and Proposition 2.1.1.

  2. (2) follows from Proposition 2.1.1(5).

  3. (3) is obtained from (2) by replacing $_{S}T_{R}$ with $_{R}DT_{S}$. ◻

3.2 Good Wakamatsu-tilting modules

3.2.1

In general, the two cotorsion pairs in Proposition 3.1(1) are not complete. For instance, consider the case $T=R$. Then ${\mathcal{X}}_{R}$ is the class of all Gorenstein projective modules (note that we only consider finitely generated modules). It is well known that this class is not a precovering class in general; see, for instance, [Reference Yoshino29]. Thus, the cotorsion pair $({\mathcal{X}}_{R},\text{KerExt}_{R}^{1}({\mathcal{X}}_{R},-))$ cannot be complete. Dually, the cotorsion pair $(\text{KerExt}_{R}^{1}(-,_{DR}{\mathcal{X}}),_{DR}{\mathcal{X}})$ in case $T=DR$ is not complete in general.

However, the other cotorsion pair of the two cotorsion pairs in Proposition 3.1(1), that is, the cotorsion pair

$$\begin{eqnarray}(\text{KerExt}_{R}^{1}(-,_{R}{\mathcal{X}}),_{R}{\mathcal{X}})(=(\text{proj}R,\text{mod}R))\end{eqnarray}$$

for $T=R$ and the cotorsion pair

$$\begin{eqnarray}({\mathcal{X}}_{DR},\text{KerExt}_{R}^{1}({\mathcal{X}}_{DR},-))(=(\text{mod}R,\text{inj}R))\end{eqnarray}$$

for $T=DR$, respectively, is clearly complete. This leads to the following general definition.

Definition.

A Wakamatsu-tilting bimodule $_{S}T_{R}$ is said to be good if the bimodules $_{S}T_{R}$ and $_{R}DT_{S}$ represent a cotorsion pair counter equivalence between a complete hereditary cotorsion pair $({\mathcal{B}},{\mathcal{A}})$ in $\text{mod}R$ and a complete hereditary cotorsion pair $({\mathcal{G}},{\mathcal{K}})$ in $\text{mod}S$. Furthermore, an $R$-module $T$ is said to be a good Wakamatsu-tilting module if $_{S}T_{R}$ is a good Wakamatsu-tilting bimodule with $S=\text{End}(T_{R})^{op}$.

For example, $R$ and $DR$ are good Wakamatsu-tilting modules. In general, if $_{S}T_{R}$ is a good Wakamatsu-tilting bimodule, then $_{R}DT_{S}$ is also a good Wakamatsu-tilting bimodule by the definition and the fact that $DDT=T$.

In general, we do not know if the following question has an affirmative answer.

Question.

Are all Wakamatsu-tilting modules good Wakamatsu-tilting modules?

However, we will see in Section 5 that the answer to the above question is ‘yes’ for algebras of finite representation type.

3.2.2

By the definition, we have the following property of Wakamatsu-tilting bimodules.

Proposition.

Let $_{S}T_{R}$ be a Wakamatsu-tilting bimodule. Assume that $({\mathcal{B}},{\mathcal{A}})$ is a hereditary cotorsion pair in $\text{mod}R$ and $({\mathcal{G}},{\mathcal{K}})$ is a hereditary cotorsion pair in $\text{mod}S$ such that the bimodules $_{S}T_{R}$ and $_{R}DT_{S}$ represent a cotorsion pair counter equivalence between them. Then

  1. (1) ${\mathcal{B}}\subseteq {\mathcal{X}}_{T}$, ${\mathcal{A}}\subseteq _{T}{\mathcal{X}}$ and ${\mathcal{G}}\subseteq {\mathcal{X}}_{DT}$, ${\mathcal{K}}\subseteq _{DT}{\mathcal{X}}$

  2. (2) $\text{add}_{\text{mod}R}T={\mathcal{B}}\bigcap {\mathcal{A}}$ and $\text{add}_{\text{mod}S}DT={\mathcal{G}}\bigcap {\mathcal{K}}$

Proof. (1) First, we show that $\text{add}_{\text{mod}R}T\subseteq {\mathcal{B}}\bigcap {\mathcal{A}}$ and $\text{add}_{\text{mod}S}DT\subseteq {\mathcal{G}}\bigcap {\mathcal{K}}$.

Note that all the involved subcategories in (1) are closed under finite direct sums and direct summands. Since ${\mathcal{G}}$ is resolving, we have that $S\in {\mathcal{G}}$. By the equivalence between ${\mathcal{A}}$ and ${\mathcal{G}}$, we obtain that $T=S\otimes _{S}T\in {\mathcal{A}}$. It follows that $\text{add}_{\text{mod}R}T\subseteq {\mathcal{A}}$. Dually, since ${\mathcal{K}}$ is coresolving, we have that $DS\in {\mathcal{K}}$. It follows from the equivalence between ${\mathcal{B}}$ and ${\mathcal{K}}$ that $T=\text{Hom}_{S}(S,T)=\text{Hom}_{S}(DT,DS)\in {\mathcal{B}}$. Hence, $\text{add}_{\text{mod}R}T\subseteq {\mathcal{B}}$ too. Thus, we obtain that $\text{add}_{\text{mod}R}T\subseteq {\mathcal{B}}\bigcap {\mathcal{A}}$. Dually, one also has $\text{add}_{\text{mod}S}DT\subseteq {\mathcal{G}}\bigcap {\mathcal{K}}$.

Clearly, ${\mathcal{B}}=\text{KerExt}_{R}^{1}(-,{\mathcal{A}})=\text{KerExt}_{R}^{{\geqslant}1}(-,{\mathcal{A}})\subseteq \text{KerExt}_{R}^{{\geqslant}1}(-,T)$ follows from $\text{add}_{\text{mod}R}T\subseteq {\mathcal{B}}\bigcap {\mathcal{A}}$ and the fact that $({\mathcal{B}},{\mathcal{A}})$ is a hereditary cotorsion pair. Take any $B\in {\mathcal{B}}$, then $B\otimes _{R}DT\in {\mathcal{K}}$. Take an exact sequence $0\rightarrow B\otimes _{R}DT\rightarrow I\rightarrow Y\rightarrow 0$ with $I\in \text{inj}S=\text{add}_{\text{mod}S}DS$. Since ${\mathcal{K}}$ is coresolving, we have that $I,Y\in {\mathcal{K}}$ too. Applying the functor $\text{Hom}_{S}(DT,-)$, we obtain an induced exact sequence $0\rightarrow \text{Hom}_{S}(DT,B\otimes _{R}DT)\rightarrow \text{Hom}_{S}(DT,I)\rightarrow \text{Hom}_{S}(DT,Y)\rightarrow 0$ since ${\mathcal{K}}=\text{KerExt}_{S}^{1}({\mathcal{G}},-)\subseteq \text{KerExt}_{S}^{1}(DT,-)$ by the fact that $DT\in {\mathcal{G}}$. Note that $B\simeq \text{Hom}_{S}(DT,B\otimes _{R}DT)$, $\text{Hom}_{S}(DT,I)\in \text{add}_{\text{mod}R}T$ and $\text{Hom}_{S}(DT,Y)\in {\mathcal{B}}$, so one can easily see that $B\in {\mathcal{X}}_{T}$. Thus, ${\mathcal{B}}\subseteq {\mathcal{X}}_{T}$. By the equivalence in Proposition 3.1(3), we also obtain that ${\mathcal{K}}\subseteq _{DT}{\mathcal{X}}$.

Now considering the Wakamatsu-tilting module $_{R}DT_{S}$ and applying the above result, we can obtain that ${\mathcal{G}}\subseteq {\mathcal{X}}_{DT}$ and that ${\mathcal{A}}\subseteq _{T}{\mathcal{X}}$.

(2) If $X\in {\mathcal{B}}\bigcap {\mathcal{A}}$, then $X\in {\mathcal{B}}$. Following the proof of (1), we obtain that there is an exact sequence $0\rightarrow X\rightarrow T_{X}\rightarrow X^{\prime }\rightarrow 0$ with $T_{X}\in \text{add}_{\text{mod}R}T$ and $X^{\prime }\in {\mathcal{B}}$. Since $X\in {\mathcal{A}}$ too, we have that $\text{Ext}_{R}^{1}(X^{\prime },X)=0$. It follows that the exact sequence splits. Hence, $X\in \text{add}_{\text{mod}R}T$. Together with the first claim in the proof of (1), we obtain that $\text{add}_{\text{mod}R}T={\mathcal{B}}\bigcap {\mathcal{A}}$. Dually, we also have that $\text{add}_{\text{mod}S}DT={\mathcal{G}}\bigcap {\mathcal{K}}$.◻

3.2.3

Recall that a subcategory ${\mathcal{A}}\subseteq \text{mod}R$ is covariantly finite (or a preenveloping class) if for any $X\in \text{mod}R$, there is an object $A_{X}\in {\mathcal{A}}$ and a homomorphism $u_{_{X}}:X\rightarrow A_{X}$ such that $\text{Hom}_{R}(u_{_{X}},A)$ is surjective for any object $A\in {\mathcal{A}}$; see, for instance, [Reference Auslander and Reiten3]. Dually, a subcategory ${\mathcal{B}}\subseteq \text{mod}R$ is contravariantly finite (or a precovering class) if for any $X\in \text{mod}R$, there is an object $B_{X}\in {\mathcal{B}}$ and a homomorphism $v_{X}:B_{X}\rightarrow X$ such that $\text{Hom}_{R}(B,v_{X})$ is surjective for any object $B\in {\mathcal{B}}$.

A cotorsion pair $({\mathcal{B}},{\mathcal{A}})$ is complete if and only if ${\mathcal{A}}$ is covariantly finite, if and only if ${\mathcal{B}}$ is contravariantly finite; see [Reference Auslander and Reiten3, Proposition 1.9].

Let ${\mathcal{A}}$ be a subcategory of $\text{mod}R$. An $R$-module $T$ is said to be Ext-projective in ${\mathcal{A}}$ if $T\in {\mathcal{A}}\bigcap \text{KerExt}_{R}^{1}(-,{\mathcal{A}})$. Moreover, it is said to be an Ext-projective generator in ${\mathcal{A}}$ if, for any $A\in {\mathcal{A}}$, there exists an exact sequence $0\rightarrow A^{\prime }\rightarrow T_{A}\rightarrow A\rightarrow 0$ with $T_{A}\in \text{add}_{\text{mod}R}T$ and $A^{\prime }\in {\mathcal{A}}$. Dually, an $R$-module $T$ is said to be an Ext-injective cogenerator in ${\mathcal{A}}$ if $T\in {\mathcal{A}}\bigcap \text{KerExt}_{R}^{1}({\mathcal{A}},-)$ and, for any $A\in {\mathcal{A}}$, there exists an exact sequence $0\rightarrow A\rightarrow T_{A}\rightarrow A^{\prime }\rightarrow 0$ with $T_{A}\in \text{add}_{\text{mod}R}T$ and $A^{\prime }\in {\mathcal{A}}$.

Lemma.

Let ${\mathcal{A}}$ be a subcategory closed under extensions and direct summands.

  1. (1) Assume that ${\mathcal{A}}$ has an Ext-projective generator $T$. If $0\rightarrow X\rightarrow Y\rightarrow Z\rightarrow 0$ is an exact sequence which stays exact after applying the functor $\text{Hom}_{R}(T,-)$, where $Y,Z\in {\mathcal{A}}$, then $X\in {\mathcal{A}}$ too.

  2. (2) Assume that ${\mathcal{A}}$ has an Ext-injective cogenerator $T$. If $0\rightarrow X\rightarrow Y\rightarrow Z\rightarrow 0$ is an exact sequence which stays exact after applying the functor $\text{Hom}_{R}(-,T)$, where $X,Y\in {\mathcal{A}}$, then $Z\in {\mathcal{A}}$ too.

Proof. (1) By the assumptions, we can construct the following commutative diagram, where $T_{Z}\in \text{add}_{\text{mod}R}T$ and $Z^{\prime }\in {\mathcal{A}}$:

Since ${\mathcal{A}}$ is closed under extensions and direct summands, we have that $X\in {\mathcal{A}}$ from the middle column.

(2) Dually. ◻

3.2.4

Lemma.

Let $T$ be a Wakamatsu-tilting $R$-module, $S=\text{End}(T_{R})^{op}$. Assume that $\text{Hom}_{R}(T,-):{\mathcal{A}}_{\longleftarrow }^{\longrightarrow }{\mathcal{G}}:-\!\otimes _{S}T$ define an equivalence. Then the following are equivalent:

  1. (1) ${\mathcal{A}}$ is coresolving and $T$ is an Ext-projective generator in ${\mathcal{A}}$.

  2. (2) ${\mathcal{G}}$ is resolving and $DT$ is an Ext-injective cogenerator in ${\mathcal{G}}$.

Proof. (1) $\Rightarrow$ (2) The condition that $T$ is an Ext-projective generator in ${\mathcal{A}}$ means that $T\in {\mathcal{A}}\subseteq \text{KerExt}_{R}^{1}(T,-)$ and that every $A\in {\mathcal{A}}$ admits an exact sequence $0\rightarrow A^{\prime }\rightarrow T_{A}\rightarrow A\rightarrow 0$ with $T_{A}\in \text{add}_{\text{mod}R}T$ and $A^{\prime }\in {\mathcal{A}}$. This implies that ${\mathcal{A}}\subseteq \text{KerExt}_{R}^{{\geqslant}1}(T,-)$. In particular, ${\mathcal{A}}\subseteq _{T}{\mathcal{X}}$.

Note that, for any $X\in {\mathcal{A}}$, there is an exact sequence $0\rightarrow X\rightarrow I\rightarrow X^{\prime }\rightarrow 0$ with $I\in \text{inj}R\subseteq {\mathcal{A}}$ and $X^{\prime }\in {\mathcal{A}}$ since ${\mathcal{A}}$ is coresolving. Applying the functor $\text{Hom}_{R}(T,-)$, we have an exact sequence $0\rightarrow \text{Hom}_{R}(T,X)\rightarrow \text{Hom}_{R}(T,I)\rightarrow \text{Hom}_{R}(T,X^{\prime })\rightarrow 0$. Since $\text{Hom}_{R}(T,I)\in \text{add}_{\text{mod}S}DT$ and $\text{Ext}_{S}^{1}(\text{Hom}_{R}(T,X),DT)\simeq \text{Ext}_{S}^{1}(\text{Hom}_{R}(T,X),\text{Hom}_{R}(T,DR))=0$, we obtain that $DT$ is an Ext-injective cogenerator in $\text{Hom}_{R}(T,{\mathcal{A}})={\mathcal{G}}$.

It is clear that ${\mathcal{G}}$ is closed under direct summands. Assume now there is an exact sequence $(\flat ):0\rightarrow X\rightarrow Y\stackrel{g}{\longrightarrow }Z\rightarrow 0$ with $Z\in {\mathcal{G}}$, then $Z\in \text{Hom}_{R}(T,{\mathcal{A}})\subseteq \text{KerTor}_{1}^{S}(-,T)$. Applying the functor $-\!\otimes _{S}T$, we obtain an induced exact sequence $(\flat \otimes _{S}T):0\rightarrow X\otimes _{S}T\rightarrow Y\otimes _{S}T\stackrel{g\otimes _{S}T}{\longrightarrow }Z\otimes _{S}T\rightarrow 0$.

Assume first $X\in {\mathcal{G}}$ too, then $X\otimes _{S}T\in {\mathcal{A}}$. It follows that $Y\otimes _{S}T\in {\mathcal{A}}$ too since ${\mathcal{A}}$ is closed under extensions. Note now that there is an exact sequence $0\rightarrow \text{Hom}_{R}(T,X\otimes _{S}T)\rightarrow \text{Hom}_{R}(T,Y\otimes _{S}T)\rightarrow \text{Hom}_{R}(T,Z\otimes _{S}T)\rightarrow 0$, so we have that $\text{Hom}_{R}(T,Y\otimes _{S}T)\simeq Y$ since $\text{Hom}_{R}(T,X\otimes _{S}T)\simeq X$ and $\text{Hom}_{R}(T,Z\otimes _{S}T)\simeq Z$. Thus, $Y\in \text{Hom}_{R}(T,{\mathcal{A}})={\mathcal{G}}$. This shows that ${\mathcal{G}}$ is closed under extensions.

Assume now $Y\in {\mathcal{G}}$, then $\text{Hom}_{R}(T,g\otimes _{S}T)\simeq g$. In particular, we have that $\text{Hom}_{R}(T,X\otimes _{S}T)\simeq X$ and the homomorphism $\text{Hom}_{R}(T,g\otimes _{S}T)$ is surjective. It follows that the exact sequence $(\flat \otimes _{S}T)$ stays exact after applying the functor $\text{Hom}_{R}(T,-)$. By Lemma 3.2.3, we obtain that $X\otimes _{S}T\in {\mathcal{A}}$. Hence, $X\in \text{Hom}_{R}(T,{\mathcal{A}})={\mathcal{G}}$. This shows that ${\mathcal{G}}$ is closed under kernels of epimorphisms. Then we see that ${\mathcal{G}}$ is resolving.

(2) $\Rightarrow$ (1) Dually.◻

3.2.5

Proposition.

Let $_{S}T_{R}$ be a Wakamatsu-tilting module. Assume that $({\mathcal{B}},{\mathcal{A}})$ is a hereditary cotorsion pair in $\text{mod}R$ and that $T$ is an Ext-projective generator in ${\mathcal{A}}$, then $(\text{Hom}_{R}(T,{\mathcal{A}}),{\mathcal{B}}\otimes _{R}DT)$ is a hereditary cotorsion pair in $\text{mod}S$. In particular, the bimodules $_{S}T_{R}$ and $_{R}DT_{S}$ represent a cotorsion pair counter equivalence between $({\mathcal{B}},{\mathcal{A}})$ and $(\text{Hom}_{R}(T,{\mathcal{A}}),{\mathcal{B}}\otimes _{R}DT)$ in this case.

Proof. Since $T$ is an Ext-projective generator in ${\mathcal{A}}$, we see that $T\in \text{KerExt}_{R}^{1}(-,{\mathcal{A}})\bigcap {\mathcal{A}}={\mathcal{B}}\bigcap {\mathcal{A}}$ and that, for any $A\in {\mathcal{A}}$, there is an exact sequence $0\rightarrow A^{\prime }\rightarrow T_{A}\rightarrow A\rightarrow 0$ with $T_{A}\in \text{add}_{\text{mod}R}T$ and $A^{\prime }\in {\mathcal{A}}$. In particular, for any $X\in {\mathcal{A}}\bigcap {\mathcal{B}}$, there is an exact sequence $0\rightarrow X^{\prime }\rightarrow T_{X}\rightarrow X\rightarrow 0$ with $T_{X}\in \text{add}_{\text{mod}R}T$ and $X^{\prime }\in {\mathcal{A}}$, which is clearly split. Hence, $X\in \text{add}_{\text{mod}R}T$. It follows that $\text{add}_{\text{mod}R}T={\mathcal{B}}\bigcap {\mathcal{A}}$. Moreover, by an argument similar to the one used in the proof of [Reference Mantese and Reiten22, Proposition 2.13(b)], we have that $T$ is also an Ext-injective cogenerator in ${\mathcal{B}}$. Note that these facts imply that ${\mathcal{A}}\subseteq _{T}{\mathcal{X}}$ and that ${\mathcal{B}}\subseteq {\mathcal{X}}_{T}$. In particular, $\text{Hom}_{R}(T,-):{\mathcal{A}}_{\longleftarrow }^{\longrightarrow }\text{Hom}_{R}(T,{\mathcal{A}}):-\!\otimes _{S}T$ define an equivalence and $\text{Hom}_{S}(DT,-):{\mathcal{B}}\otimes _{R}DT_{\longleftarrow }^{\longrightarrow }{\mathcal{B}}:-\!\otimes _{R}DT$ define an equivalence, by Proposition 2.1.1.

The above arguments, in particular, show that Lemma 3.2.4 can be applied to ${\mathcal{A}}$ (considering the Wakamatsu-tilting bimodule $_{S}T_{R}$) and ${\mathcal{B}}$ (considering the Wakamatsu-tilting bimodule $_{R}DT_{S}$); thus, we see that $\text{Hom}_{R}(T,{\mathcal{A}})$ is resolving and that ${\mathcal{B}}\otimes _{R}DT$ is coresolving. It is also clear that the bimodules $_{S}T_{R}$ and $_{R}DT_{S}$ represent a counter equivalence between two pairs $({\mathcal{B}},{\mathcal{A}})$ and $(\text{Hom}_{R}(T,{\mathcal{A}}),{\mathcal{B}}\otimes _{R}DT)$, by assumptions. So, it just remains to show that $(\text{Hom}_{R}(T,{\mathcal{A}}),{\mathcal{B}}\otimes _{R}DT)$ is a cotorsion pair.

We divide the remaining proof into three steps.

Step 1. $\text{Ext}_{S}^{i}(\text{Hom}_{R}(T,A),B\otimes _{R}DT)=0$, for any $A\in {\mathcal{A}}$ and any $B\in {\mathcal{B}}$ and for any $i\geqslant 0$.

Note that there is a natural isomorphism

$$\begin{eqnarray}D\text{Hom}_{S}(S,B\otimes _{R}DT)\simeq \text{Hom}_{R}(B,S\otimes _{S}T).\end{eqnarray}$$

It induces a natural isomorphism, for any $S_{i}\in \text{add}_{\text{mod}S}S$,

(¶)

Now take $A\in {\mathcal{A}}$; since $T$ is an Ext-projective generator, there is a long exact sequence

(†)$$\begin{eqnarray}\cdots \rightarrow T_{n}\rightarrow \cdots \rightarrow T_{1}\rightarrow T_{0}\rightarrow A\rightarrow 0,\end{eqnarray}$$

where each $T_{i}\in \text{add}_{\text{mod}R}T$ and each image in ${\mathcal{A}}$. Here we consider the sequence () as a (cochain) complex with the term $A$ at the first position.

Since $B\in \text{KerExt}_{R}^{1}(-,{\mathcal{A}})$, we have the following induced exact sequence $\text{Hom}_{R}(B,\dagger )$:

$$\begin{eqnarray}\cdots \rightarrow \text{Hom}_{R}(B,T_{n})\rightarrow \cdots \rightarrow \text{Hom}_{R}(B,T_{1})\rightarrow \text{Hom}_{R}(B,T_{0})\rightarrow \text{Hom}_{R}(B,A)\rightarrow 0.\end{eqnarray}$$

On the other hand, by applying the functor $D\text{Hom}_{S}(\text{Hom}_{R}(T,-),B\otimes _{R}DT)$, we have a complex $D\text{Hom}_{S}(\text{Hom}_{R}(T,\dagger ),B\otimes _{R}DT)$:

$$\begin{eqnarray}\displaystyle & & \displaystyle \cdots \rightarrow D\text{Hom}_{S}(\text{Hom}_{R}(T,T_{n}),B\otimes _{R}DT)\rightarrow \cdots \rightarrow D\text{Hom}_{S}(\text{Hom}_{R}(T,T_{1}),B\otimes _{R}DT)\nonumber\\ \displaystyle & & \displaystyle \quad \rightarrow D\text{Hom}_{S}(\text{Hom}_{R}(T,T_{0}),B\otimes _{R}DT)\rightarrow D\text{Hom}_{S}(\text{Hom}_{R}(T,A),B\otimes _{R}DT)\rightarrow 0.\nonumber\end{eqnarray}$$

Since $\text{Hom}_{R}(T,\dagger )$ is exact, the functor $D\text{Hom}_{S}(\text{Hom}_{R}(T,-),B\otimes _{R}DT)$ is right exact. By the above isomorphism (¶), we obtain the following isomorphisms of complexes:

$$\begin{eqnarray}D\text{Hom}_{S}(\text{Hom}_{R}(T,\dagger ),B\otimes _{R}DT)\simeq \text{Hom}_{R}(B,\text{Hom}_{R}(T,\dagger )\otimes _{S}T)\simeq \text{Hom}_{R}(B,\dagger ).\end{eqnarray}$$

But the later is exact, so we obtain that, for $i\geqslant 1$,

$$\begin{eqnarray}\displaystyle & & \displaystyle \text{Ext}_{S}^{i}(\text{Hom}_{R}(T,A),B\otimes _{R}DT)\simeq \text{H}^{i}(\text{Hom}_{S}(\text{Hom}_{R}(T,\dagger ),B\otimes _{R}DT))\nonumber\\ \displaystyle & & \displaystyle \quad \simeq D\text{H}^{-i}(D\text{Hom}_{S}(\text{Hom}_{R}(T,\dagger ),B\otimes _{R}DT))\simeq D\text{H}^{-i}(\text{Hom}_{R}(B,\dagger ))=0.\nonumber\end{eqnarray}$$

Thus, Step 1 is established. In particular, we obtain that $\text{Hom}_{R}(T,{\mathcal{A}})\subseteq \text{KerExt}_{S}^{1}(-,{\mathcal{B}}\otimes _{R}DT)$ and that ${\mathcal{B}}\otimes _{R}DT\subseteq \text{KerExt}_{S}^{1}(\text{Hom}_{R}(T,{\mathcal{A}}),-)$ due to the arbitrarity of $A\in {\mathcal{A}}$ and $B\in {\mathcal{B}}$.

Step 2. $\text{KerExt}_{S}^{1}(-,{\mathcal{B}}\otimes _{R}DT)\subseteq \text{Hom}_{R}(T,{\mathcal{A}})$.

Take any $Y\in \text{KerExt}_{S}^{1}(-,{\mathcal{B}}\otimes _{R}DT)$ and a projective resolution of $Y$, where we consider as a (cochain) complex with the term $Y$ at the zeroth position:

()$$\begin{eqnarray}\cdots \stackrel{f_{n+1}}{\longrightarrow }S_{n}\stackrel{f_{n}}{\longrightarrow }\cdots \stackrel{f_{3}}{\longrightarrow }S_{2}\stackrel{f_{2}}{\longrightarrow }S_{1}\stackrel{f_{1}}{\longrightarrow }S_{0}\stackrel{f_{0}}{\longrightarrow }Y\rightarrow 0.\end{eqnarray}$$

Note that $DT=R\otimes _{R}DT\in {\mathcal{B}}\otimes _{R}DT$ and that ${\mathcal{B}}\otimes _{R}DT$ is coresolving, so we obtain that

$$\begin{eqnarray}\displaystyle & Y\in \text{KerExt}_{S}^{1}(-,{\mathcal{B}}\otimes _{R}DT)=\text{KerExt}_{S}^{{>}0}(-,{\mathcal{B}}\otimes _{R}DT) & \displaystyle \nonumber\\ \displaystyle & \subseteq \text{KerExt}_{S}^{{>}0}(-,DT)=\text{KerTor}_{{>}0}^{S}(-,T). & \displaystyle \nonumber\end{eqnarray}$$

Then we have an induced exact sequence:

(ST)$$\begin{eqnarray}\cdots \rightarrow S_{n}\otimes _{S}T\rightarrow \cdots \rightarrow S_{2}\otimes _{S}T\rightarrow S_{1}\otimes _{S}T\rightarrow S_{0}\otimes _{S}T\rightarrow Y\otimes _{S}T\rightarrow 0.\end{eqnarray}$$

For any $B\in {\mathcal{B}}$, applying the left exact functor $\text{Hom}_{R}(B,-)$, we obtain a complex $\text{Hom}_{R}(B,\sharp \otimes _{S}T)$:

$$\begin{eqnarray}\displaystyle & & \displaystyle \cdots \rightarrow \text{Hom}_{R}(B,S_{n}\otimes _{S}T)\rightarrow \cdots \rightarrow \text{Hom}_{R}(B,S_{2}\otimes _{S}T)\rightarrow \text{Hom}_{R}(B,S_{1}\otimes _{S}T)\nonumber\\ \displaystyle & & \displaystyle \quad \rightarrow \text{Hom}_{R}(B,S_{0}\otimes _{S}T)\rightarrow \text{Hom}_{R}(B,Y\otimes _{S}T)\rightarrow 0.\nonumber\end{eqnarray}$$

Applying the right exact functor $D\text{Hom}_{S}(-,B\otimes _{R}DT)$ to the sequence (), we obtain a complex $D\text{Hom}_{S}(\sharp ,B\otimes _{R}DT)$:

$$\begin{eqnarray}\displaystyle & & \displaystyle \cdots \rightarrow D\text{Hom}_{S}(S_{n},B\otimes _{R}DT)\rightarrow \cdots \rightarrow D\text{Hom}_{S}(S_{2},B\otimes _{R}DT)\nonumber\\ \displaystyle & & \displaystyle \quad \rightarrow D\text{Hom}_{S}(S_{1},B\otimes _{R}DT)\rightarrow D\text{Hom}_{S}(S_{0},B\otimes _{R}DT)\rightarrow D\text{Hom}_{S}(Y,B\otimes _{R}DT)\rightarrow 0,\nonumber\end{eqnarray}$$

which is indeed exact since $S_{i},Y\in \text{KerExt}_{S}^{{>}0}(-,{\mathcal{B}}\otimes _{R}DT)$.

By the natural isomorphism (¶) in Step 1 again, we have isomorphisms of truncated complexes

$$\begin{eqnarray}(D\text{Hom}_{S}(\sharp ,B\otimes _{R}DT))^{{<}0}\simeq (\text{Hom}_{R}(B,\sharp \otimes _{S}T))^{{<}0},\end{eqnarray}$$

where $(-)^{{<}0}$ denotes the truncated complex of a complex by replacing the $i$th term with $0$ for all $i\geqslant 0$.

Since $B\in \text{KerExt}_{R}^{1}(-,S_{i}\otimes _{S}T)$ and $\text{Hom}_{R}(B,-)$ is left exact, we obtain that, for $i\geqslant 4$, $\text{Ext}_{R}^{1}(B,Y_{i}\otimes _{S}T)\simeq \text{H}^{-i+2}(\text{Hom}_{R}(B,\sharp \otimes _{S}T))$, where $Y_{i}=\text{Im}f_{i}$. But the latter homology is 0 by the above isomorphism of truncated complexes and by the fact that the complex $D\text{Hom}_{S}(\sharp ,B\otimes _{R}DT)$ is exact. This shows that $Y_{i}\otimes _{S}T\in \text{KerExt}_{R}^{1}({\mathcal{B}},-)={\mathcal{A}}$, for all $i\geqslant 4$.

Now consider the exact sequence obtained from (ST):

$$\begin{eqnarray}0\rightarrow Y_{4}\otimes _{S}T\rightarrow S_{3}\otimes _{S}T\rightarrow S_{2}\otimes _{S}T\rightarrow S_{1}\otimes _{S}T\rightarrow S_{0}\otimes _{S}T\rightarrow Y\otimes _{S}T\rightarrow 0.\end{eqnarray}$$

As also each $S_{i}\otimes _{S}T\in \text{add}_{\text{mod}R}T\subseteq {\mathcal{A}}$ and ${\mathcal{A}}$ is coresolving, we obtain that each $Y_{i}\otimes _{S}T\in {\mathcal{A}}$, where $Y_{i}=\text{Im}f_{i}$ for $0\leqslant i\leqslant 3$. Thus, the exact sequence $\sharp \otimes _{S}T$ is indeed in ${\mathcal{A}}$. Then we have an induced exact sequence $\text{Hom}_{R}(T,\sharp \otimes _{S}T)$:

$$\begin{eqnarray}\displaystyle & & \displaystyle \cdots \rightarrow \text{Hom}_{R}(T,S_{n}\otimes _{S}T)\rightarrow \cdots \rightarrow \text{Hom}_{R}(T,S_{1}\otimes _{S}T)\nonumber\\ \displaystyle & & \displaystyle \quad \rightarrow \text{Hom}_{R}(T,S_{0}\otimes _{S}T)\rightarrow \text{Hom}_{R}(T,Y\otimes _{S}T)\rightarrow 0.\nonumber\end{eqnarray}$$

Since $S_{i}\simeq \text{Hom}_{R}(T,S_{i}\otimes _{S}T)$ for each $i$, it follows that

$$\begin{eqnarray}Y\simeq \text{Hom}_{R}(T,Y\otimes _{S}T)\in \text{Hom}_{R}(T,{\mathcal{A}}).\end{eqnarray}$$

This shows that $\text{KerExt}_{S}^{1}(-,{\mathcal{B}}\otimes _{R}DT)\subseteq \text{Hom}_{R}(T,{\mathcal{A}})$. Together with Step 1, we obtain that $\text{KerExt}_{S}^{1}(-,{\mathcal{B}}\otimes _{R}DT)=\text{Hom}_{R}(T,{\mathcal{A}})$.

Step 3. $\text{KerExt}_{S}^{1}(\text{Hom}_{R}(T,{\mathcal{A}}),-)\subseteq {\mathcal{B}}\otimes _{R}DT$.

Note that there is an isomorphism

$$\begin{eqnarray}\text{Hom}_{S}(\text{Hom}_{R}(T,A),DS)\simeq D\text{Hom}_{R}(\text{Hom}_{S}(DT,DS),A),\end{eqnarray}$$

for any $A\in \text{mod}R$ and that it induces an isomorphism

$$\begin{eqnarray}\text{Hom}_{S}(\text{Hom}_{R}(T,A),I_{i})\simeq D\text{Hom}_{R}(\text{Hom}_{S}(DT,I_{i}),A),\end{eqnarray}$$

for any $I_{i}\in \text{add}_{\text{mod}S}DS$.

Now take any $X\in \text{KerExt}_{S}^{1}(\text{Hom}_{R}(T,{\mathcal{A}}),-)$ and consider an injective resolution of $X$:

()$$\begin{eqnarray}0\rightarrow X\stackrel{g_{0}}{\longrightarrow }I_{0}\stackrel{g_{1}}{\longrightarrow }I_{1}\stackrel{g_{2}}{\longrightarrow }I_{2}\stackrel{g_{3}}{\longrightarrow }\cdots \stackrel{g_{n}}{\longrightarrow }I_{n}\stackrel{g_{n+1}}{\longrightarrow }\cdots \,;\end{eqnarray}$$

here, we consider () as a (cochain) complex with the term $X$ at the zeroth position. Since $DT\simeq \text{Hom}_{R}(T,DR)\in \text{Hom}_{R}(T,{\mathcal{A}})$ and $\text{Hom}_{R}(T,{\mathcal{A}})$ is resolving, we obtain that

$$\begin{eqnarray}X\in \text{KerExt}_{S}^{1}(\text{Hom}_{R}(T,{\mathcal{A}}),-)=\text{KerExt}_{S}^{{>}0}(\text{Hom}_{R}(T,{\mathcal{A}}),-)\subseteq \text{KerExt}_{S}^{{>}0}(DT,-).\end{eqnarray}$$

Thus, for any $A\in {\mathcal{A}}$, applying the functor $\text{Hom}_{S}(\text{Hom}_{R}(T,A),-)$, we have an induced exact complex $\text{Hom}_{S}(\text{Hom}_{R}(T,A),\natural )$:

$$\begin{eqnarray}\displaystyle & & \displaystyle 0\rightarrow \text{Hom}_{S}(\text{Hom}_{R}(T,A),X)\longrightarrow \,\text{Hom}_{S}(\text{Hom}_{R}(T,A),I_{0})\nonumber\\ \displaystyle & & \displaystyle \quad \longrightarrow \text{Hom}_{S}(\text{Hom}_{R}(T,A),I_{1})\longrightarrow \cdots \longrightarrow \,\text{Hom}_{S}(\text{Hom}_{R}(T,A),I_{n})\longrightarrow \cdots \,.\nonumber\end{eqnarray}$$

On the other hand, by applying the functor $D\text{Hom}_{R}(\text{Hom}_{S}(DT,-),A)$, we also have the following induced complex $D\text{Hom}_{R}(\text{Hom}_{S}(DT,\natural ),A)$:

$$\begin{eqnarray}\displaystyle & & \displaystyle 0\rightarrow D\text{Hom}_{R}(\text{Hom}_{S}(DT,X),A)\longrightarrow D\text{Hom}_{R}(\text{Hom}_{S}(DT,I_{0}),A)\nonumber\\ \displaystyle & & \displaystyle \quad \longrightarrow D\text{Hom}_{R}(\text{Hom}_{S}(DT,I_{1}),A)\longrightarrow \cdots \longrightarrow \,D\text{Hom}_{R}(\text{Hom}_{S}(DT,I_{n}),A)\longrightarrow \cdots \,.\nonumber\end{eqnarray}$$

Since $\text{Hom}_{S}(DT,I_{i})\in \text{add}_{\text{mod}R}\text{Hom}_{S}(DT,DS)=\text{add}_{\text{mod}R}T$ and $A\in \text{KerExt}_{R}^{1}(T,-)$ and since $\text{Hom}_{S}(DT,\natural )$ is exact and $\text{Hom}_{R}(-,A)$ is left exact, we can obtain that, for any $i\geqslant 2$,

$$\begin{eqnarray}\text{Ext}_{R}^{1}(\text{Hom}_{S}(DT,X_{i+1}),A)\simeq \text{H}^{-i}(\text{Hom}_{R}(\text{Hom}_{S}(DT,\natural ),A)),\end{eqnarray}$$

where $X_{i}:=\text{Im}g_{i}$. However, by the above-mentioned isomorphism $(\ast )$ and the fact that $\text{Hom}_{S}(\text{Hom}_{R}(T,A),\natural )$ is exact, we further have that

$$\begin{eqnarray}\displaystyle & & \displaystyle \text{H}^{-i}(\text{Hom}_{R}(\text{Hom}_{S}(DT,\natural ),A))\simeq D\text{H}^{i}(D\text{Hom}_{R}(\text{Hom}_{S}(DT,\natural ),A))\nonumber\\ \displaystyle & & \displaystyle \quad \simeq D\text{H}^{i}(\text{Hom}_{S}(\text{Hom}_{R}(T,A),\natural ))=0.\nonumber\end{eqnarray}$$

It follows that $\text{Hom}_{S}(DT,X_{i+1})\in \text{KerExt}_{R}^{1}(-,{\mathcal{A}})={\mathcal{B}}$ for any $i\geqslant 2$. Since ${\mathcal{B}}$ is resolving and $\text{Hom}_{S}(DT,I_{i})\in \text{add}_{\text{mod}R}T\subseteq {\mathcal{B}}$, we also obtain that each $\text{Hom}_{S}(DT,X_{i})\in {\mathcal{B}}$ for each $0\leqslant i\leqslant 2$, where $X_{0}:=X$ and $X_{i}:=\text{Im}g_{i}$ for $i=1,2$, from the exact sequence

$$\begin{eqnarray}\displaystyle & & \displaystyle 0\rightarrow \text{Hom}_{S}(DT,X)\rightarrow \text{Hom}_{S}(DT,I_{0})\rightarrow \text{Hom}_{S}(DT,I_{2})\nonumber\\ \displaystyle & & \displaystyle \quad \rightarrow \text{Hom}_{S}(DT,I_{3})\rightarrow \text{Hom}_{S}(DT,X_{3})\rightarrow 0.\nonumber\end{eqnarray}$$

The above arguments show that the exact sequence $\text{Hom}_{S}(DT,\natural )$ is indeed in ${\mathcal{B}}$. Then we have an induced exact sequence $\text{Hom}_{S}(DT,\natural )\otimes _{R}DT$ as follows since ${\mathcal{B}}\subseteq \text{KerExt}_{R}^{1}(-,T)=\text{KerTor}_{1}^{R}(-,DT)$:

$$\begin{eqnarray}\displaystyle & & \displaystyle 0\rightarrow \text{Hom}_{S}(DT,X)\otimes _{R}DT\rightarrow \text{Hom}_{S}(DT,I_{0})\otimes _{R}DT\nonumber\\ \displaystyle & & \displaystyle \quad \rightarrow \text{Hom}_{S}(DT,I_{1})\otimes _{R}DT\rightarrow \cdots \rightarrow \text{Hom}_{S}(DT,I_{n})\otimes _{R}DT\rightarrow \cdots \,.\nonumber\end{eqnarray}$$

It follows that

$$\begin{eqnarray}X\simeq \text{Hom}_{S}(DT,X)\otimes _{R}DT\in {\mathcal{B}}\otimes _{R}DT\end{eqnarray}$$

since $I_{i}\simeq \text{Hom}_{S}(DT,I_{i})\otimes _{R}DT$ for each $i$. This shows that

$$\begin{eqnarray}\text{KerExt}_{S}^{1}(\text{Hom}_{R}(T,{\mathcal{A}}),-)\subseteq {\mathcal{B}}\otimes _{R}DT.\end{eqnarray}$$

Together with Step 1, we obtain that $\text{KerExt}_{S}^{1}(\text{Hom}_{R}(T,{\mathcal{A}}),-)={\mathcal{B}}\otimes _{R}DT$.

Altogether, we obtain that $(\text{Hom}_{R}(T,{\mathcal{A}}),{\mathcal{B}}\otimes _{R}DT)$ is a hereditary cotorsion pair.◻

3.2.6

Corollary.

Let $T\in \text{mod}R$ be Wakamatsu-tilting with $S=\text{End}(T_{R})^{op}$. Assume that the functor $\text{Hom}_{R}(T,-)$ gives an equivalence between a covariantly finite coresolving subcategory ${\mathcal{A}}$ in $\text{mod}R$ and a contravariantly finite resolving subcategory ${\mathcal{G}}$ in $\text{mod}S$. If $T$ is an Ext-projective generator in ${\mathcal{A}}$, then $T$ is a good Wakamatsu-tilting module.

Proof. Since ${\mathcal{G}}$ is a contravariantly finite resolving subcategory in $\text{mod}S$, there is a cotorsion pair $({\mathcal{G}},\text{KerExt}_{S}^{1}({\mathcal{G}},-))$ in $\text{mod}S$, by [Reference Auslander and Reiten3, Proposition 1.10]. Dually, there is a cotorsion pair $(\text{KerExt}_{R}^{1}(-,{\mathcal{A}}),{\mathcal{A}})$ in $\text{mod}R$ since ${\mathcal{A}}$ is a covariantly finite coresolving subcategory in $\text{mod}R$. Note that both cotorsion pairs are complete and hereditary by [Reference Auslander and Reiten3, Proposition 3.3 and the Remark after Proposition 3.4]. Since $T$ is an Ext-projective generator in ${\mathcal{A}}$, by Proposition 3.2.5, the bimodules $_{S}T_{R}$ and $_{R}DT_{S}$ represent a cotorsion pair counter equivalence between the above two cotorsion pairs. Hence, $T$ is a good Wakamatsu-tilting module by the definition.◻

4 The proof of main results

The whole section will be devoted to the proof of the two results mentioned in Section 1.

Let $R$ be an Artin algebra and $T$ be a good Wakamatsu-tilting module with $S=\text{End}(T_{R})^{op}$. Then $_{S}T_{R}$ is a good Wakamatsu-tilting bimodule. Assume that $({\mathcal{B}},{\mathcal{A}})$ is a complete hereditary cotorsion pair in $\text{mod}R$ and $({\mathcal{G}},{\mathcal{K}})$ is a complete hereditary cotorsion pair in $\text{mod}S$ such that the bimodules $_{S}T_{R}$ and $_{R}DT_{S}$ represent a cotorsion pair counter equivalence between these two cotorsion pairs.

The sketch of our proof of Theorem 1 is as follows.

First, we construct a functor $\text{L}_{T}:{\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)\rightarrow {\mathcal{R}}{\mathcal{C}}(S)$ and a functor $-\hat{\otimes }DT:{\mathcal{R}}{\mathcal{C}}(R)\rightarrow {\mathcal{R}}{\mathcal{C}}(S)$. Then we give a natural homomorphism

$$\begin{eqnarray}l_{Y}^{X}:\text{Hom}_{{\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)}(X,Y)\rightarrow \text{Hom}_{{\mathcal{R}}{\mathcal{C}}(S)}(X\,\hat{\otimes }\,DT,\text{L}_{T}(Y))\end{eqnarray}$$

which is functorial in both variables. After this, associated with an object $X\in {\mathcal{R}}{\mathcal{C}}(R)$, we use the condition that $({\mathcal{B}},{\mathcal{A}})$ is a complete cotorsion pair in $\text{mod}R$ to obtain an object $A_{X}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{A}})$ and establish a homomorphism $u_{_{X}}\in \text{Hom}_{{\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)}(X,A_{X})$. We then show that the assignment $X\longmapsto \text{Cok}(l(u_{_{X}}))$ induces our desired functor $\mathbf{S}_{T}:\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)\rightarrow \text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)$. We use the dual method to construct another desired functor $\mathbf{Q}_{DT}:\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)\rightarrow \text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$. Then we prove that there are natural isomorphisms $\mathbf{Q}_{DT}\mathbf{S}_{T}\simeq 1_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)}$ and $\mathbf{S}_{T}\mathbf{Q}_{DT}\simeq 1_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)}$.

4.1 From ${\mathcal{R}}{\mathcal{C}}(R)$ to ${\mathcal{R}}{\mathcal{C}}(S)$: the functor $\mathbf{S}_{T}$

4.1.1 The functor $\text{L}_{T}:{\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)\rightarrow {\mathcal{R}}{\mathcal{C}}(S)$

Let $X=\{X_{i}\}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)$. We define $\text{L}_{T}(X)\in {\mathcal{R}}{\mathcal{C}}(S)$ as follows:

  1. (l1) the underlying module $\text{L}_{T}(X)_{i}=\text{Hom}_{R}(T,X_{i-1})\oplus X_{i}\otimes _{R}DT$ and

  2. (l2) the structure map $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(\text{L}_{T}(X)):\text{L}_{T}(X)_{i}\otimes _{S}DS\rightarrow \text{L}_{T}(X)_{i-1}$ is given by $\big(\!\begin{smallmatrix}0 & \unicode[STIX]{x1D6FF}_{L_{i}}\\ 0 & 0\end{smallmatrix}\!\big)$, where $\unicode[STIX]{x1D6FF}_{L_{i}}$ is the composition:

    $$\begin{eqnarray}\text{Hom}_{R}(T,X_{i-1})\otimes _{S}DS\stackrel{\simeq }{\longrightarrow }\text{Hom}_{R}(T,X_{i-1})\otimes _{S}T\otimes _{R}DT\stackrel{\unicode[STIX]{x1D716}_{X_{i-1}}^{T}\otimes _{R}DT}{\longrightarrow }X_{i-1}\otimes _{R}DT.\end{eqnarray}$$

From the functor property of $\text{Hom}_{R}(T,-)$ and $-\!\otimes _{R}DT$, one can easily see that $\text{L}_{T}$ is a functor from ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)$ to ${\mathcal{R}}{\mathcal{C}}(S)$.

Remark.

  1. (1) If $X\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}(\text{add}_{\text{mod}R}T)$, that is, $X=\{X_{i}\}$ with each $X_{i}\in \text{add}_{\text{mod}R}T$, then $\text{Hom}_{R}(T,X_{i-1})\in \text{add}_{\text{mod}S}S$ and $\unicode[STIX]{x1D6FF}_{L_{i}}$ defined above is an isomorphism for each $i$. It follows that $\text{L}_{T}(X)$ is a projective object in ${\mathcal{R}}{\mathcal{C}}(S)$ in this case.

  2. (2) As a special case, if $T=R$, then we obtain the functor $\text{L}_{R}:{\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)\rightarrow {\mathcal{R}}{\mathcal{C}}(R)$ which sends objects in ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}(\text{add}_{\text{mod}R}R)$ to a projective object in ${\mathcal{R}}{\mathcal{C}}(R)$.

4.1.2 The functor $-\hat{\otimes }DT:{\mathcal{R}}{\mathcal{C}}(R)\rightarrow {\mathcal{R}}{\mathcal{C}}(S)$

Let $Y=\{Y_{i},\unicode[STIX]{x1D6FF}_{i}^{\otimes }(Y)\}\in {\mathcal{R}}{\mathcal{C}}(R)$. We define $Y\,\hat{\otimes }\,DT\in {\mathcal{R}}{\mathcal{C}}(S)$ by setting

  1. (t1) the underlying module is $(Y\,\hat{\otimes }\,DT)_{i}=Y_{i}\otimes _{R}DT$ and

  2. (t2) the structure map $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(Y\,\hat{\otimes }\,DT)$ is given by the composition

    $$\begin{eqnarray}\displaystyle & & \displaystyle Y_{i}\otimes _{R}DT\otimes _{S}DS\stackrel{\simeq }{\longrightarrow }Y_{i}\otimes _{R}DT\otimes _{S}T\otimes _{R}DT\nonumber\\ \displaystyle & & \displaystyle \quad \stackrel{\simeq }{\longrightarrow }Y_{i}\otimes _{R}DR\otimes _{R}DT\stackrel{\unicode[STIX]{x1D6FF}_{i}^{\otimes }(Y)\otimes _{R}DT}{\longrightarrow }Y_{i-1}\otimes _{R}DT.\nonumber\end{eqnarray}$$

From the functor property of $-\!\otimes _{R}DT$, one can see that $-\hat{\otimes }DT$ is a functor from ${\mathcal{R}}{\mathcal{C}}(R)$ to ${\mathcal{R}}{\mathcal{C}}(S)$.

4.1.3 The homomorphism $l_{Y}^{X}:\text{Hom}_{{\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)}(X,Y)\rightarrow \text{Hom}_{{\mathcal{R}}{\mathcal{C}}(S)}(X\,\hat{\otimes }\,DT,\text{L}_{T}(Y))$

Recall that we have a forgetful functor from ${\mathcal{R}}{\mathcal{C}}(R)$ to ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)$. For any $X\in {\mathcal{R}}{\mathcal{C}}(R)$ and $Y\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)$, there is a canonical homomorphism

$$\begin{eqnarray}l_{Y}^{X}:\text{Hom}_{{\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)}(X,Y)\longrightarrow \text{Hom}_{{\mathcal{R}}{\mathcal{C}}(S)}(X\,\hat{\otimes }\,DT,\text{L}_{T}(Y))\end{eqnarray}$$

which is functorial in both variables, defined by

$$\begin{eqnarray}l_{Y}^{X}:u=\{u_{i}\}\longmapsto f=\{f_{i}\},\quad \text{with}f_{i}=\left(\begin{array}{@{}cc@{}}-\unicode[STIX]{x1D703}_{l_{i}}, & u_{i}\otimes _{R}DT\end{array}\right),\end{eqnarray}$$

where $\unicode[STIX]{x1D703}_{l_{i}}$ is given by the composition

$$\begin{eqnarray}\displaystyle & & \displaystyle X_{i}\otimes _{R}DT\stackrel{\unicode[STIX]{x1D702}_{X_{i}\otimes _{R}DT}^{T}}{\longrightarrow }\text{Hom}_{R}(T,X_{i}\otimes _{R}DT\otimes _{S}T)\stackrel{\simeq }{\longrightarrow }\text{Hom}_{R}(T,X_{i}\otimes _{R}DR)\nonumber\\ \displaystyle & & \displaystyle \quad \stackrel{\text{Hom}_{R}(T,\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X))}{\longrightarrow }\text{Hom}_{R}(T,X_{i-1})\stackrel{\text{Hom}_{R}(T,u_{i-1})}{\longrightarrow }\text{Hom}_{R}(T,Y_{i-1}).\nonumber\end{eqnarray}$$

Remark.

Using the fact that $_{R}DR_{R}\simeq _{R}(DT\otimes _{S}T)_{R}$ and the adjoint isomorphism

$$\begin{eqnarray}\boldsymbol{\unicode[STIX]{x1D6E4}}^{T}:\text{Hom}_{R}(X_{i}\otimes _{R}DR,Y_{i-1})\simeq \text{Hom}_{S}(X_{i}\otimes _{R}DT,\text{Hom}_{R}(T,Y_{i-1})),\end{eqnarray}$$

one can easily check that $\unicode[STIX]{x1D703}_{l_{i}}$ is just the image of the natural homomorphism $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\cdot u_{i-1}$ under $\unicode[STIX]{x1D6E4}^{T}$, that is, $\unicode[STIX]{x1D703}_{l_{i}}=\boldsymbol{\unicode[STIX]{x1D6E4}}^{T}(\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\cdot u_{i-1})$.

In the following, we simply write $l$ instead of $l_{Y}^{X}$.

It is easy to see that, for any commutative diagram in ${\mathcal{R}}{\mathcal{C}}(R)$

there is an induced commutative diagram in ${\mathcal{R}}{\mathcal{C}}(S)$

4.1.4 A monomorphism $u_{_{X}}:X\rightarrow A_{X}$ in ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{R}})$ with $A_{X}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{A}})$, for $X\in {\mathcal{R}}{\mathcal{C}}(R)$

Let $X=\{X_{i}\}\in {\mathcal{R}}{\mathcal{C}}(R)$. Since $({\mathcal{B}},{\mathcal{A}})$ is a complete cotorsion pair in $\text{mod}R$, there are exact sequences $0\rightarrow X_{i}\stackrel{(u_{_{X}})_{i}}{\longrightarrow }(A_{X})_{i}\stackrel{(\unicode[STIX]{x1D70B}_{_{X}})_{i}}{\longrightarrow }(B_{X})_{i}\rightarrow 0$ with $(A_{X})_{i}\in {\mathcal{A}}$ and $(B_{X})_{i}\in {\mathcal{B}}$, for each $i$. This gives an exact sequence $0\rightarrow X\stackrel{u_{_{X}}}{\longrightarrow }A_{X}\stackrel{\unicode[STIX]{x1D70B}_{_{X}}}{\longrightarrow }B_{X}\rightarrow 0$ in ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)$ with $A_{X}=\{(A_{X})_{i}\}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{A}})$ and $B_{X}=\{(B_{X})_{i}\}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{B}})$.

Now let $Y=\{Y_{i}\}\in {\mathcal{R}}{\mathcal{C}}(R)$ and $h=\{h_{i}\}\in \text{Hom}_{{\mathcal{R}}{\mathcal{C}}(R)}(X,Y)$. Then we have an exact sequence $0\rightarrow Y\stackrel{u_{_{Y}}}{\longrightarrow }A_{Y}\stackrel{\unicode[STIX]{x1D70B}_{_{Y}}}{\longrightarrow }B_{Y}\rightarrow 0$ in ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)$ with $A_{Y}=\{(A_{Y})_{i}\}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{A}})$ and $B_{Y}=\{(B_{Y})_{i}\}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{B}})$, as above. Using that ${\mathcal{B}}=\text{KerExt}_{R}^{1}(-,{\mathcal{A}})$, it is easy to see that there is a homomorphism $h_{A}\in \text{Hom}_{{\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)}(A_{X},A_{Y})$ and further $h_{B}\in \text{Hom}_{{\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)}(B_{X},B_{Y})$ such that the following diagram in ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)$ is commutative with exact rows.

4.1.5 The cokernel $\text{Cok}(l(u_{_{X}}))$

Applying the functor $-\!\otimes _{R}DT$ to the exact sequences

$$\begin{eqnarray}\displaystyle 0\rightarrow X_{i}\stackrel{(u_{_{X}})_{i}}{\longrightarrow }(A_{X})_{i}\stackrel{(\unicode[STIX]{x1D70B}_{_{X}})_{i}}{\longrightarrow }(B_{X})_{i}\rightarrow 0 & & \displaystyle \nonumber\end{eqnarray}$$

above, we obtain induced exact sequences

since $(B_{X})_{i}\in {\mathcal{B}}\subseteq \text{KerExt}_{R}^{1}(-,T)=\text{KerTor}_{1}^{R}(-,DT)$ for each $i$. It follows that, by applying the homomorphism $l$ in 4.1.3 to the homomorphism $u_{_{X}}$ in 4.1.4, there is an induced exact sequence

Remark.

From the definition of $\text{Cok}(l(u_{_{X}}))$, one sees that, for each $i$, $\text{Cok}(l(u_{_{X}}))_{i}$ is given by the pushout

Moreover, for $Y\in {\mathcal{R}}{\mathcal{C}}(R)$ and $h\in \text{Hom}_{{\mathcal{R}}{\mathcal{C}}(R)}(X,Y)$, by applying the homomorphism $l$ to the left square in the commutation diagram in 4.1.4, we obtain the following commutative diagram in ${\mathcal{R}}{\mathcal{C}}(S)$, for some $h_{\text{Cok}}$:

4.1.6 The assignment $\mathbf{S}_{T}:{\mathcal{R}}{\mathcal{C}}(R)\rightarrow \text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)$ given by $X\longmapsto \text{Cok}(l(u_{_{X}}))$ is a functor

By 4.1.5, it is sufficient to prove that $\mathbf{S}_{T}(h):=h_{\text{Cok}}=0$ in $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)$ provided $h=0$. We divide the proof into two steps.

Step 1: Consider each piece in the commutative diagram in 4.1.4. If $h=\{h_{i}\}=0$, then $h_{i}=0$ for each $i$. Thus, we have that $(u_{_{X}})_{i}(h_{A})_{i}=0$ and, consequently, $(h_{A})_{i}=(\unicode[STIX]{x1D70B}_{_{X}})_{i}g_{i}$ for some $g_{i}:(B_{X})_{i}\rightarrow (A_{Y})_{i}$. Since $(B_{X})_{i}\in {\mathcal{B}}\subseteq {\mathcal{X}}_{T}$ for each $i$ and $T$ is an Ext-injective cogenerator in ${\mathcal{B}}$ (see the first part in the proof of Proposition 3.2.5), there are exact sequences $0\rightarrow (B_{X})_{i}\stackrel{b_{i}}{\longrightarrow }T_{(B_{X})_{i}}\rightarrow (B_{X}^{\prime })_{i}\rightarrow 0$ with $T_{(B_{X})_{i}}\in \text{add}_{\text{mod}R}T$ and $(B_{X}^{\prime })_{i}\in {\mathcal{B}}\subseteq \text{KerExt}_{R}^{1}(-,{\mathcal{A}})$. It follows that there exists $t_{i}\in \text{Hom}_{R}(T_{(B_{X})_{i}},(A_{Y})_{i})$ such that $g_{i}=b_{i}t_{i}$. Altogether, we obtain the following commutative diagram:

This induces the following commutative diagram in ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)$, where $T_{B_{X}}=\{T_{(B_{X})_{i}}\}$:

Set $k:=\unicode[STIX]{x1D70B}_{_{X}}b$. Then $\text{L}_{T}(h_{A})=\text{L}_{T}(kt)=\text{L}_{T}(k)\text{L}_{T}(t)$.

Step 2: Consider the commutative diagram in 4.1.5. Since $(u_{_{X}})_{i}(\unicode[STIX]{x1D70B}_{_{X}})_{i}=0$, it holds that $\text{Hom}_{R}(T,(u_{_{X}})_{i})\cdot \text{Hom}_{R}(T,(\unicode[STIX]{x1D70B}_{_{X}})_{i})=0$ and $(u_{_{X}})_{i}\otimes _{R}DT\cdot (\unicode[STIX]{x1D70B}_{_{X}})_{i}\otimes _{R}DT=0$. Then we see that $l(u_{_{X}})\text{L}_{T}(k)=l(u_{_{X}})\text{L}_{T}(\unicode[STIX]{x1D70B}_{_{X}})\text{L}_{T}(b)=0\cdot \text{L}_{T}(b)=0$ by the definition of the functor $\text{L}_{T}$ in 4.1.1 and the morphism $l(u_{_{X}})$ in 4.1.3. Hence, there is some $\unicode[STIX]{x1D703}\in \text{Hom}_{{\mathcal{R}}{\mathcal{C}}(S)}(\text{Cok}(l(u_{_{X}})),\text{L}_{T}(T_{B_{X}}))$ such that $\text{L}_{T}(k)=\unicode[STIX]{x1D70B}_{_{l_{X}}}\unicode[STIX]{x1D703}$. Consequently, we have that $\text{L}_{T}(h_{A})=\text{L}_{T}(k)L(t)=\unicode[STIX]{x1D70B}_{_{l_{X}}}\unicode[STIX]{x1D703}\text{L}_{T}(t)$. Now we obtain that $\unicode[STIX]{x1D70B}_{_{l_{X}}}h_{\text{Cok}}=\text{L}_{T}(h_{A})\unicode[STIX]{x1D70B}_{_{l_{Y}}}=\unicode[STIX]{x1D70B}_{_{l_{X}}}\unicode[STIX]{x1D703}\text{L}_{T}(t)\unicode[STIX]{x1D70B}_{_{l_{Y}}}$. Since $\unicode[STIX]{x1D70B}_{l_{X}}$ is epic, we get that $h_{\text{Cok}}=\unicode[STIX]{x1D703}\text{L}_{T}(t)\unicode[STIX]{x1D70B}_{_{l_{Y}}}$. That is, we have the following commutative diagram:

Note that $\text{L}_{T}(T_{B_{X}})$ is a projective–injective object in ${\mathcal{R}}{\mathcal{C}}(S)$, so $h_{\text{Cok}}=0$ in $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)$.

4.1.7 The functor $\mathbf{S}_{T}:\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)\rightarrow \text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)$

We will show that the functor $\mathbf{S}_{T}$ factors through $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$.

To see this, it is enough to show that $\mathbf{S}_{T}(X)$ is a projective object in ${\mathcal{R}}{\mathcal{C}}(S)$ whenever $X$ is a projective object in ${\mathcal{R}}{\mathcal{C}}(R)$.

Without loss of generality, we assume that $X=\{X_{i}\}$ is an indecomposable projective object in ${\mathcal{R}}{\mathcal{C}}(R)$. Thus, $X$ is of the form

where $I$ is indecomposable injective and is on the ($k-1$)th position, for some $k$ [Reference Happel18, 2.2 Lemma].

Note that $X_{k}=\text{Hom}_{R}(DR,I)\in \text{add}_{\text{mod}R}R\subseteq {\mathcal{B}}$ and $X_{k-1}=I\in \text{add}_{\text{mod}R}DR\subseteq {\mathcal{A}}$, so, following 4.1.4, we can choose $A_{X}$ to be of the form

where $A_{X_{k}}=T_{k}\in \text{add}_{\text{mod}R}T$. And we have that the homomorphism $u_{_{X}}:X\rightarrow A_{X}$ is of the form

$$\begin{eqnarray}\displaystyle \begin{array}{@{}ccccccccccccccc@{}}X: & & \cdots \, & {\rightsquigarrow} & 0 & {\rightsquigarrow} & 0 & {\rightsquigarrow} & \text{Hom}_{R}(DR,I) & {\rightsquigarrow} & I & {\rightsquigarrow} & 0 & {\rightsquigarrow} & \cdots \\ \downarrow u_{_{X}} & & & & & & & & \downarrow u_{k} & & \downarrow 1 & & & & \\ A_{X}: & & \cdots \, & {\rightsquigarrow} & 0 & {\rightsquigarrow} & 0 & {\rightsquigarrow} & T_{k} & {\rightsquigarrow} & I & {\rightsquigarrow} & 0 & {\rightsquigarrow} & \cdots \end{array} & & \displaystyle \nonumber\end{eqnarray}$$

Then, from the structure of $l(u_{_{X}})$, we can see that $l(u_{_{X}})$ is of the form

$$\begin{eqnarray}\displaystyle \begin{array}{@{}ccccccccccc@{}}X\,\hat{\otimes }\,DT: & & 0 & {\rightsquigarrow} & 0 & {\rightsquigarrow} & \text{Hom}_{R}(DR,I)\otimes _{R}DT & {\rightsquigarrow} & I\otimes _{R}DT & {\rightsquigarrow} & 0\\ \downarrow l(u_{_{X}}) & & & & \downarrow & & \downarrow (-\unicode[STIX]{x1D703}_{l_{k}},u_{k}\otimes _{R}DT) & & \downarrow 1 & & \\ \text{L}_{T}(A_{X}): & & 0 & {\rightsquigarrow} & \text{Hom}_{R}(T,T_{k}) & \stackrel{(0,\unicode[STIX]{x1D6FF}_{L_{k+1}})}{{\rightsquigarrow}} & \text{Hom}_{R}(T,I)\oplus T_{k}\otimes _{R}DT & {\rightsquigarrow} & I\otimes _{R}DT & {\rightsquigarrow} & 0,\end{array} & & \displaystyle \nonumber\end{eqnarray}$$

where $\unicode[STIX]{x1D703}_{l_{k}}$ is defined as in 4.1.3 and $\unicode[STIX]{x1D6FF}_{L_{k+1}}$ is defined as in 4.1.1, respectively. One checks that both homomorphisms $\unicode[STIX]{x1D703}_{l_{k}}$ and $\unicode[STIX]{x1D6FF}_{L_{k+1}}$ are, in fact, isomorphisms. So we obtain that $S_{T}(X)=\text{Coker}(l(u_{_{X}}))$ is of the form

$$\begin{eqnarray}\displaystyle \begin{array}{@{}ccccccccccccccc@{}} & & \cdots \, & {\rightsquigarrow} & 0 & {\rightsquigarrow} & \text{Hom}_{R}(T,T_{k}) & \stackrel{\unicode[STIX]{x1D6FF}_{k+1}^{\prime }}{{\rightsquigarrow}} & T_{k}\otimes _{R}DT & {\rightsquigarrow} & 0 & {\rightsquigarrow} & 0 & {\rightsquigarrow} & \cdots \,,\end{array} & & \displaystyle \nonumber\end{eqnarray}$$

where $\unicode[STIX]{x1D6FF}_{k+1}^{\prime }$ is the induced isomorphism: $\text{Hom}_{R}(T,T_{k})\otimes _{S}DS\rightarrow T_{k}\otimes _{R}DT$. Since $T_{k}\otimes _{R}DT\in \text{add}_{\text{mod}S}(T\otimes _{R}DT)=\text{add}_{\text{mod}S}DS$, we see that $T_{k}\otimes _{R}DT$ is an injective $S$-module and that $\mathbf{S}_{T}(X)$ is a projective object in ${\mathcal{R}}{\mathcal{C}}(S)$.

It follows that the functor $\mathbf{S}_{T}$ factors through $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$. We still denote by $\mathbf{S}_{T}$ the induced functor from $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$ to $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)$.

4.2 From $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)$ to $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$: the functor $\mathbf{Q}_{DT}$

The functor $\mathbf{Q}_{DT}$ is indeed defined in a way dual to the construction of $\mathbf{S}_{T}$.

4.2.1 The functor $\text{R}_{DT}:{\mathcal{R}}{\mathcal{C}}^{\text{tr}}(S)\rightarrow {\mathcal{R}}{\mathcal{C}}(R)$

Dually to 4.1.1, for any $X=\{X_{i}\}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}(S)$, we define $\text{R}_{DT}(X)\in {\mathcal{R}}{\mathcal{C}}(R)$ as follows:

  1. (r1) the underlying module is $\text{R}_{DT}(X)_{i}=\text{Hom}_{S}(DT,X_{i})\oplus X_{i+1}\otimes _{S}T$ and

  2. (r2) the structure map $\unicode[STIX]{x1D6FF}_{i}^{\text{H}}(\text{R}_{DT}(X))$ is given by $\big(\begin{smallmatrix}0 & \unicode[STIX]{x1D6FF}_{R_{i}}^{\text{H}}0 & 0\end{smallmatrix}\big)$, where $\unicode[STIX]{x1D6FF}_{R_{i}}^{\text{H}}$ is the composition

    $$\begin{eqnarray}\displaystyle & & \displaystyle \text{Hom}_{S}(DT,X_{i})\stackrel{\text{Hom}_{S}(DT,\unicode[STIX]{x1D702}_{X_{i}}^{T})}{\longrightarrow }\text{Hom}_{S}(DT,\text{Hom}_{R}(T,X_{i}\otimes _{S}T))\nonumber\\ \displaystyle & & \displaystyle \quad \simeq \text{Hom}_{R}(DT\otimes _{S}T,X_{i}\otimes _{S}T)\simeq \text{Hom}_{R}(DR,X_{i}\otimes _{S}T).\nonumber\end{eqnarray}$$

Equivalently, the structure map $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(\text{R}_{DT}(X))$ is given by $\big(\!\begin{smallmatrix}0 & \unicode[STIX]{x1D6FF}_{R_{i}}^{\otimes }0 & 0\end{smallmatrix}\!\big)$, where $\unicode[STIX]{x1D6FF}_{R_{i}}^{\otimes }$ is the composition

$$\begin{eqnarray}\text{Hom}_{S}(DT,X_{i})\otimes _{R}DR\simeq \text{Hom}_{S}(DT,X_{i})\otimes _{R}DT\otimes _{S}T\stackrel{\unicode[STIX]{x1D716}_{X_{i}}^{DT}}{\longrightarrow }X_{i}\otimes _{S}T.\end{eqnarray}$$

It is easy to see that $\text{R}_{DT}$ is a functor.

Remark.

  1. (1) If $X\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}(\text{add}_{\text{mod}S}DT)$, that is, $X=\{X_{i}\}$ with each $X_{i}\in \text{add}_{\text{mod}S}DT$, then $\text{Hom}_{S}(DT,X_{i})\in \text{add}_{\text{mod}R}R$ and $\unicode[STIX]{x1D6FF}_{R_{i}}$ defined above is an isomorphism for each $i$. It follows that $\text{R}_{DT}(X)$ is a projective object in ${\mathcal{R}}{\mathcal{C}}(R)$ in this case.

  2. (2) As a special case, if $T=S$, then we obtain the functor $\text{R}_{DS}:{\mathcal{R}}{\mathcal{C}}^{\text{tr}}(S)\rightarrow {\mathcal{R}}{\mathcal{C}}(S)$ which sends objects in ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}(\text{add}_{\text{mod}S}DS)$ to a projective object in ${\mathcal{R}}{\mathcal{C}}(S)$.

4.2.2 The functor $\text{&#x0124;om}(DT,-):{\mathcal{R}}{\mathcal{C}}(S)\rightarrow {\mathcal{R}}{\mathcal{C}}(R)$

Let $Y=\{Y_{i},\unicode[STIX]{x1D6FF}_{i}^{\text{H}}(Y)\}\in {\mathcal{R}}{\mathcal{C}}(S)$. We define $\text{&#x0124;om}(DT,Y)\in {\mathcal{R}}{\mathcal{C}}(R)$ by setting

  1. (h1) the underlying module is $\text{&#x0124;om}(DT,Y)_{i}=\text{Hom}_{S}(DT,Y_{i})$ and

  2. (h2) the structure map $\unicode[STIX]{x1D6FF}_{i}^{\text{H}}(\text{&#x0124;om}(DT,Y))$ is given by the composition

    $$\begin{eqnarray}\displaystyle & & \displaystyle \text{Hom}_{S}(DT,Y_{i})\stackrel{\text{Hom}_{S}(DT,\unicode[STIX]{x1D6FF}_{i}^{\text{H}}(Y))}{\longrightarrow }\text{Hom}_{S}(DT,\text{Hom}_{S}(DS,Y_{i-1}))\nonumber\\ \displaystyle & & \displaystyle \quad \simeq \text{Hom}_{R}(DR,\text{Hom}_{S}(DT,Y_{i-1})).\nonumber\end{eqnarray}$$

Then from the functor property of $\text{Hom}_{S}(DT,-)$, one can see that $\text{&#x0124;om}(DT,-)$ is a functor from ${\mathcal{R}}{\mathcal{C}}(S)$ to ${\mathcal{R}}{\mathcal{C}}(R)$.

4.2.3 The homomorphism $r_{Y}^{X}$

Dually to the homomorphism $l_{Y}^{X}$, for any $X\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}(S)$ and $Y\in {\mathcal{R}}{\mathcal{C}}(S)$, we have a canonical homomorphism

$$\begin{eqnarray}\displaystyle r_{Y}^{X}:\text{Hom}_{{\mathcal{R}}{\mathcal{C}}^{\text{tr}}(S)}(X,Y)\rightarrow \text{Hom}_{{\mathcal{R}}{\mathcal{C}}(R)}(\text{R}_{DT}(X),\text{&#x0124;om}(DT,Y)), & & \displaystyle \nonumber\end{eqnarray}$$

which is functorial in both variables, defined by

$$\begin{eqnarray}\displaystyle r_{Y}^{X}:u=\{u_{i}\}\longmapsto f=\{f_{i}\}\quad \text{with }f_{i}=\left(\begin{array}{@{}c@{}}\text{Hom}_{S}(DT,u_{i})\\ -\unicode[STIX]{x1D701}_{r_{i}}\end{array}\right), & & \displaystyle \nonumber\end{eqnarray}$$

where $\unicode[STIX]{x1D701}_{r_{i}}:X_{i+1}\otimes _{S}T\rightarrow \text{Hom}_{S}(DT,Y_{i})$ equals to

$$\begin{eqnarray}\displaystyle (u_{i+1}\otimes _{S}T)\cdot (\unicode[STIX]{x1D6FF}_{i+1}^{\text{H}}(Y)\otimes _{S}T)\cdot \unicode[STIX]{x1D716}_{\text{Hom}_{S}(DT,Y_{i})}^{T}, & & \displaystyle \nonumber\end{eqnarray}$$

that is, the composition

$$\begin{eqnarray}\displaystyle & & \displaystyle X_{i+1}\otimes _{S}T\stackrel{u_{i+1}\otimes _{S}T}{\longrightarrow }Y_{i+1}\otimes _{S}T\stackrel{\unicode[STIX]{x1D6FF}_{i+1}^{H}(Y)\otimes _{S}T}{\longrightarrow }\text{Hom}_{S}(DS,Y_{i})\otimes _{S}T\nonumber\\ \displaystyle & & \displaystyle \quad \simeq \text{Hom}_{S}(T\otimes _{R}DT,Y_{i})\otimes _{S}T\nonumber\\ \displaystyle & & \displaystyle \quad \simeq \text{Hom}_{R}(T,\text{Hom}_{S}(DT,Y_{i}))\otimes _{S}T\nonumber\\ \displaystyle & & \displaystyle \quad \stackrel{\unicode[STIX]{x1D716}_{\text{Hom}_{S}(DT,Y_{i})}^{T}}{\longrightarrow }\text{Hom}_{S}(DT,Y_{i}).\nonumber\end{eqnarray}$$

Remark.

Using the fact that $_{S}DS_{S}\simeq _{S}T\otimes _{R}DT_{S}$ and the adjoint isomorphism

$$\begin{eqnarray}\displaystyle \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}:\text{Hom}_{S}(X_{i+1}\otimes _{S}DS,Y_{i})\simeq \text{Hom}_{S}(X_{i+1}\otimes _{S}T,\text{Hom}_{S}(DT,Y_{i})), & & \displaystyle \nonumber\end{eqnarray}$$

one can easily check that $\unicode[STIX]{x1D701}_{r_{i}}$ is the image of the natural homomorphism $(u_{i+1}\otimes _{S}DS)\cdot \unicode[STIX]{x1D6FF}_{i+1}^{\otimes }(Y)$ under $\unicode[STIX]{x1D6E4}^{DT}$, that is, $\unicode[STIX]{x1D701}_{r_{i}}=\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((u_{i+1}\otimes _{S}DS)\cdot \unicode[STIX]{x1D6FF}_{i+1}^{\otimes }(Y))$.

In the following, we simply write $r$ instead of $r_{Y}^{X}$.

4.2.4 An epimorphism $v_{_{Y}}:G_{Y}\rightarrow Y$ in ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{S}})$ with $G_{Y}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{G}})$, for $Y\in {\mathcal{R}}{\mathcal{C}}(S)$

Since $({\mathcal{G}},{\mathcal{K}})$ is a complete hereditary cotorsion pair in $\text{mod}S$, it follows that, for any $Y=\{Y_{i}\}\in {\mathcal{R}}{\mathcal{C}}(S)$, there is an exact sequence $0\rightarrow K_{Y}\stackrel{k_{_{Y}}}{\longrightarrow }G_{Y}\stackrel{v_{_{Y}}}{\longrightarrow }Y\rightarrow 0$ in ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{S}})$ with $K_{Y}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{K}})$ and $G_{Y}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{G}})$.

Moreover, for any $h\in \text{Hom}_{{\mathcal{R}}{\mathcal{C}}(S)}(X,Y)$, there is an induced commutative diagram as follows since $\text{Ext}_{S}^{1}({\mathcal{G}},{\mathcal{K}})=0$:

4.2.5 The kernel $\text{Ker}(r(v_{_{Y}}))$

Applying the functor $\text{&#x0124;om}(DT,-)$ to the bottom exact sequence in the above diagram, we obtain an induced exact sequence

$$\begin{eqnarray}\displaystyle 0\rightarrow \text{&#x0124;om}(DT,K_{Y})\rightarrow \text{&#x0124;om}(DT,G_{Y})\rightarrow \text{&#x0124;om}(DT,Y)\rightarrow 0 & & \displaystyle \nonumber\end{eqnarray}$$

since $(K_{Y})_{i}\in {\mathcal{K}}\subseteq \text{KerExt}_{S}^{1}(DT,-)$ for each $i$. Thus, after applying the homomorphism $r$ in 4.2.3 to the homomorphism $v_{_{Y}}$ in 4.2.4, we obtain the following exact sequence in ${\mathcal{R}}{\mathcal{C}}(R)$:

$$\begin{eqnarray}\displaystyle 0\rightarrow \text{Ker}(r(v_{_{Y}}))\stackrel{\unicode[STIX]{x1D706}_{r_{Y}}}{\longrightarrow }\text{R}_{DT}(G_{Y})\stackrel{r(v_{_{Y}})}{\longrightarrow }\text{&#x0124;om}(DT,Y)\rightarrow 0. & & \displaystyle \nonumber\end{eqnarray}$$

Moreover, for any $h\in \text{Hom}_{{\mathcal{R}}{\mathcal{C}}(S)}(X,Y)$, by applying the homomorphism $r$ to the right part of the commutative diagram in 4.2.4, we obtain the following commutative diagram in ${\mathcal{R}}{\mathcal{C}}(R)$, for some $h_{\text{Ker}}$:

4.2.6 The assignment $\mathbf{Q}_{DT}:{\mathcal{R}}{\mathcal{C}}(S)\rightarrow \text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$ given by $Y\longmapsto \text{Ker}(r(v_{_{Y}}))$ is a functor

By 4.2.5, it is sufficient to prove that $\mathbf{Q}_{DT}(h):=h_{\text{Ker}}=0$ in $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$ provided $h=0$. This is also divided into two steps.

Step 1: Consider each piece in the commutative diagram in 4.2.4. If $h=\{h_{i}\}=0$, then $h_{i}=0$ for each $i$. Thus, we have that $(h_{G})_{i}(v_{_{Y}})_{i}=0$ and, consequently, $(h_{G})_{i}=g_{i}(k_{Y})_{i}$ for some $g_{i}:(G_{X})_{i}\rightarrow (K_{Y})_{i}$. Since $(K_{Y})_{i}\in {\mathcal{K}}\subseteq _{DT}{\mathcal{X}}$ for all $i$, there are exact sequences $0\rightarrow (K_{Y}^{\prime })_{i}\rightarrow DT_{(K_{Y})_{i}}\stackrel{b_{i}}{\longrightarrow }(K_{Y})_{i}\rightarrow 0$ with $DT_{(K_{Y})_{i}}\in \text{add}_{\text{mod}S}DT$ and $(K_{Y}^{\prime })_{i}\in {\mathcal{K}}\subseteq \text{KerExt}_{S}^{1}({\mathcal{G}},-)$. It follows that there exists $t_{i}\in \text{Hom}_{R}((G_{X})_{i},DT_{(K_{Y})_{i}})$ such that $g_{i}=t_{i}b_{i}$. Altogether, we obtain the following commutative diagram:

It follows that there is a commutative diagram in ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}(S)$,

where $DT_{K_{Y}}:=\{DT_{(K_{Y})_{i}}\}$.

Set $\unicode[STIX]{x1D6FD}:=bk_{Y}$. Then $\text{R}_{DT}(h_{G})=\text{R}_{DT}(t\unicode[STIX]{x1D6FD})=\text{R}_{DT}(t)\text{R}_{DT}(\unicode[STIX]{x1D6FD})$.

Step 2: Consider the commutative diagram in 4.2.5. Since $(k_{Y})_{i}(v_{_{Y}})_{i}=0$ in 4.2.4, we see that $\text{R}_{DT}(\unicode[STIX]{x1D6FD})r(v_{_{Y}})=0$ by the definitions. Hence, there is some $\unicode[STIX]{x1D703}\in \text{Hom}_{{\mathcal{R}}{\mathcal{C}}(R)}(\text{R}_{DT}(DT_{K_{Y}}),\text{Ker}(r(v_{_{Y}})))$ such that $\text{R}_{DT}(\unicode[STIX]{x1D6FD})=\unicode[STIX]{x1D703}\unicode[STIX]{x1D706}_{r_{Y}}$. Consequently, we have that $\text{R}_{DT}(h_{G})=\text{R}_{DT}(t)\text{R}_{DT}(\unicode[STIX]{x1D6FD})=\text{R}_{DT}(t)\unicode[STIX]{x1D703}\unicode[STIX]{x1D706}_{r_{Y}}$. Now we obtain that $h_{\text{Ker}}\unicode[STIX]{x1D706}_{r_{Y}}=\unicode[STIX]{x1D706}_{r_{X}}\text{R}_{DT}(h_{G})=\unicode[STIX]{x1D706}_{r_{X}}\text{R}_{DT}(t)\unicode[STIX]{x1D703}\unicode[STIX]{x1D706}_{r_{Y}}$. Since $\unicode[STIX]{x1D706}_{r_{Y}}$ is monomorphic, we get that $h_{\text{Ker}}=\unicode[STIX]{x1D706}_{r_{X}}\text{R}_{DT}(t)\unicode[STIX]{x1D703}$, that is, the following diagram is commutative:

Note that $\text{R}_{DT}(DT_{K_{Y}})$ is a projective–injective object in ${\mathcal{R}}{\mathcal{C}}(R)$, so $h_{\text{Ker}}=0$ in $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$.

4.2.7 The functor $\mathbf{Q}_{DT}:\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)\rightarrow \text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$

We will show that the functor $\mathbf{Q}_{DT}$ factors through $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)$.

To see this, it is enough to show that $\mathbf{Q}_{DT}(X)$ is a projective object in ${\mathcal{R}}{\mathcal{C}}(R)$, whenever $X$ is a projective object in ${\mathcal{R}}{\mathcal{C}}(S)$.

Without loss of generality, we assume that $X=\{X_{i}\}$ is an indecomposable projective object in ${\mathcal{R}}{\mathcal{C}}(S)$. Thus, we have that $X$ has the form

$$\begin{eqnarray}\displaystyle \begin{array}{@{}ccccccccccc@{}}\cdots \, & {\rightsquigarrow} & 0 & {\rightsquigarrow} & P & \stackrel{1}{{\rightsquigarrow}} & P\otimes _{S}DS & {\rightsquigarrow} & 0 & {\rightsquigarrow} & \cdots \,,\end{array} & & \displaystyle \nonumber\end{eqnarray}$$

where $P$ is indecomposable projective and is on the ($k$+1)th position, for some $k$; see [Reference Happel18].

Note that $X_{k+1}=P\in \text{add}_{\text{mod}S}S\subseteq {\mathcal{G}}$ and that $X_{k}=P\otimes _{S}DS\in \text{add}_{\text{mod}S}DS$$\subseteq {\mathcal{K}}$, so, following 4.2.4, we can choose $G_{X}$ to be of the form

$$\begin{eqnarray}\displaystyle \begin{array}{@{}ccccccccccc@{}}\cdots \, & {\rightsquigarrow} & 0 & {\rightsquigarrow} & P & {\rightsquigarrow} & DT_{k} & {\rightsquigarrow} & 0 & {\rightsquigarrow} & \cdots \,,\end{array} & & \displaystyle \nonumber\end{eqnarray}$$

where $(G_{X})_{k}=DT_{k}\in \text{add}_{\text{mod}S}DT$. And we have an epimorphism $v_{_{X}}:G_{X}\rightarrow X$ in ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{S}})$ which is of the form

$$\begin{eqnarray}\displaystyle \begin{array}{@{}ccccccccccccccc@{}}G_{X}: & & \cdots \, & {\rightsquigarrow} & 0 & {\rightsquigarrow} & 0 & {\rightsquigarrow} & P & {\rightsquigarrow} & DT_{k} & {\rightsquigarrow} & 0 & {\rightsquigarrow} & \cdots \\ \downarrow v_{_{X}} & & & & & & & & \downarrow 1 & & \downarrow v_{k} & & & & \\ X: & & \cdots \, & {\rightsquigarrow} & 0 & {\rightsquigarrow} & 0 & {\rightsquigarrow} & P & {\rightsquigarrow} & P\otimes _{S}DS & {\rightsquigarrow} & 0 & {\rightsquigarrow} & \cdots \end{array} & & \displaystyle \nonumber\end{eqnarray}$$

Then, from the structure of $r(v_{_{X}})$ in 4.2.3, we can see that $r(v_{_{X}})$ is of the form

where $\unicode[STIX]{x1D701}_{r_{k}}$ is defined as in 4.2.3 and $\unicode[STIX]{x1D6FF}_{R_{k}}$ is defined as in 4.2.1. One checks that both homomorphisms $\unicode[STIX]{x1D701}_{r_{k}}$ and $\unicode[STIX]{x1D6FF}_{R_{k}}$ are, in fact, isomorphisms. So we obtain that $\mathbf{Q}_{DT}(X)=\text{Ker}(r(v_{_{X}}))$ is of the form

$$\begin{eqnarray}\displaystyle \begin{array}{@{}ccccccccccccccc@{}} & & \cdots \, & {\rightsquigarrow} & 0 & {\rightsquigarrow} & 0 & {\rightsquigarrow} & \text{Hom}_{S}(DT,DT_{k}) & \stackrel{\unicode[STIX]{x1D6FF}_{k}^{\prime }}{{\rightsquigarrow}} & DT_{k}\otimes _{S}T & {\rightsquigarrow} & 0 & {\rightsquigarrow} & \cdots \,,\end{array} & & \displaystyle \nonumber\end{eqnarray}$$

where $\unicode[STIX]{x1D6FF}_{k}^{\prime }$ is an induced isomorphism: $\text{Hom}_{S}(DT,DT_{k})\rightarrow \text{Hom}_{R}(DR,DT_{k}\otimes _{S}T)$. Since $\text{Hom}_{S}(DT,DT_{k})\in \text{add}_{\text{mod}R}(\text{Hom}_{S}(DT,DT))=\text{add}_{\text{mod}R}R$, we see that $\text{Hom}_{S}(DT,DT_{k})$ is projective and that $\mathbf{Q}_{DT}(X)$ is a projective object in ${\mathcal{R}}{\mathcal{C}}(R)$.

It follows that the functor $\mathbf{Q}_{DT}$ factors through $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)$. The induced functor from $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)$ to $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$ is still denoted by $\mathbf{Q}_{DT}$.

4.3 The isomorphism $\mathbf{Q}_{DT}\mathbf{S}_{T}\simeq 1_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)}$

4.3.1 Computing the composition $\mathbf{Q}_{DT}\mathbf{S}_{T}$

Take any $X=\{X_{i},\unicode[STIX]{x1D6FF}_{i}^{\otimes }\}\in {\mathcal{R}}{\mathcal{C}}(R)$. From the chosen exact sequence $0\rightarrow X\stackrel{u_{_{X}}}{\longrightarrow }A_{X}\stackrel{\unicode[STIX]{x1D70B}_{_{_{X}}}}{\longrightarrow }B_{X}\rightarrow 0$ in ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)$ with $A_{X}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{A}})$ and $B_{X}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{B}})$, as in 4.1.4, we obtain an exact sequence

$$\begin{eqnarray}\displaystyle 0\rightarrow X\,\hat{\otimes }\,DT\stackrel{l(u_{_{X}})}{\longrightarrow }\text{L}_{T}(A_{X})\stackrel{s}{\longrightarrow }\mathbf{S}_{T}(X)\rightarrow 0 & & \displaystyle \nonumber\end{eqnarray}$$

by the construction of the functor $\mathbf{S}_{T}$ in 4.1.5. Note that, for each $i$, $\mathbf{S}_{T}(X)_{i}$ is given by the pushout diagram

Now we take a projective $R$-module $P_{(A_{X})_{i}}$ such that $P_{(A_{X})_{i}}\stackrel{p_{i}}{\longrightarrow }(A_{X})_{i}\rightarrow 0$ is exact. Then we have a pullback diagram

Since ${\mathcal{B}}$ is closed under kernels of epimorphisms, we see that $\overline{X}_{i}\in {\mathcal{B}}$. By applying the functor $-\!\otimes _{R}DT$, the diagram above induces the following commutative diagram with exact rows since ${\mathcal{B}}\subseteq \text{KerTor}_{1}^{R}(-,DT)$:

Now, one can check that the following diagram is commutative with exact rows, for each $i$, where the lower row is obtained from the first pushout diagram in this section. Here, $t_{i}^{P}=(-(q_{i}\otimes _{R}DT)\cdot \unicode[STIX]{x1D703}_{l_{i}},(\overline{u}_{_{X}})_{i}\otimes _{R}DT)$, $t_{i}=(-\unicode[STIX]{x1D703}_{l_{i}},(u_{_{X}})_{i}\otimes _{R}DT)$, $s_{i}^{P}=\big(\!\begin{smallmatrix}s_{i}^{1}\\ (p_{i}\otimes _{R}DT)\cdot s_{i}^{2}\end{smallmatrix}\!\big)$ and $s_{i}=\big(\begin{smallmatrix}s_{i}^{1}\\ s_{i}^{2}\end{smallmatrix}\big)$.

Denote $\mathfrak{L}_{A_{X}}^{P}:=\{\text{Hom}_{R}(T,(A_{X})_{i-1})\oplus P_{(A_{X})_{i}}\otimes _{R}DT\}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}(S)$. Note that $\overline{X}_{i}\otimes _{R}DT\in {\mathcal{K}}$ and $\text{Hom}_{R}(T,(A_{X})_{i-1})\oplus P_{(A_{X})_{i}}\otimes _{R}DT\in {\mathcal{G}}$, so we have an exact sequence in ${\mathcal{R}}{\mathcal{C}}^{\text{tr}}(S)$ from the first row in the above commutative diagram

$$\begin{eqnarray}\displaystyle 0\rightarrow \overline{X}\otimes _{R}DT\longrightarrow \mathfrak{L}_{A_{X}}^{P}\stackrel{s^{P}}{\longrightarrow }\mathbf{S}_{T}(X)\rightarrow 0 & & \displaystyle \nonumber\end{eqnarray}$$

with $\overline{X}\otimes _{R}DT\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{K}})$ and $\mathfrak{L}_{A_{X}}^{P}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}({\mathcal{G}})$, as in 4.2.4. By applying the homomorphism $r$ in 4.2.3 to the homomorphism $s^{P}:\mathfrak{L}_{A_{X}}^{P}\rightarrow \mathbf{S}_{T}(X)$, we have an exact sequence in ${\mathcal{R}}{\mathcal{C}}(R)$ by the construction of the functor $\mathbf{Q}_{DT}$ in 4.2.5

$$\begin{eqnarray}\displaystyle 0\rightarrow \mathbf{Q}_{DT}\mathbf{S}_{T}(X)\stackrel{\unicode[STIX]{x1D706}}{\longrightarrow }\text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P})\stackrel{r(s^{P})}{\longrightarrow }\text{&#x0124;om}(DT,\mathbf{S}_{T}(X))\rightarrow 0, & & \displaystyle \nonumber\end{eqnarray}$$

where $r(s^{P})$ is defined as in 4.2.3.

4.3.2 The object $X\oplus \text{L}_{R}(P_{A_{X}}^{+})$ in ${\mathcal{R}}{\mathcal{C}}(R)$

Denote $P_{A_{X}}^{+}:=\{P_{(A_{X})_{i+1}}\}$, then $P_{A_{X}}^{+}\in {\mathcal{R}}{\mathcal{C}}^{\text{tr}}(\text{add}_{\text{mod}R}R)$. Applying the functor $\text{L}_{R}$ in the remark in 4.1.1, we obtain that $\text{L}_{R}(P_{A_{X}}^{+})$ is a projective object in ${\mathcal{R}}{\mathcal{C}}(R)$. Hence, the object $X\oplus \text{L}_{R}(P_{A_{X}}^{+})$ is isomorphic to $X$ in $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$.

We will prove that $\mathbf{Q}_{DT}\mathbf{S}_{T}(X)\simeq X\oplus \text{L}_{R}(P_{A_{X}}^{+})$ naturally. And then, $\mathbf{Q}_{DT}\mathbf{S}_{T}\simeq 1_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)}$.

The general strategy is as follows. First, we construct a natural homomorphism $\unicode[STIX]{x1D709}:X\oplus \text{L}_{R}(P_{A_{X}}^{+})\rightarrow \text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P})$. Second, we show that $\unicode[STIX]{x1D709}\cdot r(s^{P})=0$, that is, the composition of $\unicode[STIX]{x1D709}$ and the homomorphism $r(s^{P}):\text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P})\rightarrow \hat{\text{H}}\text{om}(DT,\mathbf{S}_{T}(X))$ in the exact sequence above is 0. Thus, we obtain a homomorphism $\unicode[STIX]{x1D719}:X\oplus \text{L}_{R}(P_{A_{X}}^{+})\rightarrow \mathbf{Q}_{DT}\mathbf{S}_{T}(X)$. Finally, we prove that $\unicode[STIX]{x1D719}$ is indeed a natural isomorphism.

4.3.3 The homomorphism $\unicode[STIX]{x1D709}:X\oplus \text{L}_{R}(P_{A_{X}}^{+})\rightarrow \text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P})$

Recall from the construction in 4.3.1 that $X=\{X_{i},\unicode[STIX]{x1D6FF}_{i}^{\otimes }\}$ and,

$\text{L}_{R}(P_{A_{X}}^{+})=\{\text{Hom}_{R}(R,P_{(A_{X})_{i}})\oplus P_{(A_{X})_{i+1}}\otimes _{R}DR\}=\{P_{(A_{X})_{i}}\oplus P_{(A_{X})_{i+1}}\otimes _{R}DR\}$, where the structure map $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(\text{L}_{R}(P_{A_{X}}^{+})):(\text{L}_{R}(P_{A_{X}}^{+}))_{i}\otimes DR\rightarrow (\text{L}_{R}(P_{A_{X}}^{+}))_{i-1}$ is given by $\big(\begin{smallmatrix}0 & 1_{P_{(A_{X})_{i}}\otimes _{R}DR}\\ 0 & 0\end{smallmatrix}\!\big)$, and that

$$\begin{eqnarray}\displaystyle \text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P}) & = & \displaystyle \{\text{Hom}_{S}(DT,(\mathfrak{L}_{A_{X}}^{P})_{i})\oplus (\mathfrak{L}_{A_{X}}^{P})_{i+1}\otimes _{S}T\}\nonumber\\ \displaystyle & = & \displaystyle \{\text{Hom}_{S}(DT,\text{Hom}_{R}(T,(A_{X})_{i-1})\oplus P_{(A_{X})_{i}}\otimes _{R}DT)\nonumber\\ \displaystyle & & \displaystyle \oplus \,(\text{Hom}_{R}(T,(A_{X})_{i})\oplus P_{(A_{X})_{i+1}}\otimes _{R}DT)\otimes _{S}T\},\nonumber\end{eqnarray}$$

where the structure map

$$\begin{eqnarray}\unicode[STIX]{x1D6FF}_{i}^{\otimes }(\text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P})):(\text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P}))_{i}\otimes _{R}DR\rightarrow (\text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P}))_{i-1}\end{eqnarray}$$

is defined in 4.2.1.

By the definition, we have that $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(\text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P}))=\bigg(\!\begin{smallmatrix}0 & 0 & \unicode[STIX]{x1D6FE}_{i}^{11} & 0\\ 0 & 0 & 0 & \unicode[STIX]{x1D6FE}_{i}^{22}\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\end{smallmatrix}\!\bigg)$, where

$\unicode[STIX]{x1D6FE}_{i}^{11}:\text{Hom}_{S}(DT,\text{Hom}_{R}(T,(A_{X})_{i-1}))\otimes _{R}DR\rightarrow \text{Hom}_{R}(T,(A_{X})_{i-1})\otimes _{S}T$ is given by the composition

$$\begin{eqnarray}\displaystyle & & \displaystyle \unicode[STIX]{x1D6FE}_{i}^{11}:\text{Hom}_{S}(DT,\text{Hom}_{R}(T,(A_{X})_{i-1}))\otimes _{R}DR\nonumber\\ \displaystyle & & \displaystyle \quad \simeq \text{Hom}_{S}(DT,\text{Hom}_{R}(T,(A_{X})_{i-1}))\otimes _{R}DT\otimes _{S}T\nonumber\\ \displaystyle & & \displaystyle \quad \stackrel{\unicode[STIX]{x1D716}_{\text{Hom}_{R}(T,(A_{X})_{i-1})}^{DT}\otimes _{S}T}{\longrightarrow }\text{Hom}_{R}(T,(A_{X})_{i-1})\otimes _{S}T,\nonumber\end{eqnarray}$$

and $\unicode[STIX]{x1D6FE}_{i}^{22}:\text{Hom}_{S}(DT,P_{(A_{X})_{i}}\otimes _{R}DT)\otimes _{R}DR\rightarrow P_{(A_{X})_{i}}\otimes _{R}DT\otimes _{S}T$ is defined similarly as $\unicode[STIX]{x1D6FE}_{i}^{11}$ by replacing $\text{Hom}_{R}(T,(A_{X})_{i-1})$ with $P_{(A_{X})_{i}}\otimes _{R}DT$.

Let $\unicode[STIX]{x1D709}=\{\unicode[STIX]{x1D709}_{i}\}:X\oplus \text{L}_{R}(P_{A_{X}}^{+})\rightarrow \text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P})$ be a homomorphism. We may assume that $\unicode[STIX]{x1D709}_{i}=(\unicode[STIX]{x1D709}_{i}^{a},\unicode[STIX]{x1D709}_{i}^{b})$, where

$$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D709}_{i}^{a}:X_{i}\oplus P_{(A_{X})_{i}}\oplus P_{(A_{X})_{i+1}}\otimes _{R}DR\rightarrow \text{Hom}_{S}(DT,(\mathfrak{L}_{A_{X}}^{P})_{i}) & & \displaystyle \nonumber\end{eqnarray}$$

and

$$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D709}_{i}^{b}:X_{i}\oplus P_{(A_{X})_{i}}\oplus P_{(A_{X})_{i+1}}\otimes _{R}DR\rightarrow (\mathfrak{L}_{A_{X}}^{P})_{i+1}\otimes _{S}T. & & \displaystyle \nonumber\end{eqnarray}$$
4.3.3.1 The homomorphism $\unicode[STIX]{x1D709}_{i}^{a}$ in $\text{mod}R$

We set $\unicode[STIX]{x1D709}_{i}^{a}=\bigg(\!\begin{smallmatrix}\unicode[STIX]{x1D709}_{i}^{a_{11}} & \unicode[STIX]{x1D709}_{i}^{a_{12}}\\ \unicode[STIX]{x1D709}_{i}^{a_{21}} & \unicode[STIX]{x1D709}_{i}^{a_{22}}\\ \unicode[STIX]{x1D709}_{i}^{a_{31}} & \unicode[STIX]{x1D709}_{i}^{a_{32}}\end{smallmatrix}\!\bigg)$:

$$\begin{eqnarray}\displaystyle X_{i}\oplus P_{(A_{X})_{i}}\oplus P_{(A_{X})_{i+1}}\otimes _{R}DR\longrightarrow \text{Hom}_{S}(DT,\text{Hom}_{R}(T,(A_{X})_{i-1})\oplus P_{(A_{X})_{i}}\otimes _{R}DT). & & \displaystyle \nonumber\end{eqnarray}$$

Using the isomorphism $_{S}DS_{S}\simeq _{S}T\otimes _{R}DT_{S}$ and the adjoint isomorphism

$$\begin{eqnarray}\displaystyle \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}:\text{Hom}_{S}(-\!\otimes _{R}DT,-)\simeq \text{Hom}_{R}(-,\text{Hom}_{S}(DT,-)), & & \displaystyle \nonumber\end{eqnarray}$$

we define the components of $\unicode[STIX]{x1D709}_{i}^{a}$ as follows.

$\bullet$ The morphism $\unicode[STIX]{x1D709}_{i}^{a_{11}}=\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(\unicode[STIX]{x1D703}_{l_{i}}):$$X_{i}\rightarrow \text{Hom}_{S}(DT,\text{Hom}_{R}(T,(A_{X})_{i-1}))$, where $\unicode[STIX]{x1D703}_{l_{i}}:X_{i}\otimes _{R}DT\rightarrow \text{Hom}_{R}(T,(A_{X})_{i-1})$ is defined in 4.1.3.

In other words, the morphism $\unicode[STIX]{x1D709}_{i}^{a_{11}}$ is given by the composition:

$$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D702}_{_{X_{i}}}^{DR}\cdot \text{Hom}_{R}(DR,\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\cdot \text{Hom}_{R}(DR,(u_{_{X}})_{i-1}))=\unicode[STIX]{x1D6FF}_{i}^{\text{H}}(X)\cdot \text{Hom}_{R}(DR,(u_{_{X}})_{i-1}) & & \displaystyle \nonumber\end{eqnarray}$$

and some natural isomorphisms

$$\begin{eqnarray}\displaystyle & & \displaystyle X_{i}\stackrel{\unicode[STIX]{x1D702}_{_{X_{i}}}^{DR}}{\longrightarrow }\text{Hom}_{R}(DR,X_{i}\otimes _{R}DR)\stackrel{\text{Hom}_{R}(DR,\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X))}{\longrightarrow }\text{Hom}_{R}(DR,X_{i-1})\nonumber\\ \displaystyle & & \displaystyle \quad \stackrel{\text{Hom}_{R}(DR,(u_{_{X}})_{i-1})}{\longrightarrow }\text{Hom}_{R}(DR,(A_{X})_{i-1})\simeq \text{Hom}_{R}(DT\otimes _{S}T,(A_{X})_{i-1})\nonumber\\ \displaystyle & & \displaystyle \quad \simeq \text{Hom}_{S}(DT,\text{Hom}_{R}(T,(A_{X})_{i-1})).\nonumber\end{eqnarray}$$

$\bullet$ The morphism

$$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D709}_{i}^{a_{22}} & = & \displaystyle \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(1_{(P_{(A_{X})_{i}}\otimes _{R}DT)})\nonumber\\ \displaystyle & = & \displaystyle \unicode[STIX]{x1D702}_{_{P_{(A_{X})_{i}}}}^{DT}:P_{(A_{X})_{i}}\rightarrow \text{Hom}_{S}(DT,P_{(A_{X})_{i}}\otimes _{R}DT).\nonumber\end{eqnarray}$$

$\bullet$ The remaining morphisms $\unicode[STIX]{x1D709}_{i}^{a_{12}},\unicode[STIX]{x1D709}_{i}^{a_{21}},\unicode[STIX]{x1D709}_{i}^{a_{31}},\unicode[STIX]{x1D709}_{i}^{a_{32}}$ are all $0$.

So we have that $\unicode[STIX]{x1D709}_{i}^{a}=\bigg(\!\begin{smallmatrix}\unicode[STIX]{x1D709}_{i}^{a_{11}} & 0\\ 0 & \unicode[STIX]{x1D709}_{i}^{a_{22}}\\ 0 & 0\end{smallmatrix}\!\bigg)$, where

$$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D709}_{i}^{a_{11}} & = & \displaystyle \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(\unicode[STIX]{x1D703}_{l_{i}}),\qquad \text{and}\nonumber\\ \displaystyle \unicode[STIX]{x1D709}_{i}^{a_{22}} & = & \displaystyle \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(1_{(P_{(A_{X})_{i}}\otimes _{R}DT)}).\nonumber\end{eqnarray}$$
4.3.3.2 The homomorphism $\unicode[STIX]{x1D709}_{i}^{b}$ in $\text{mod}R$

We set $\unicode[STIX]{x1D709}_{i}^{b}=\bigg(\!\begin{smallmatrix}\unicode[STIX]{x1D709}_{i}^{b_{11}} & \unicode[STIX]{x1D709}_{i}^{b_{12}}\\ \unicode[STIX]{x1D709}_{i}^{b_{21}} & \unicode[STIX]{x1D709}_{i}^{b_{22}}\\ \unicode[STIX]{x1D709}_{i}^{b_{31}} & \unicode[STIX]{x1D709}_{i}^{b_{32}}\end{smallmatrix}\!\bigg)$:

$$\begin{eqnarray}\displaystyle X_{i}\oplus P_{(A_{X})_{i}}\oplus P_{(A_{X})_{i+1}}\otimes _{R}DR\rightarrow (\text{Hom}_{R}(T,(A_{X})_{i})\oplus P_{(A_{X})_{i+1}}\otimes _{R}DT)\otimes _{S}T, & & \displaystyle \nonumber\end{eqnarray}$$

where the components are defined naturally as follows.

  • The morphism $\unicode[STIX]{x1D709}_{i}^{b_{11}}=(u_{_{X}})_{i}\cdot (\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T})^{-1}:X_{i}\rightarrow \text{Hom}_{R}(T,(A_{X})_{i})\otimes _{S}T$ (note that $\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T}$ is an isomorphism since $(A_{X})_{i}\in {\mathcal{A}}$), that is, is given by the composition

    $$\begin{eqnarray}X_{i}\stackrel{(u_{_{X}})_{i}}{\longrightarrow }(A_{X})_{i}\stackrel{(\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T})^{-1}}{\longrightarrow }\text{Hom}_{R}(T,(A_{X})_{i})\otimes _{S}T.\end{eqnarray}$$
  • The morphism $\unicode[STIX]{x1D709}_{i}^{b_{21}}=p_{i}\cdot (\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T})^{-1}:P_{(A_{X})_{i}}\rightarrow \text{Hom}_{R}(T,(A_{X})_{i})\otimes _{S}T$, that is, is given by the composition

    $$\begin{eqnarray}P_{(A_{X})_{i}}\stackrel{p_{i}}{\longrightarrow }(A_{X})_{i}\stackrel{(\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T})^{-1}}{\longrightarrow }\text{Hom}_{R}(T,(A_{X})_{i})\otimes _{S}T.\end{eqnarray}$$
  • The morphism $\unicode[STIX]{x1D709}_{i}^{b_{32}}:P_{(A_{X})_{i+1}}\otimes _{R}DR\rightarrow P_{(A_{X})_{i+1}}\otimes _{R}DT\otimes _{S}T$ is the natural isomorphism given by $_{R}(DT\otimes _{S}T)_{R}\simeq _{R}DR_{R}$.

  • The remaining morphisms $\unicode[STIX]{x1D709}_{i}^{b_{12}},\unicode[STIX]{x1D709}_{i}^{b_{22}},\unicode[STIX]{x1D709}_{i}^{b_{31}}$ are all $0$.

So we have that $\unicode[STIX]{x1D709}_{i}^{b}=\bigg(\!\begin{smallmatrix}\unicode[STIX]{x1D709}_{i}^{b_{11}} & 0\\ \unicode[STIX]{x1D709}_{i}^{b_{21}} & 0\\ 0 & \unicode[STIX]{x1D709}_{i}^{b_{32}}\end{smallmatrix}\!\bigg)$, where $\unicode[STIX]{x1D709}_{i}^{b_{11}}=(u_{_{X}})_{i}\cdot (\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T})^{-1}$, $\unicode[STIX]{x1D709}_{i}^{b_{21}}=p_{i}\cdot (\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T})^{-1}$, and $\unicode[STIX]{x1D709}_{i}^{b_{32}}$ is the natural isomorphism.

4.3.3.3 $\unicode[STIX]{x1D709}$ is a homomorphism in ${\mathcal{R}}{\mathcal{C}}(R)$

We now show that the above-defined morphism $\unicode[STIX]{x1D709}:X\oplus \text{L}_{R}(P_{A_{X}}^{+})\rightarrow \text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P})$ is compatible with structure maps, that is,

$$\begin{eqnarray}\unicode[STIX]{x1D709}_{i}\otimes _{R}DR\cdot \unicode[STIX]{x1D6FF}_{i}^{\otimes }(\text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P}))=\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X\oplus \text{L}_{R}(P_{A_{X}}^{+}))\cdot \unicode[STIX]{x1D709}_{i-1}\end{eqnarray}$$

holds for each $i$.

Indeed, by the involved definitions, we have that

$$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D709}_{i}\otimes _{R}DR\cdot \unicode[STIX]{x1D6FF}_{i}^{\otimes }(\text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P})) & = & \displaystyle \left(\begin{array}{@{}cccc@{}}\unicode[STIX]{x1D709}_{i}^{a_{11}} & 0 & \unicode[STIX]{x1D709}_{i}^{b_{11}} & 0\\ 0 & \unicode[STIX]{x1D709}_{i}^{a_{22}} & \unicode[STIX]{x1D709}_{i}^{b_{21}} & 0\\ 0 & 0 & 0 & \unicode[STIX]{x1D709}_{i}^{b_{32}}\end{array}\right)\otimes _{R}DR\cdot \left(\begin{array}{@{}cccc@{}}0 & 0 & \unicode[STIX]{x1D6FE}_{i}^{11} & 0\\ 0 & 0 & 0 & \unicode[STIX]{x1D6FE}_{i}^{22}\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\end{array}\right)\nonumber\\ \displaystyle & = & \displaystyle \left(\begin{array}{@{}cccc@{}}0 & 0 & \unicode[STIX]{x1D709}_{i}^{a_{11}}\otimes _{R}DR\cdot \unicode[STIX]{x1D6FE}_{i}^{11} & 0\\ 0 & 0 & 0 & \unicode[STIX]{x1D709}_{i}^{a_{22}}\otimes _{R}DR\cdot \unicode[STIX]{x1D6FE}_{i}^{22}\\ 0 & 0 & 0 & 0\end{array}\right)\nonumber\end{eqnarray}$$

and that

$$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D6FF}_{i}^{\otimes }(X\oplus \text{L}_{R}(P_{A_{X}}^{+}))\cdot \unicode[STIX]{x1D709}_{i-1} & = & \displaystyle \left(\begin{array}{@{}ccc@{}}\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X) & 0 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{@{}cccc@{}}\unicode[STIX]{x1D709}_{i-1}^{a_{11}} & 0 & \unicode[STIX]{x1D709}_{i-1}^{b_{11}} & 0\\ 0 & \unicode[STIX]{x1D709}_{i-1}^{a_{22}} & \unicode[STIX]{x1D709}_{i-1}^{b_{21}} & 0\\ 0 & 0 & 0 & \unicode[STIX]{x1D709}_{i-1}^{b_{32}}\end{array}\right)\nonumber\\ \displaystyle & = & \displaystyle \left(\begin{array}{@{}cccc@{}}\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\cdot \unicode[STIX]{x1D709}_{i-1}^{a_{11}} & 0 & \unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\cdot \unicode[STIX]{x1D709}_{i-1}^{b_{11}} & 0\\ 0 & 0 & 0 & \unicode[STIX]{x1D709}_{i-1}^{b_{32}}\\ 0 & 0 & 0 & 0\end{array}\right)\nonumber\end{eqnarray}$$

  • $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\cdot \unicode[STIX]{x1D709}_{i-1}^{a_{11}}=0$. In fact, since $\unicode[STIX]{x1D709}_{i-1}^{a_{11}}$ is the composition of the morphism $\unicode[STIX]{x1D6FF}_{i-1}^{\text{H}}(X)\cdot \text{Hom}_{R}(DR,(u_{_{X}})_{i-2})$ and some natural isomorphisms by the construction, we see that $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\cdot \unicode[STIX]{x1D709}_{i-1}^{a_{11}}$ factors through $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\cdot \unicode[STIX]{x1D6FF}_{i-1}^{\text{H}}(X)$. But the latter is 0 as $X$ is a repe-complex. Thus, $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\cdot \unicode[STIX]{x1D709}_{i-1}^{a_{11}}=0$.

  • $\unicode[STIX]{x1D709}_{i}^{a_{11}}\otimes _{R}DR\cdot \unicode[STIX]{x1D6FE}_{i}^{11}=\unicode[STIX]{x1D6FF}_{i}^{\otimes }(X)\cdot \unicode[STIX]{x1D709}_{i-1}^{b_{11}}$. This follows from the involved definitions and the following commutative diagram:

    where $\unicode[STIX]{x1D714}:=\unicode[STIX]{x1D716}_{\text{Hom}_{R}(T,(A_{X})_{i-1})}^{DT}\otimes _{S}T$. The last square is commutative since $\unicode[STIX]{x1D716}_{M}^{DT\otimes _{S}T}=\unicode[STIX]{x1D716}_{\text{Hom}_{R}(T,M)}^{DT}\otimes _{S}T\cdot \unicode[STIX]{x1D716}_{M}^{T}$.
  • $\unicode[STIX]{x1D709}_{i}^{a_{22}}\otimes _{R}DR\cdot \unicode[STIX]{x1D6FE}_{i}^{22}=\unicode[STIX]{x1D709}_{i-1}^{b_{32}}$. This follows from the involved definitions and the equality $1_{(P_{(A_{X})_{i}}\otimes _{R}DT)}=\unicode[STIX]{x1D702}_{(P_{(A_{X})_{i}})}^{DT}\otimes _{R}DT\cdot \unicode[STIX]{x1D716}_{(P_{(A_{X})_{i}}\otimes _{R}DT)}^{DT}$.

Then we can easily conclude that the morphism $\unicode[STIX]{x1D709}:X\oplus \text{L}_{R}(P_{A_{X}}^{+})\rightarrow \text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P})$ is, in fact, a homomorphism in ${\mathcal{R}}{\mathcal{C}}(R)$.

4.3.4 The composition $\unicode[STIX]{x1D709}\cdot r(s^{P})=0$, and so $\unicode[STIX]{x1D709}$ factors through a homomorphism $\unicode[STIX]{x1D719}:X\oplus \text{L}_{R}(P_{A_{X}}^{+})\rightarrow \mathbf{Q}_{DT}\mathbf{S}_{T}(X)$

4.3.4.1 The analysis of the homomorphism $s:\text{L}_{T}(A_{X})\rightarrow \mathbf{S}_{T}(X)$ in 4.3.1

Recall from 4.3.1 that $s=\{s_{i}\}:\text{L}_{T}(A_{X})\rightarrow \mathbf{S}_{T}(X)$ is a homomorphism in ${\mathcal{R}}{\mathcal{C}}(S)$ which is the cokernel of the homomorphism $l(u_{_{X}})$. Note that $(\text{L}_{T}(A_{X}))_{i}=\text{Hom}_{R}(T,(A_{X})_{i-1})\oplus (A_{X})_{i}\otimes _{R}DT$, so we write that $s_{i}=\big(\!\begin{smallmatrix}s_{i}^{1}s_{i}^{2}\end{smallmatrix}\!\big)$ as we have done in the last commutative diagram in 4.3.1. The fact that $s$ is a homomorphism in ${\mathcal{R}}{\mathcal{C}}(S)$ implies that there is the following commutative diagram, for each $i$:

By the definition of $\unicode[STIX]{x1D6FF}_{i}^{\otimes }(\text{L}_{T}(A_{X}))$ (see 4.1.1) and the above commutative diagram, we obtain that $(s_{i}^{2}\otimes _{S}DS)\cdot \unicode[STIX]{x1D6FF}_{i}^{\otimes }(\mathbf{S}_{T}(X))=0$ and that $(s_{i}^{1}\otimes _{S}DS)\cdot \unicode[STIX]{x1D6FF}_{i}^{\otimes }(\mathbf{S}_{T}(X))\simeq (\unicode[STIX]{x1D716}_{A_{X_{i-1}}}^{T}\otimes _{R}DT)\cdot s_{i-1}^{2}$.

4.3.4.2 The homomorphism $r(s^{P}):\text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P})\rightarrow \text{&#x0124;om}(DT,\mathbf{S}_{T}(X))$

Recall from 4.3.1 that

$$\begin{eqnarray}s^{P}=\{s_{i}^{P}\}=\left\{\left(\begin{array}{@{}c@{}}s_{i}^{1}\\ (p_{i}\otimes _{R}DT)\cdot s_{i}^{2}\end{array}\right)\right\}:\mathfrak{L}_{A_{X}}^{P}\rightarrow \mathbf{S}_{T}(X).\end{eqnarray}$$

By 4.2.3, we know that

$$\begin{eqnarray}\text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P})=\{\text{Hom}_{S}(DT,(\mathfrak{L}_{A_{X}}^{P})_{i})\oplus (\mathfrak{L}_{A_{X}}^{P})_{i+1}\otimes _{S}T\}\end{eqnarray}$$

and that

$$\begin{eqnarray}r(s^{P})_{i}=\left(\begin{array}{@{}c@{}}\text{Hom}_{S}(DT,s_{i}^{P})-\unicode[STIX]{x1D701}_{r_{i}}\end{array}\right),\end{eqnarray}$$

where $\unicode[STIX]{x1D701}_{r_{i}}=\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((s_{i+1}^{P}\otimes _{S}DS)\cdot \unicode[STIX]{x1D6FF}_{i+1}^{\otimes }(\mathbf{S}_{T}(X)))$.

For convenience, we set $r(s^{P})_{i}=\big(\!\begin{smallmatrix}r_{i}^{1}r_{i}^{2}\end{smallmatrix}\!\big)$, where

$$\begin{eqnarray}r_{i}^{1}=\text{Hom}_{S}(DT,s_{i}^{P}):\text{Hom}_{S}(DT,(\mathfrak{L}_{A_{X}}^{P})_{i})\rightarrow \text{Hom}_{S}(DT,\mathbf{S}_{T}(X)_{i})\end{eqnarray}$$

and

$$\begin{eqnarray}r_{i}^{2}=-\unicode[STIX]{x1D701}_{r_{i}}:(\mathfrak{L}_{A_{X}}^{P})_{i+1}\otimes _{S}T\rightarrow \text{Hom}_{S}(DT,\mathbf{S}_{T}(X)_{i}).\end{eqnarray}$$
4.3.4.3 Checking $\unicode[STIX]{x1D709}\cdot r(s^{P})=0$

To check $\unicode[STIX]{x1D709}\cdot r(s^{P})=0$, we need only to check that $\unicode[STIX]{x1D709}_{i}^{a}r_{i}^{1}+\unicode[STIX]{x1D709}_{i}^{b}r_{i}^{2}=0$ for each $i$, since $\unicode[STIX]{x1D709}_{i}=(\unicode[STIX]{x1D709}_{i}^{a},\unicode[STIX]{x1D709}_{i}^{b})$ and $r(s^{P})_{i}=\big(\begin{smallmatrix}r_{i}^{1}r_{i}^{2}\end{smallmatrix}\big)$. Note that $r_{i}^{1}=\text{Hom}_{S}(DT,s_{i}^{P})$ and $r_{i}^{2}=-\unicode[STIX]{x1D701}_{r_{i}}$, so it is enough to check that $\unicode[STIX]{x1D709}_{i}^{a}\cdot \text{Hom}_{S}(DT,s_{i}^{P})=\unicode[STIX]{x1D709}_{i}^{b}\cdot \unicode[STIX]{x1D701}_{r_{i}}$.

Since $\unicode[STIX]{x1D709}_{i}^{a}=\bigg(\begin{smallmatrix}\unicode[STIX]{x1D709}_{11}^{a} & 0\\ 0 & \unicode[STIX]{x1D709}_{22}^{a}\\ 0 & 0\end{smallmatrix}\bigg)$, $\unicode[STIX]{x1D709}_{i}^{b}=\bigg(\begin{smallmatrix}\unicode[STIX]{x1D709}_{11}^{b} & 0\\ \unicode[STIX]{x1D709}_{21}^{b} & 0\\ 0 & \unicode[STIX]{x1D709}_{32}^{b}\end{smallmatrix}\bigg)$, $\unicode[STIX]{x1D701}_{r_{i}}=\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((s_{i+1}^{P}\otimes _{S}DS)\cdot \unicode[STIX]{x1D6FF}_{i+1}^{\otimes }(\mathbf{S}_{T}(X)))$ and $s_{i}^{P}=\big(\begin{smallmatrix}s_{i}^{1}\\ (p_{i}\otimes _{R}DT)\cdot s_{i}^{2}\end{smallmatrix}\big)$, we just check the following.

  1. (1) $\unicode[STIX]{x1D709}_{11}^{a}\cdot \text{Hom}_{S}(DT,s_{i}^{1})=\unicode[STIX]{x1D709}_{11}^{b}\cdot \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((s_{i+1}^{1}\otimes _{S}DS)\cdot \unicode[STIX]{x1D6FF}_{i+1}^{\otimes }(\mathbf{S}_{T}(X)))$.

    By 4.3.3.1, we have that

    $$\begin{eqnarray}\unicode[STIX]{x1D709}_{11}^{a}\cdot \text{Hom}_{S}(DT,s_{i}^{1})=\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(\unicode[STIX]{x1D703}_{l_{i}})\cdot \text{Hom}_{S}(DT,s_{i}^{1})=\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(\unicode[STIX]{x1D703}_{l_{i}}\cdot s_{i}^{1}),\end{eqnarray}$$
    where the later equality uses the naturality of $\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}$. On the other hand, by 4.3.3.2 and 4.3.4.1, we obtain that
    $$\begin{eqnarray}\displaystyle & & \displaystyle \unicode[STIX]{x1D709}_{11}^{b}\cdot \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((s_{i+1}^{1}\otimes _{S}DS)\cdot \unicode[STIX]{x1D6FF}_{i+1}^{\otimes }(\mathbf{S}_{T}(X)))\nonumber\\ \displaystyle & & \displaystyle \quad =((u_{_{X}})_{i}\cdot (\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T})^{-1})\cdot \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T}\otimes _{R}DT)\cdot s_{i}^{2})\nonumber\\ \displaystyle & & \displaystyle \quad =\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((((u_{_{X}})_{i}\cdot (\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T})^{-1})\otimes _{R}DT)\cdot (\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T}\otimes _{R}DT)\cdot s_{i}^{2})\nonumber\\ \displaystyle & & \displaystyle \quad =\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(((u_{_{X}})_{i}\otimes _{R}DT)\cdot s_{i}^{2}).\nonumber\end{eqnarray}$$

    But $((u_{_{X}})_{i}\otimes _{R}DT)\cdot s_{i}^{2}=\unicode[STIX]{x1D703}_{l_{i}}\cdot s_{i}^{1}$ by the pushout diagram on $\mathbf{S}_{T}(X)_{i}$ in 4.3.1. Hence, equality (1) holds.

  2. (2) $\unicode[STIX]{x1D709}_{22}^{a}\cdot \text{Hom}_{S}(DT,(p_{i}\otimes _{R}DT)\cdot s_{i}^{2})=\unicode[STIX]{x1D709}_{21}^{b}\cdot \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((s_{i+1}^{1}\otimes _{S}DS)\cdot \unicode[STIX]{x1D6FF}_{i+1}^{\otimes }(\mathbf{S}_{T}(X)))$.

    By 4.3.3.1 and the naturality of $\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}$,

    $$\begin{eqnarray}\displaystyle & & \displaystyle \unicode[STIX]{x1D709}_{22}^{a}\cdot \text{Hom}_{S}(DT,(p_{i}\otimes _{R}DT)\cdot s_{i}^{2})\nonumber\\ \displaystyle & & \displaystyle \quad =\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(1_{P_{(A_{X})_{i}}\otimes _{R}DT})\cdot \text{Hom}_{S}(DT,(p_{i}\otimes _{R}DT)\cdot s_{i}^{2})\nonumber\\ \displaystyle & & \displaystyle \quad =\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(1_{P_{(A_{X})_{i}}\otimes _{R}DT}\cdot ((p_{i}\otimes _{R}DT)\cdot s_{i}^{2}))\nonumber\\ \displaystyle & & \displaystyle \quad =\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((p_{i}\otimes _{R}DT)\cdot s_{i}^{2}).\nonumber\end{eqnarray}$$

    On the other hand, by 4.3.3.2 and 4.3.4.1 and the naturality of $\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}$,

    $$\begin{eqnarray}\displaystyle & & \displaystyle \unicode[STIX]{x1D709}_{21}^{b}\cdot \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((s_{i+1}^{1}\otimes _{S}DS)\cdot \unicode[STIX]{x1D6FF}_{i+1}^{\otimes }(\mathbf{S}_{T}(X)))\nonumber\\ \displaystyle & & \displaystyle \quad =(p_{i}\cdot (\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T})^{-1})\cdot \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T}\otimes _{R}DT)\cdot s_{i}^{2})\nonumber\\ \displaystyle & & \displaystyle \quad =\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(((p_{i}\cdot (\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T})^{-1})\otimes _{R}DT)\cdot (\unicode[STIX]{x1D716}_{(A_{X})_{i}}^{T}\otimes _{R}DT)\cdot s_{i}^{2})\nonumber\\ \displaystyle & & \displaystyle \quad =\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((p_{i}\otimes _{R}DT)\cdot s_{i}^{2}).\nonumber\end{eqnarray}$$

    Hence, equality (2) holds.

  3. (3) $0=\unicode[STIX]{x1D709}_{32}^{b}\cdot \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(((p_{i+1}\otimes _{R}DT)\cdot s_{i+1}^{2})\otimes _{S}DS\cdot \unicode[STIX]{x1D6FF}_{i+1}^{\otimes }(\mathbf{S}_{T}(X)))$.

    In fact, the equality holds by observing that

    $$\begin{eqnarray}\displaystyle & & \displaystyle \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(((p_{i+1}\otimes _{R}DT)\cdot s_{i+1}^{2})\otimes _{S}DS\cdot \unicode[STIX]{x1D6FF}_{i+1}^{\otimes }(\mathbf{S}_{T}(X)))\nonumber\\ \displaystyle & & \displaystyle \quad =\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((p_{i+1}\otimes _{R}DT\otimes _{S}DS)\cdot (s_{i+1}^{2}\otimes _{S}DS)\cdot \unicode[STIX]{x1D6FF}_{i+1}^{\otimes }(\mathbf{S}_{T}(X)))\nonumber\\ \displaystyle & & \displaystyle \quad =0\nonumber\end{eqnarray}$$
    since $(s_{i+1}^{2}\otimes _{S}DS)\cdot \unicode[STIX]{x1D6FF}_{i+1}^{\otimes }(\mathbf{S}_{T}(X))=0$ by 4.3.4.1.

Altogether, we prove that $\unicode[STIX]{x1D709}\cdot r(s^{P})=0$ and, therefore, $\unicode[STIX]{x1D709}$ factors through $\mathbf{Q}_{DT}\mathbf{S}_{T}(X)=\text{Ker}(r(s^{P}))$ by a homomorphism

$$\begin{eqnarray}\unicode[STIX]{x1D719}:X\oplus \text{L}_{R}(P_{A_{X}}^{+})\rightarrow \mathbf{Q}_{DT}\mathbf{S}_{T}(X)\end{eqnarray}$$

in ${\mathcal{R}}{\mathcal{C}}(R)$, that is, $\unicode[STIX]{x1D709}=\unicode[STIX]{x1D719}\cdot \unicode[STIX]{x1D706}$.

4.3.5 The induced homomorphism $\unicode[STIX]{x1D719}:X\oplus \text{L}_{R}(P_{A_{X}}^{+})\rightarrow \mathbf{Q}_{DT}\mathbf{S}_{T}(X)$ is an isomorphism

We now prove that the induced homomorphism $\unicode[STIX]{x1D719}:X\oplus \text{L}_{R}(P_{A_{X}}^{+})\rightarrow \mathbf{Q}_{DT}\mathbf{S}_{T}(X)$ is an isomorphism. Clearly, it is equivalent to show that $\unicode[STIX]{x1D719}_{i}:(X\oplus \text{L}_{R}(P_{A_{X}}^{+}))_{i}\rightarrow \mathbf{Q}_{DT}\mathbf{S}_{T}(X)_{i}$ is an isomorphism, for each $i$.

We will show that there is the following commutative diagram ($\ast$) with exact rows, for each $i$:

where

$$\begin{eqnarray}\displaystyle & C_{1}:=(A_{X})_{i}\oplus P_{(A_{X})_{i+1}}\otimes _{R}DR, & \displaystyle \nonumber\\ \displaystyle & C_{2}:=\text{Hom}_{R}(T,(A_{X})_{i})\otimes _{S}T\oplus P_{(A_{X})_{i+1}}\otimes _{R}DT\otimes _{S}T, & \displaystyle \nonumber\end{eqnarray}$$

$\overline{X}_{i}\in {\mathcal{B}}$ is obtained in 4.3.1, the morphism $a_{i}$ is given in 4.3.5.2, the morphism $\unicode[STIX]{x1D6FD}_{i}=\bigg(\begin{smallmatrix}(u_{_{X}})_{i} & 0\\ p_{i} & 0\\ 0 & 1\end{smallmatrix}\bigg)$ and the morphism $\unicode[STIX]{x1D70E}_{i}$ is the direct sum of two canonical isomorphisms. Note that $\text{L}_{R}(P_{A_{X}}^{+})_{i}=P_{(A_{X})_{i}}\oplus P_{(A_{X})_{i+1}}\otimes _{R}DR$.

Then, since $\overline{X}_{i}\in {\mathcal{B}}$ implies that $\unicode[STIX]{x1D702}_{\overline{X}_{i}}^{DT}$ is an isomorphism, we obtain that $\unicode[STIX]{x1D719}_{i}$ is also an isomorphism from the above commutative diagram.

4.3.5.1 The upper row in the diagram $(\ast )$ is exact

In fact, the pullback of $p_{i}:P_{(A_{X})_{i}}\rightarrow (A_{X})_{i}$ and $(u_{_{X}})_{i}:X_{i}\rightarrow (A_{X})_{i}$ in 4.3.1 gives an exact sequence

$$\begin{eqnarray}0\rightarrow \overline{X}_{i}\stackrel{(-q_{i},(\overline{u}_{X})_{i})}{\longrightarrow }X_{i}\oplus P_{(A_{X})_{i}}\stackrel{}{\longrightarrow _{}}(A_{X})_{i}\rightarrow 0\end{eqnarray}$$

since $p_{i}$ is surjective. The direct sum of the above exact sequence and the trivial exact sequence

$$\begin{eqnarray}0\rightarrow 0\rightarrow P_{(A_{X})_{i+1}}\otimes _{R}DR\stackrel{1}{\longrightarrow }P_{(A_{X})_{i+1}}\otimes _{R}DR\rightarrow 0\end{eqnarray}$$

gives us the exact sequence in the upper row in the diagram $(\ast )$.

4.3.5.2 The bottom row in the diagram $(\ast )$ is exact

Note that we have the following exact sequence in 4.3.1

$$\begin{eqnarray}0\rightarrow \mathbf{Q}_{DT}\mathbf{S}_{T}(X)\stackrel{\unicode[STIX]{x1D706}}{\longrightarrow }\text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P})\stackrel{r(s^{P})}{\longrightarrow }\text{&#x0124;om}(DT,\mathbf{S}_{T}(X))\rightarrow 0\end{eqnarray}$$

and that

$$\begin{eqnarray}\displaystyle \text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P})_{i} & = & \displaystyle \text{Hom}_{S}(DT,(\mathfrak{L}_{A_{X}}^{P})_{i})\oplus (\mathfrak{L}_{A_{X}}^{P})_{i+1}\otimes _{S}T\nonumber\\ \displaystyle & = & \displaystyle \text{Hom}_{S}(DT,\text{Hom}_{R}(T,(A_{X})_{i-1})\oplus P_{(A_{X})_{i}}\otimes _{R}DT)\nonumber\\ \displaystyle & & \displaystyle \oplus \,(\text{Hom}_{R}(T,(A_{X})_{i})\oplus P_{(A_{X})_{i+1}}\otimes _{R}DT)\otimes _{S}T.\nonumber\end{eqnarray}$$

So we have the following pullback diagram:

where

$$\begin{eqnarray}\displaystyle & C_{3}:=(\text{Hom}_{R}(T,(A_{X})_{i})\oplus P_{(A_{X})_{i+1}}\otimes _{R}DT)\otimes _{S}T, & \displaystyle \nonumber\\ \displaystyle & C_{4}:=\text{Hom}_{S}(DT,\text{Hom}_{R}(T,(A_{X})_{i-1})\oplus P_{(A_{X})_{i}}\otimes _{R}DT), & \displaystyle \nonumber\end{eqnarray}$$

$r_{i}^{1},r_{i}^{2}$ and $\unicode[STIX]{x1D706}_{i}^{1},\unicode[STIX]{x1D706}_{i}^{2}$ are the components of the homomorphisms $r(s^{P})_{i}$ and $\unicode[STIX]{x1D706}_{i}$, respectively, and $b_{i}=\text{Hom}_{S}(DT,t_{i})$ with

$$\begin{eqnarray}\displaystyle & t_{i}=(-(q_{i}\otimes _{R}DT)\cdot \unicode[STIX]{x1D703}_{l_{i}},(\overline{u}_{X})_{i}\otimes _{R}DT): & \displaystyle \nonumber\\ \displaystyle & \overline{X}_{i}\otimes _{R}DT\rightarrow \text{Hom}_{R}(T,(A_{X})_{i-1})\oplus P_{(A_{X})_{i}}\otimes _{R}DT & \displaystyle \nonumber\end{eqnarray}$$

is given in 4.3.1.

As the morphism $\unicode[STIX]{x1D706}_{i}:\mathbf{Q}_{DT}\mathbf{S}_{T}(X)_{i}\rightarrow (\text{R}_{DT}(\mathfrak{L}_{A_{X}}^{P}))_{i}$ is injective, we obtain that the morphism $q$ in the left column is an isomorphism. Note that $r_{i}^{1}:=\text{Hom}_{S}(DT,s_{i}^{P})$ is surjective since $\overline{X}_{i}\otimes _{R}DT\in {\mathcal{K}}\subseteq \text{KerExt}_{S}^{{>}0}(DT,-)$ by the construction (see 4.3.1), so we can deduce that the upper row in the above diagram is exact. Thus, we get the bottom exact sequence in the diagram $(\ast )$ by setting $a_{i}=q^{-1}e$.

4.3.5.3 The diagram $(\ast )$ is commutative

At first, it is easy to see that the right part of the diagram $(\ast )$ is commutative from the constructions of the morphisms $\unicode[STIX]{x1D709}$ in 4.3.3 and $\unicode[STIX]{x1D719}$ in 4.3.4, which show that $\unicode[STIX]{x1D6FD}_{i}\unicode[STIX]{x1D70E}_{i}=\unicode[STIX]{x1D709}_{i}^{b}=\unicode[STIX]{x1D719}_{i}\unicode[STIX]{x1D706}_{i}^{2}$.

As for the left part of the diagram $(\ast )$, we first show the following equality of compositions:

(†1)$$\begin{eqnarray}\unicode[STIX]{x1D702}_{_{\overline{X}_{i}}}^{DT}\cdot a_{i}\cdot \unicode[STIX]{x1D706}_{i}^{1}=(-q_{i},(\overline{u}_{X})_{i},0)\cdot \unicode[STIX]{x1D719}_{i}\cdot \unicode[STIX]{x1D706}_{i}^{1}.\end{eqnarray}$$

Indeed, we have that

and we also have that

Since $\unicode[STIX]{x1D709}_{11}^{a}=\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(\unicode[STIX]{x1D703}_{l_{i}})$ and $\unicode[STIX]{x1D709}_{22}^{a}=\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(1_{(P_{(A_{X})_{i}}\otimes _{R}DT)})$ by the construction in 4.3.3.1, we obtain that

$$\begin{eqnarray}q_{i}\cdot \unicode[STIX]{x1D709}_{11}^{a}=q_{i}\cdot \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(\unicode[STIX]{x1D703}_{l_{i}})=\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(q_{i}\otimes _{R}DT\cdot \unicode[STIX]{x1D703}_{l_{i}})\end{eqnarray}$$

and that

$$\begin{eqnarray}\displaystyle (\overline{u}_{X})_{i}\cdot \unicode[STIX]{x1D709}_{22}^{a} & = & \displaystyle (\overline{u}_{X})_{i}\cdot \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}(1_{(P_{(A_{X})_{i}}\otimes _{R}DT)})\nonumber\\ \displaystyle & = & \displaystyle \boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((\overline{u}_{X})_{i}\otimes _{R}DT\cdot 1_{(P_{(A_{X})_{i}}\otimes _{R}DT)})=\boldsymbol{\unicode[STIX]{x1D6E4}}^{DT}((\overline{u}_{X})_{i}\otimes _{R}DT).\nonumber\end{eqnarray}$$

Hence, we see that the equality (1) holds.

Since $a_{i}\cdot \unicode[STIX]{x1D706}_{i}^{2}=0$ and

$$\begin{eqnarray}(-q_{i},(\overline{u}_{X})_{i},0)\cdot \unicode[STIX]{x1D719}_{i}\cdot \unicode[STIX]{x1D706}_{i}^{2}=(-q_{i},(\overline{u}_{X})_{i},0)\cdot \unicode[STIX]{x1D709}_{i}^{b}=0,\end{eqnarray}$$

we also get that

(†2)$$\begin{eqnarray}\unicode[STIX]{x1D702}_{_{\overline{X}_{i}}}^{DT}\cdot a_{i}\cdot \unicode[STIX]{x1D706}_{i}^{2}=(-q_{i},(\overline{u}_{X})_{i},0)\cdot \unicode[STIX]{x1D719}_{i}\cdot \unicode[STIX]{x1D706}_{i}^{2}.\end{eqnarray}$$

Now, from the property of the pullback in 4.3.5.2, we know that the two equalities (1) and (2) together imply that

$$\begin{eqnarray}\unicode[STIX]{x1D702}_{_{\overline{X}_{i}}}^{DT}\cdot a_{i}=(-q_{i},(\overline{u}_{X})_{i},0)\cdot \unicode[STIX]{x1D719}_{i}.\end{eqnarray}$$

Thus, the left part of the diagram is also commutative.

4.3.6 The isomorphism $\unicode[STIX]{x1D719}:X\oplus \text{L}_{R}(P_{A_{X}}^{+})\rightarrow \mathbf{Q}_{DT}\mathbf{S}_{T}(X)$ is natural on $X$

For any $X,Y\in {\mathcal{R}}{\mathcal{C}}(R)$ and $h\in \text{Hom}_{{\mathcal{R}}{\mathcal{C}}(R)}(X,Y)$, there is an induced morphism $h_{A}\in \text{Hom}_{{\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)}(A_{X},A_{Y})$, following from the construction in 4.1.4. Moreover, following from the construction in 4.3.1 and the definition of $P_{A_{X}}^{+}$ in 4.3.2, we see that the morphism $h_{A}$ induces a morphism $p_{h_{A}}^{+}\in \text{Hom}_{{\mathcal{R}}{\mathcal{C}}^{\text{tr}}(R)}(P_{A_{X}}^{+},P_{A_{Y}}^{+})$. Then, one can prove that

$$\begin{eqnarray}\left(\begin{array}{@{}cc@{}}h & 0\\ 0 & \text{L}_{R}(p_{h_{A}}^{+})\end{array}\right):X\oplus \text{L}_{R}(P_{A_{X}}^{+})\rightarrow Y\oplus \text{L}_{R}(P_{A_{Y}}^{+})\end{eqnarray}$$

is a morphism in ${\mathcal{R}}{\mathcal{C}}(R)$.

It is not hard to show that the following diagram is commutative:

Thus, the isomorphism $\unicode[STIX]{x1D719}$ is natural on $X$. This means that $\mathbf{Q}_{DT}\mathbf{S}_{T}\simeq 1_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)}$ naturally.

4.4 The isomorphism $\mathbf{S}_{T}\mathbf{Q}_{DT}\simeq 1_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)}$

Dually to the proof of 4.3, one can show that $\mathbf{S}_{T}\mathbf{Q}_{DT}\simeq 1_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)}$ naturally.

Namely, for an object $Y\in {\mathcal{R}}{\mathcal{C}}(S)$, one uses that $({\mathcal{G}},{\mathcal{K}})$ is a complete hereditary cotorsion pair in $\text{mod}S$ to obtain exact sequences $0\rightarrow (K_{Y})_{i}\rightarrow (G_{Y})_{i}\rightarrow Y_{i}\rightarrow 0$, for each $i$. Then taking an injective $S$-module $I_{(G_{Y})_{i}}$ and a monomorphism $(G_{Y})_{i}\rightarrow I_{(G_{Y})_{i}}$, one can show that there is a natural isomorphism $\mathbf{S}_{T}\mathbf{Q}_{DT}(Y)\rightarrow Y\oplus \text{R}_{DS}(I_{G_{Y}}^{-})$, where $I_{G_{Y}}^{-}=\{I_{(G_{Y})_{i-1}}\}$ and $\text{R}_{DS}(I_{G_{Y}}^{-})$ is a projective object in ${\mathcal{R}}{\mathcal{C}}(S)$ by Remark (2) in 4.2.1. And then one gets that $\mathbf{S}_{T}\mathbf{Q}_{DT}\simeq 1_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)}$ naturally.

4.5 The last proof of Theorem 1

Recall that the natural functor $[1]$ is an automorphism of repetitive categories, where $(X[1])_{i}=X_{i-1}$ for an object in a repetitive category.

Define $\mathbf{F}_{T}:=[-1]\mathbf{S}_{T}:\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)\rightarrow \text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)$ and $\mathbf{G}_{T}:=\mathbf{Q}_{DT}[1]:\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)\rightarrow \text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$. Then we have that $\mathbf{F}_{T}\mathbf{G}_{T}\simeq 1_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)}$ naturally and that $\mathbf{G}_{T}\mathbf{F}_{T}\simeq 1_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)}$ naturally. So $\mathbf{F}_{T}$ and $\mathbf{G}_{T}$ give a repetitive equivalence between $R$ and $S$.

It is easy to check that $\mathbf{F}_{T}|_{{\mathcal{A}}}\simeq \text{Hom}_{R}(T,-)$ and that $\mathbf{G}_{T}|_{{\mathcal{G}}}\simeq -\!\otimes _{S}T$ from the definitions of the two functors. Now the proof of the theorem is complete.

4.6 The proof of Proposition 2

Assume that the equivalence is given by the functor $F:\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)\rightarrow \text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)$. By assumptions, $F$ restricts to an equivalence ${\mathcal{A}}\rightarrow {\mathcal{G}}$. Note that ${\mathcal{G}}$ is resolving and $S\in {\mathcal{G}}$. Let $T=F^{-1}(S)$. Then $T\in {\mathcal{A}}$. By the triangle equivalence, we have that, for any $A\in {\mathcal{A}}$,

$$\begin{eqnarray}\displaystyle \text{Ext}_{R}^{i}(T,A)\simeq \text{Hom}_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)}(T,\unicode[STIX]{x1D6F4}^{i}A)\simeq \text{Hom}_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)}(S,\unicode[STIX]{x1D6F4}^{i}F(A))\simeq \text{Ext}_{S}^{i}(S,F(A)), & & \displaystyle \nonumber\end{eqnarray}$$

where $\unicode[STIX]{x1D6F4}$ is the translation functor in stable repetitive categories. In particular, we obtain that $\text{Hom}_{R}(T,A)\simeq \text{Hom}_{S}(S,F(A))\simeq F(A)$ and that $\text{Ext}_{R}^{i}(T,A)=0$ for all $i>0$. It follows that $S\simeq \text{End}(T_{R})^{op}$ and that $\text{Ext}_{R}^{i}(T,T)=0$ for all $i>0$. Note that ${\mathcal{A}}$ is coresolving and $DR\in {\mathcal{A}}$, so we also have that $F(DR)\simeq \text{Hom}_{R}(T,DR)\simeq DT$. Thus, we get that

$$\begin{eqnarray}\displaystyle & & \displaystyle \text{Ext}_{S}^{i}(\text{}_{S}T,_{S}T)\simeq \text{Ext}_{S}^{i}(DT,DT)\simeq \text{Hom}_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)}(DT,\unicode[STIX]{x1D6F4}^{i}DT)\nonumber\\ \displaystyle & & \displaystyle \quad \simeq \text{Hom}_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)}(F(DR),\unicode[STIX]{x1D6F4}^{i}F(DR))\simeq \text{Hom}_{\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)}(DR,\unicode[STIX]{x1D6F4}^{i}DR)\simeq \text{Ext}_{R}^{i}(DR,DR).\nonumber\end{eqnarray}$$

It follows that $\text{End}(\text{}_{S}T)^{op}\simeq R$ and that $\text{Ext}_{S}^{i}(\text{}_{S}T,_{S}T)=0$ for all $i>0$. Thus, $T$ is a Wakamatsu-tilting module.

By assumption, $F|_{{\mathcal{A}}}\simeq \text{Hom}_{R}(T,-)$ gives the equivalence ${\mathcal{A}}\rightarrow {\mathcal{G}}$. It follows that $F^{-1}|_{{\mathcal{G}}}\simeq -\!\otimes _{S}T$ by the uniqueness of the adjoint. Note that $\text{Hom}_{R}(T,-)$ and $-\!\otimes _{S}T$ are exact functors on ${\mathcal{A}}$ and ${\mathcal{G}}$, respectively, since $F$ is a triangle functor. As ${\mathcal{A}}$ is coresolving, for any $A\in {\mathcal{A}}$, the exact sequence $0\rightarrow A\rightarrow I\rightarrow A^{\prime }\rightarrow 0$ with $I\in \text{inj}R$ is a sequence in ${\mathcal{A}}$. Applying the exact functor $\text{Hom}_{R}(T,-)$, we obtain that $\text{Ext}_{R}^{1}(T,A)=0$. It follows that $T\in {\mathcal{A}}\bigcap \text{KerExt}_{R}^{1}(-,{\mathcal{A}})$, i.e, $T$ is Ext-projective in ${\mathcal{A}}$. Dually, we have also that $\text{Tor}_{1}^{S}(X,T)=0$ for any $X\in {\mathcal{G}}$. In particular, for any $A\in {\mathcal{A}}$, suppose that $A=X\otimes _{S}T$ for some $X\in {\mathcal{G}}$ and take an exact sequence $0\rightarrow X^{\prime }\rightarrow P\rightarrow X\rightarrow 0$ with $P\in \text{proj}S$, then the sequence is in ${\mathcal{G}}$ since ${\mathcal{G}}$ is resolving, and, hence, there is an induced exact sequence $0\rightarrow X^{\prime }\otimes _{S}T\rightarrow P\otimes _{S}T\rightarrow X\otimes _{S}T\rightarrow 0$ since $-\!\otimes _{S}T$ is exact in ${\mathcal{G}}$. The last sequence gives an exact sequence $0\rightarrow A^{\prime \prime }\rightarrow T_{A}\rightarrow A\rightarrow 0$ with $T_{A}=P\otimes _{S}T\in \text{add}_{\text{mod}R}T$ and $A^{\prime \prime }=X^{\prime }\otimes _{S}T\in {\mathcal{A}}$. It follows that $T$ is an Ext-projective generator in ${\mathcal{A}}$. Now applying Corollary 3.2.6, we conclude that $T$ is a good Wakamatsu-tilting module.

5 Examples

5.1 Tilting modules and cotilting modules

Let $R$ be an Artin algebra. Recall that an $R$-module $T\in \text{mod}R$ is tilting provided the following three conditions are satisfied:

  1. (1) the projective dimension of $T$ is finite;

  2. (2) $\text{Ext}_{R}^{i}(T,T)=0$ for all $i>0$;

  3. (3) there is an exact sequence $0\rightarrow R\rightarrow T_{0}\rightarrow \cdots \rightarrow T_{n}\rightarrow 0$ for some integer $n$, where each $T_{i}\in \text{add}_{\text{mod}R}T$.

Dually, an $R$-module $T\in \text{mod}R$ is cotilting provided the following three conditions are satisfied:

  1. (1) the injective dimension of $T$ is finite;

  2. (2) $\text{Ext}_{R}^{i}(T,T)=0$ for all $i>0$;

  3. (3) there is an exact sequence $0\rightarrow T_{n}\rightarrow \cdots \rightarrow T_{0}\rightarrow DR\rightarrow 0$ for some integer $n$, where each $T_{i}\in \text{add}_{\text{mod}R}T$.

An $R$-module $T$ is a tilting module if and only if $DT$ is a cotilting left $R$-module if and only if $DT$ is a cotilting $S$-module, where $S=\text{End}(T_{R})^{op}$. Note also that both tilting modules and cotilting modules are Wakamatsu-tilting modules.

We need the following well-known results on tilting modules and cotilting modules.

Proposition.

  1. (1) The cotorsion pair $(\text{KerExt}_{R}^{1}(-,_{T}{\mathcal{X}}),_{T}{\mathcal{X}})$ is complete provided that $T$ is a tilting module.

  2. (2) The cotorsion pair $({\mathcal{X}}_{T},\text{KerExt}_{R}^{1}({\mathcal{X}}_{T},-))$ is complete provided that $T$ is a cotilting module.

Proof. (2) follows from [Reference Auslander and Reiten3, Section 5] and (1) is just the dual of (2). ◻

5.1.1 Tilting modules are good Wakamatsu-tilting

Assume $T_{R}$ is a tilting module of finite projective dimension. Let $S=\text{End}(T_{R})^{op}$. Then $_{S}T_{R}$ is a good Wakamatsu-tilting module. Hence, there is an equivalence between stable repetitive categories $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$ and $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)$.

Indeed, if $_{S}T_{R}$ is a tilting module of finite projective dimension, then $T$ is Wakamatsu-tilting and $_{R}DT_{S}$ is a cotilting module of finite injective dimension. By Proposition 3.1, we obtain that the bimodules $_{S}T_{R}$ and $_{R}DT_{S}$ represent a cotorsion pair counter equivalence between the complete hereditary cotorsion pair $(\text{KerExt}_{R}^{1}(-,_{T}{\mathcal{X}}),_{T}{\mathcal{X}})$ in $\text{mod}R$ and the complete hereditary cotorsion pair $({\mathcal{X}}_{DT},\text{KerExt}_{S}^{1}({\mathcal{X}}_{DT},-))$ in $\text{mod}S$. It follows from the definition that $_{S}T_{R}$ is a good Wakamatsu-tilting bimodule.

5.1.2 Cotilting modules are good Wakamatsu-tilting

Assume now $T_{R}$ is a cotilting module of finite injective dimension with $S=\text{End}(T_{R})^{op}$. Then $_{S}T_{R}$ is also a good Wakamatsu-tilting module. Hence, there is an equivalence between stable repetitive categories $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(R)$ and $\text{}\underline{{\mathcal{R}}{\mathcal{C}}}(S)$.

Indeed, dually to 5.1.1, if $_{S}T_{R}$ is a cotilting module of finite injective dimension, then $_{R}DT_{S}$ is a tilting module of finite projective dimension. By Proposition 3.1 again, we obtain that the bimodules $_{S}T_{R}$ and $_{R}DT_{S}$ represent a cotorsion pair counter equivalence between the complete hereditary cotorsion pair $({\mathcal{X}}_{T},\text{KerExt}_{R}^{1}({\mathcal{X}}_{T},-))$ in $\text{mod}R$ and the complete hereditary cotorsion pair $(\text{KerExt}_{S}^{1}(-,_{DT}{\mathcal{X}}),_{DT}{\mathcal{X}})$ in $\text{mod}S$. It follows from the definition that $_{S}T_{R}$ is also a good Wakamatsu-tilting bimodule.

5.2 Wakamatsu-tilting modules of finite type

5.2.1

We say that a Wakamatsu-tilting $R$-module $T$ is of finite type provided that either the subcategory $\text{KerExt}_{R}^{1}(-,_{T}{\mathcal{X}})$ or $\text{KerExt}_{R}^{1}({\mathcal{X}}_{T},-)$ is of finite representation type. In particular, if $R$ is an algebra of finite representation type, then each subcategory of $\text{mod}R$ is of finite representation type, and, hence, every Wakamatsu-tilting module in $\text{mod}R$ is of finite type.

We note that, if $T$ is a Wakamatsu-tilting $R$-module of finite type with $S=\text{End}(T_{R})^{op}$, then $DT$ is a Wakamatsu-tilting $S$-module of finite type. This follows from the equivalences in Proposition 3.1.

Proposition.

A Wakamatsu-tilting module of finite type is always a good Wakamatsu-tilting module. In particular, every Wakamatsu-tilting module over an algebra of finite representation type is good.

Proof. Let $T$ be a Wakamatsu-tilting $R$-module of finite type with $S=\text{End}(T_{R})^{op}$. Assume first that the subcategory $\text{KerExt}_{R}^{1}({\mathcal{X}}_{T},-)$ is of finite representation type. Then the hereditary cotorsion pair $({\mathcal{X}}_{T},\text{KerExt}_{R}^{1}({\mathcal{X}}_{T},-))$ in $\text{mod}R$ is complete. Moreover, by the equivalence in Proposition 3.1(3), the subcategory $\text{KerExt}_{S}^{1}(-,_{DT}{\mathcal{X}})$ is also of finite representation type. Thus, the hereditary cotorsion pair $(\text{KerExt}_{S}^{1}(-,_{DT}{\mathcal{X}}),_{DT}{\mathcal{X}})$ in $\text{mod}S$ is also complete. It follows that the bimodules $_{S}T_{R}$ and $_{R}DT_{S}$ represent a cotorsion pair counter equivalence between the complete hereditary cotorsion pair $({\mathcal{X}}_{T},\text{KerExt}_{R}^{1}({\mathcal{X}}_{T},-))$ in $\text{mod}R$ and the complete hereditary cotorsion pair $(\text{KerExt}_{S}^{1}(-,_{DT}{\mathcal{X}}),_{DT}{\mathcal{X}})$ in $\text{mod}S$. Similarly, in case that $\text{KerExt}_{R}^{1}(-,_{T}{\mathcal{X}})$ is of finite representation type, we have that the bimodules $_{S}T_{R}$ and $_{R}DT_{S}$ represent a cotorsion pair counter equivalence between the complete hereditary cotorsion pair $(\text{KerExt}_{R}^{1}(-,_{T}{\mathcal{X}}),_{T}{\mathcal{X}})$ in $\text{mod}R$ and the complete hereditary cotorsion pair $({\mathcal{X}}_{DT},\text{KerExt}_{S}^{1}({\mathcal{X}}_{DT},-))$ in $\text{mod}S$. Altogether, we see that $T$ is a good Wakamatsu-tilting module in either case.◻

5.2.2

Two trivial examples of Wakamatsu-tilting modules of finite type over an algebra $R$ are the modules $R$ and $DR$. In the first case, the subcategory $\text{KerExt}_{R}^{1}(-,_{T}{\mathcal{X}})=\text{proj}R$ is of finite representation type, while the subcategory $\text{KerExt}_{R}^{1}({\mathcal{X}}_{T},-)=\text{inj}R$ is of finite representation type in the second case.

The following is an example of a Wakamatsu-tilting module of finite type over an algebra of infinite representation type.

Example.

Let $R$ be the bound path algebra given by the following quiver over a field with the relation given by $\text{rad}^{2}R=0$.

The following is the preprojective part of the AR-quiver of the algebra:

The algebra is of infinite representation type. Over this algebra, we have a Wakamatsu-tilting module of finite type (and, hence, a good Wakamatsu-tilting module)

$$\begin{eqnarray}T=\begin{array}{@{}c@{}}2\\ 1\end{array}\oplus \begin{array}{@{}c@{}}1~3\\ ~2~\end{array}\oplus 3\oplus \begin{array}{@{}c@{}}~4~\\ 3~5\end{array}\oplus \begin{array}{@{}c@{}}5\\ 4\end{array}\oplus \begin{array}{@{}c@{}}6\\ 5\end{array}\oplus \begin{array}{@{}c@{}}~7~\\ 6~6\end{array}.\end{eqnarray}$$

Indeed, one can check that the subcategory $\text{KerExt}_{R}^{1}(-,_{T}{\mathcal{X}})$ is of finite representation type, while the subcategory $_{T}{\mathcal{X}}$ is of infinite representation type.

5.3 Repetitive equivalences are not derived equivalences

The following example shows that repetitive equivalences are not derived equivalences.

Example.

[Reference Wakamatsu26] Let $R$ be the bound path algebra given by the following quiver over a field with the relation given by $\text{rad}^{2}R=0$:

The algebra is of finite representative type and the following is the AR-quiver of the algebra:

Over this algebra, we have a Wakamatsu-tilting module of finite type (and, hence, a good Wakamatsu-tilting module)

$$\begin{eqnarray}T=\begin{array}{@{}c@{}}2\\ 1\end{array}\oplus \begin{array}{@{}c@{}}1~3\\ ~2~\end{array}\oplus 3\oplus \begin{array}{@{}c@{}}~4~\\ 3~5\end{array}\oplus \begin{array}{@{}c@{}}5\\ 4\end{array}.\end{eqnarray}$$

The endomorphism algebra $S:=\text{End}(T_{R})^{op}$ is the algebra defined by the following quiver over the field with the relation given by $\text{rad}^{2}R=0$ except the path $2\rightarrow 3\rightarrow 4$.

The algebra is also of finite representative type and the AR-quiver of the algebra is as follows:

Then, $R$ is repetitive equivalent to $S$. However, $R$ is not derived equivalent to $S$. Indeed, these two algebras are not even singularity equivalent. Recall that the singularity category of the algebra $R$, denoted by $D_{sg}(R)$, is the quotient triangulated category of $D^{b}(\text{mod}R)$ with respect to the full subcategory formed by perfect complexes (a complex in $D^{b}(\text{mod}R)$ is perfect provided that it is isomorphic to a bounded complex consisting of finitely generated projective modules). Two algebras $R$ and $S$ are singularity equivalent if there is a triangle equivalence between $D_{sg}(R)$ and $D_{sg}(S)$. It is obvious that derived equivalences induce singularity equivalences.

In fact, let us consider the simple module $S_{4}=4$ in $\text{mod}R$. It is easy to see that, for any natural number $n$, the $(2n)$th syzygy $\unicode[STIX]{x1D6FA}^{2n}(S_{4})=2^{(n)}\oplus 4$ and the $(2n+1)$th syzygy $\unicode[STIX]{x1D6FA}^{2n+1}(S_{4})=1^{(n)}\oplus 3\oplus 5$. Note that, considered in the singularity category $D_{sg}(R)$, the endomorphism algebra $\text{Hom}_{D_{sg}(R)}(S_{4},S_{4})=\mathop{\lim }_{n\rightarrow \infty }\text{}\underline{\text{Hom}}_{R}(\unicode[STIX]{x1D6FA}^{n}(S_{4}),\unicode[STIX]{x1D6FA}^{n}(S_{4}))$, where $\text{}\underline{\text{Hom}}_{R}(-,-)$ is defined in the (projectively) stable module category $\text{}\underline{\text{mod}}R$; see [Reference Chen8, Proposition 2.3]. Thus, the endomorphism algebra $\text{Hom}_{D_{sg}(R)}(S_{4},S_{4})$ is infinite dimensional.

Assume that there is an equivalence between $D_{sg}(R)$ and $D_{sg}(S)$, and denote the image of $S_{4}$ to be $S_{4}^{\prime }$. Note that every complex in $D_{sg}(S)$ is isomorphic to a finitely generated $S$-module (see [Reference Chen8, Lemma 2.2]), so we may assume that $S_{4}^{\prime }$ is in $\text{mod}S$. Since every simple module in $\text{mod}S$ satisfies that all its syzygies have composition length 1 (up to projective direct summands), we see that every module in $\text{mod}S$ satisfies that all its syzygies have composition length less than a fixed number (up to projective direct summands). Altogether, we have that the endomorphism algebra $\text{Hom}_{D_{sg}(S)}(S_{4}^{\prime },S_{4}^{\prime })=\mathop{\lim }_{n\rightarrow \infty }\text{}\underline{\text{Hom}}_{S}(\unicode[STIX]{x1D6FA}^{n}(S_{4}^{\prime }),\unicode[STIX]{x1D6FA}^{n}(S_{4}^{\prime }))$ is finite dimensional. However, the singularity equivalence assumption makes $\text{Hom}_{D_{sg}(S)}(S_{4}^{\prime },S_{4}^{\prime })$$\simeq \text{Hom}_{D_{sg}(R)}(S_{4},S_{4})$ to be infinite dimensional, which leads to a contradiction. Hence, $R$ and $S$ are not singularity equivalent. In particular, $R$ and $S$ are not derived equivalent.

From the above example, we also see that repetitive equivalences do not imply singularity equivalences. We do not know whether or not singularity equivalences imply repetitive equivalences.

Acknowledgments

The author thanks the referees’ highly valuable comments and helpful suggestions. He also thanks Prof. Xiaowu Chen and Prof. Guodong Zhou for helpful discussions.

Footnotes

The author is supported by the Natural Science Foundation of China (Grant No. 11771212) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

Angeleri-Hügel, L. and Coelho, F.U., Infinitely generated tilting modules of finite projective dimension, Forum Math. 13 (2001), 239250.Google Scholar
Asashiba, H., A covering technique for derived equivalence, J. Algebra 191 (1997), 382415.10.1006/jabr.1997.6906CrossRefGoogle Scholar
Auslander, M. and Reiten, I., Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), 111152.CrossRefGoogle Scholar
Bazzoni, S., A characterization of n-cotilting and n-tilting modules, J. Algebra 273(1) (2004), 359372.CrossRefGoogle Scholar
Bongartz, K., “Tilted algebras”, in Representations of Algebras, Lecture Notes in Mathematics 903, Springer-Verlag, Berlin/Heidelberg/New York, 1981, 2638.CrossRefGoogle Scholar
Brenner, S. and Butler, M. C. R., Generalizations of the Bernstein–Gelfand–Ponomarev Reflection Functors, Lecture Notes in Mathematics 832, 1980, 103170.Google Scholar
Chen, Q., Derived equivalence of repetitive algebras, Adv. Math. (Chinese) 37(2) (2008), 189196.Google Scholar
Chen, X., The singularity category of an algebra with radical square zero, Doc. Math. 16 (2011), 921936.Google Scholar
Chen, X. and Wei, J., Wakamatsu’s equivalence revisited, arXiv:1610.09649.Google Scholar
Cline, E., Parshall, B. and Scott, L., Derived categories and Morita theory, J. Algebra 104 (1986), 397409.CrossRefGoogle Scholar
Colby, R. and Fuller, K. R., Tilting and torsion theory counter equivalences, Comm. Algebra 23(13) (1995), 48334849.CrossRefGoogle Scholar
Colby, R. and Fuller, K. R., Tilting, cotilting and serially tilted rings, Comm. Algebra 25(10) (1997), 32253237.Google Scholar
Colpi, R., D’Este, G. and Tonolo, A., Quasi-tilting modules and counter equivalences, J. Algebra 191 (1997), 461494.10.1006/jabr.1997.6873CrossRefGoogle Scholar
Colpi, R. and Trlifaj, J., Tilting modules and tilting torsion theories, J. Algebra 178 (1995), 614634.10.1006/jabr.1995.1368CrossRefGoogle Scholar
Enochs, E. E. and Jenda, O. M. G., Relative Homological Algebra, De Gruyter Expositions in Mathematics 30, Walter De Gruyter, Berlin/New York, 2000.10.1515/9783110803662CrossRefGoogle Scholar
Göbel, R. and Trlifaj, J., Approximations and Endomorphism Algebras of Modules, De Gruyter Expositions in Mathematics 41, Walter de Gruyter, Berlin/New York, 2012.CrossRefGoogle Scholar
Green, E. L., Reiten, I. and Solberg, Ø., Dualities on Generalized Koszul Algebras, Mem. Amer. Math. Soc. 159 (2002), xvi+67 pp.Google Scholar
Happel, D., Triangulated Categories in the Representation Theory of Finite Dimension Algebras, London Mathematical Society Lecture Notes Series 119, Cambridge University Press, Cambridge, 1988.CrossRefGoogle Scholar
Happel, D. and Ringel, C. M., Tilted algebras, Trans. Amer. Math. Soc. 174 (1982), 399443.CrossRefGoogle Scholar
Hughes, D. and Waschbüsch, J., Trivial extensions of tilted algebras, Proc. Lond. Math. Soc. 46 (1983), 347364.10.1112/plms/s3-46.2.347CrossRefGoogle Scholar
Keller, B., Deriving DG categories, Ann. Sci. Éc. Norm. Supér. 27 (1994), 63102.10.24033/asens.1689CrossRefGoogle Scholar
Mantese, F. and Reiten, I., Wakamatsu Tilting modules, J. Algebra 278 (2004), 532552.CrossRefGoogle Scholar
Miyashita, Y., Tilting modules of finite projective dimension, Math. Z. 193 (1986), 113146.10.1007/BF01163359CrossRefGoogle Scholar
Rickard, J., Morita theory for derived categories, J. Lond. Math. Soc. 39 (1989), 436456.CrossRefGoogle Scholar
Wakamatsu, T., On modules with trivial self-extensions, J. Algebra 114 (1988), 106114.10.1016/0021-8693(88)90215-3CrossRefGoogle Scholar
Wakamatsu, T., Stable equivalence for self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990), 298325.10.1016/0021-8693(90)90055-SCrossRefGoogle Scholar
Wakamatsu, T., On constructing stable equivalent functor, J. Algebra 148 (1992), 277288.10.1016/0021-8693(92)90193-PCrossRefGoogle Scholar
Yamaura, K., Realizing stable categories as derived categories, Adv. Math. 248 (2013), 784819.CrossRefGoogle Scholar
Yoshino, Y., “Modules of G-dimension zero over local rings with the cube of maximal ideal being zero”, in Commutative Algebra, Singularities and Computer Algebra, NATO Sci. Ser. I Math. Phys. Chem. 115, Kluwer, Dordrecht, 2003, 255273.CrossRefGoogle Scholar