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REPETITIVE EQUIVALENCES AND TILTING THEORY

JIAQUN WEI

Abstract. Let R be a ring and T be a good Wakamatsu-tilting module

with S = End(TR)op. We prove that T induces an equivalence between stable

repetitive categories of R and S (i.e., stable module categories of repetitive

algebras R̂ and Ŝ). This shows that good Wakamatsu-tilting modules seem to

behave in Morita theory of stable repetitive categories as that tilting modules

of finite projective dimension behave in Morita theory of derived categories.
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§1. Introduction

Tilting theory plays an important role in the representation theory of Artin algebras.

The classical tilting modules were introduced in the early 1980s by Brenner–Butler [6],

Bongartz [5] and Happel and Ringel [19]. Beginning with Miyashita [23] and Happel [19],

the defining conditions for a classical tilting module were relaxed to tilting modules of

arbitrary finite projective dimension, and further were relaxed to arbitrary rings and

infinitely generated modules by many authors such as Colby and Fuller [12], Colpi and

Trlifaj [14], Angeleri-Hügel and Coelho [1], Bazzoni [4], etc.
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One important result in tilting theory is the famous Brenner–Butler Theorem which

shows that a classical tilting module induces a torsion theory counter equivalence (later

named in [11, 13]). Precisely, if T is a classical tilting R-module with the endomorphism

algebra S, then there is a torsion pair (B,A) in the R-module category and a torsion

pair (G,K) in the S-module category such that there is an equivalence between A and

G and an equivalence between K and B. In this sense, tilting theory may be viewed as

a far-reaching way of generalization of the Morita theory of equivalences between module

categories. More interesting, when considering the derived category of an algebra, which

contains the module category of the algebra as a full subcategory, Happel [18] and later

Cline, Parshall and Scott [10] proved that a tilting module of finite projective dimension

induces an equivalence between the bounded derived category of the ordinary algebra and

the derived category of the endomorphism algebra of the tilting module. This leads to the

study of the Morita theory for derived categories, which were completely solved by Rickard

[24] through the notion of tilting complexes and by Keller [21] through dg-categories.

A further generalization of tilting modules to tilting modules of possibly infinite projective

dimension was given by Wakamatsu [25]. Following [17], such tilting modules of possibly

infinite projective dimension are called Wakamatsu-tilting modules. It is known that

Wakamatsu-tilting modules also induce some equivalences between certain subcategories of

module categories [26]. But Wakamatsu-tilting modules do not induce derived equivalences

in general.

However, we will show in this paper that Wakamatsu-tilting modules make more sense

when we consider a more general category than the derived category of an algebra, namely,

the stable module category of the repetitive algebra of an algebra. Let us call the latter

category the stable repetitive category of the algebra. The stable repetitive category is a

triangulated category. Moreover, by Happel’s result [18], for an Artin algebra R, there is

a fully faithful triangle embedding of the bounded derived category of R into the stable

repetitive category of R. Moreover, this embedding is an equivalence if and only if the global

dimension of R is finite; see [28] for a generalization and a simple proof of this result.

We say that two algebras are repetitive equivalent if there is an equivalence between

their stable repetitive categories. It should be noted that repetitive equivalences are more

general than derived equivalences. In fact, by results in [2, 7, 24], etc., if two algebras are

derived equivalent, then their repetitive algebras are derived equivalent, and hence stably

equivalent. Thus, derived equivalences always induce repetitive equivalences. However,

repetitive equivalences need not be derived equivalences (see Example 5.3).

The following is the main theorem of this paper.

Theorem 1. Let R be an Artin algebra. If T is a good Wakamatsu-tilting R-module

with S = End(TR)op, that is, bimodules STR and RDTS represent a cotorsion pair counter

equivalence between a complete hereditary cotorsion pair (B,A) in modR and a complete

hereditary cotorsion pair (G,K) in modS, then R and S are repetitive equivalent. The

equivalence can be chosen to restrict to the equivalence between A and G.

Remark.

(1) The definition of good Wakamatsu-tilting modules is given in Section 3.2. It is still a

question for us whether or not all Wakamatsu-tilting modules are good Wakamatsu-

tilting modules in general. For algebras of finite representation type, the answer is

affirmative.
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(2) In a subsequent paper [9] collaborated with Chen, we can prove that the equivalence

in the main theorem is indeed a triangle equivalence.

(3) The result shows that good Wakamatsu-tilting modules seem to behave in the Morita

theory of stable repetitive categories as that tilting modules of finite projective

dimension behave in the Morita theory of derived categories. We hope that this paper

could give some spark on the study of the Morita theory of stable repetitive categories,

which is clearly a new area and far from being solved.

Conversely, we have the following result.

Proposition 2. Let R and S be Artin algebras. Assume that there is a triangle

equivalence between their stable repetitive categories and that this equivalence restricts

to an equivalence between a covariantly finite coresolving subcategory A in modR and a

contravariantly finite resolving subcategory G in modS. Let T be the preimage in modR of

S. Then T is a good Wakamatsu-tilting R-module with S ' End(TR)op.

The paper is organized as follows. After the introduction, we provide basic knowledge

on Wakamatsu-tilting modules and repetitive categories in Section 2. Then in Section 3,

we introduce good Wakamatsu-tilting modules through cotorsion pair counter equivalences.

Some properties and characterizations of good Wakamatsu-tilting modules are presented.

Section 4 is devoted to the proof of the main theorem and the proposition in Section 1.

Though the proof of the theorem is a little complicated, the main idea is inspired by

constructions in [18, Lemma 4.1 in Chap. 3] and [26, Section 1]. Finally, we provide some

examples in the last section. In particular, it is shown that every Wakamatsu-tilting module

over an algebra of finite representation type is a good Wakamatsu-tilting module and hence

induces a repetitive equivalence. We also provide an example of repetitive equivalences but

not derived equivalences.

Conventions. Throughout this paper, we always work over Artin algebras and finitely

generated right modules unless we claim otherwise. For an algebra R, we denote by modR

the category of all finitely generated R-modules and by projR (resp., injR) the category of

finitely generated projective (resp., injective) R-modules. We denote the usual duality over

an Artin algebra R by D.

Let A be an additive category and T ∈ A, we use addAT to denote the additive closure

of T in A, that is, the class of all objects in A which is isomorphic to a direct summand of

finite direct sums of some copies of T .

For two functors F :A→B and G : B → C, we use GF to denote their composition. While

we use f · g, or simply just fg, to denote the composition of two homomorphisms f :A→B

and g :B→ C.

Let A and B be two additive categories and F :A→B be an additive functor, we use

KerF to denote the subcategory of A ∈ A such that F(A) = 0. Moreover, if Fi : A→B, i ∈ I,

is a class of functors, we denote KerFI =
⋂
i∈I KerFi. For instance, KerExt>1R (T,−) is the

subcategory of all M ∈modR such that ExtiR(T, M) = 0 for all i> 1.

We write the elements of direct sums as row vectors.
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§2. Wakamatsu-tilting modules and repetitive categories

2.1 Wakamatsu-tilting modules

Recall that an R-module T ∈modR is Wakamatsu-tilting [25] provided that

(1) End(ST )op 'R, where S := End(TR)op, and

(2) ExtiR(T, T ) = 0 = ExtiS(T, T ) = 0 for all i > 0.

These two conditions are also equivalent to the following two conditions [25, Proposition

3.5]:

(1) ExtiR(T, T ) = 0 for all i > 0 and

(2) there is an exact sequence 0→R→ T0→ T1→ · · · , where Ti ∈ addmodRT for all i,

which stays exact after applying the functor HomR(−, T ).

Note that if T is Wakamatsu-tilting and S = End(TR)op, then ST is a Wakamatsu-tilting

left S-module. In this case, we say that T is a Wakamatsu-tilting S-R-bimodule. It is easy

to see that DT is a Wakamatsu-tilting R-S-bimodule in the mean time.

2.1.1 Auslander–Reiten class and co-Auslander–Reiten class

Let T ∈modR be a Wakamatsu-tilting module with S = End(TR)op. There are the

following two interesting classes associated with Wakamatsu-tilting modules.

The Auslander–Reiten class in modR with respect to the Wakamatsu-tilting module TR,

denoted by XT , is defined as follows [3].

XT := {M ∈modR| there is an infinite exact sequence 0→M
f0−→ T0

f1−→ T1
f2−→ · · · such

that Imfi ∈KerExt>1R (−, T ) for each i> 0, where Ti ∈ addmodRT for all i}.
Obviously, it holds that XT ⊆KerExt>1R (−, T ). Moreover, these two classes coincide with

each other provided that T is a cotilting R-module.

Dually, the co-Auslander–Reiten class in modR with respect to the Wakamatsu-tilting

R-module T , denoted by TX , is defined as follows.

TX := {M ∈modR| there is an infinite exact sequence · · · f2−→ T1
f1−→ T0

f0−→M → 0 such

that Imfi ∈KerExt>1R (T,−) for each i> 0, where Ti ∈ addmodRT for all i}.
Similarly, we have that TX ⊆KerExt>1R (T,−) and they coincide with each other provided

that T is a tilting R-module.

The following result gives some properties about the Auslander–Reiten class and the

co-Auslander–Reiten class for a Wakamatsu-tilting module [3, 22, 26, 27].

Proposition. Let T be a Wakamatsu-tilting R-module with S = End(TR)op.

(1) The Auslander–Reiten class XT is a resolving subcategory, that is, it contains all

projective R-modules and is closed under extensions, kernels of epimorphisms and direct

summands.

(2) The co-Auslander–Reiten class TX is a coresolving subcategory, that is, it contains all

injective R-modules and is closed under extensions, cokernels of monomorphisms and

direct summands.

(3) KerExt1R(XT ,−) = KerExt>1R (XT ,−)⊆ TX .

(4) KerExt1R(−, TX ) = KerExt>1R (−, TX )⊆XT .

(5) HomR(T,−) and −⊗S T induce an (additive) equivalence between the co-Auslander–

Reiten class TX in modR and the Auslander–Reiten class XDT in modS. The
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equivalence restricts to an (additive) equivalence between the class KerExt>1R (XT ,−)

and the class KerExt>1S (−, DTX ).

Proof. (1) and (2) follow from [3, Section 5]; see also [22].

(3) and (4) follow from [27, Lemma 1.4 and Proposition 1.6].

(5) follows from [26, Proposition 2.14].

We remark that in case T =R, the class XT = XR is just the class of all Gorenstein

projective R-modules. Dually, in case T =DR, the class TX = DRX is just the class of

all Gorenstein injective modules. We refer to [15] for more on Gorenstein projective and

Gorenstein injective modules.

2.1.2 The following is a characterization of the Auslander–Reiten class and the co-

Auslander–Reiten class, by [26, Section 2].

Lemma. Let T be a Wakamatsu-tilting R-module with S = End(TR)op. Assume

X ∈modR.

(1) X ∈ TX if and only if X ∈KerExt>0
R (T,−), HomR(T, X)⊗S T 'X and

HomR(T, X) ∈KerTorS>0(−, T ) canonically.

(2) X ∈ XT if and only if X ∈KerExt>0
R (−, T ), HomS(HomR(X, T ), T ) 'X and

HomR(X, T ) ∈KerExt>0
S (−, T ) canonically.

2.1.3 Useful isomorphisms

Let T be a Wakamatsu-tilting S-R-bimodule. Then we have the following isomorphisms

of bimodules:

SDSS ' ST ⊗R DTS and RDRR ' RDT ⊗S TR.

Given an adjoint pair (F,G) of functors, we denote by Γ the natural adjoint isomorphism

Γ : Hom(F(−),−)'Hom(−,G(−)).

Moreover, for a homomorphism f : F(X)→ Y , we denote by Γ(f) :X →G(Y ) the image

of f under the isomorphism Γ. We denote by η and ε the unit and counit of this adjoint

pair, respectively, that is,

ηX = ΓT (1F (X)) :X →GF (X) and

εY = (ΓT )−1(1G(Y )) : FG(Y )→ Y.

In particular, associated with an S-R-bimodule T , we have the following adjoint

isomorphism:

ΓT : HomR(−⊗S T,−)'HomS(−,HomR(T,−)).

We denote by ηT and εT the unit and counit of this adjoint pair, respectively, that is, for

X ∈modS and Y ∈modR, respectively,

ηTX = ΓT (1X⊗ST ) :X →HomR(T, X ⊗S T ) and

εTY = (ΓT )−1(1HomR(T,Y )) : HomR(T, Y )⊗S T → Y.
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By the naturality of the isomorphism Γ, for all homomorphisms f :X1→X2,

g : F(X2)→ Y1 and h : Y1→ Y2, it holds that Γ(F(f) · g · h) = f · Γ(g) ·G(h).

In particular, for a morphism g : F (X)→ Y , by applying Γ to the composition F (X)
1F (X)→

F (X)
g→ Y , we have that Γ(g) = Γ(1F (X)) ·G(g) = ηX ·G(g). Dually, for a morphism

f :X →G(Y ), we have that Γ−1(f) = F (f)εY .

2.2 Repetitive algebras and repetitive categories

2.2.1 We recall some basic facts on repetitive algebras mainly from [18].

Let R be an Artin algebra. The repetitive algebra R̂ of R was first introduced in [20] and

is defined to be the direct sum R̂=
⊕

n∈Z R⊕
⊕

n∈Z DR with the multiplication given by

(an, ϕn)(bn, ψn)n = (anbn, an+1ψn + ϕnbn)n.

The repetitive algebra R̂ can be interpreted as the following infinite matrix algebra

(without the identity): 

. . .

. . . R
DR R

DR R
. . .

. . .


.

2.2.2 Consider the following two categories:

(1) RC⊗(R) := {X = {Xi, δ
⊗
i (X)}i∈Z |Xi ∈modR such that almost all Xi are 0 and

δ⊗i (X) :Xi ⊗R DR→Xi−1 satisfying (δ⊗i+1(X)⊗R DR) · δ⊗i (X) = 0, for each i}, where

a morphism between two objects X and Y is given by f = {fi :Xi→ Yi} such that

δ⊗i (X) · fi−1 = fi ⊗R DR · δ⊗i (Y ) for all i.

(2) RCH(R) := {X = {Xi, δ
H
i (X)}i∈Z |Xi ∈modR such that almost all Xi are 0 and

δHi (X) :Xi→HomR(DR, Xi−1) satisfying δHi+1(X) ·HomR(DR, δHi (X)) = 0, for each

i}, where a morphism between two objects X and Y is given by f = {fi :Xi→ Yi}
such that δHi (X) ·HomR(DR, fi−1) = fi · δHi (Y ) for all i.

One can check that these two categoriesRC⊗(R) andRCH(R) are both abelian categories.

Moreover, they are indeed equivalent to each other as abelian categories, via the adjoint pair

(−⊗R DR,HomR(DR,−)). Indeed, an object X = {Xi, δ
⊗
i (X)} ∈ RC⊗(R) is equivalent

to an object X = {Xi, Γ
DR(δ⊗i (X))} ∈ RCH(R). We will freely use this equivalence. In

particular, we often view objects X in these two categories being of the following form

with almost all terms Xi = 0

· · · δi+1
 Xi

δi Xi−1
δi−1
 · · · ,

where δi means δ⊗i (X) (resp., δHi (X)) if X ∈RC⊗(R) (resp., X ∈RCH(R)). We call it a

(bounded chain) repe-complex with the repe-difference δ and denote by RC(R) the category

of all such repe-complexes and call it the repetitive category over R. Note that there is an

obvious automorphism [1] :RC(R)→RC(R) defined by (X[1])i =Xi−1 for each i.

Note that if X = {Xi} is a repe-complex, then δ⊗i (X) · δHi−1(X) = 0 since ΓDR(δ⊗i (X) ·
δHi−1(X)) = δHi (X) ·HomR(DR, δHi−1(X)) = 0.
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We say that a repe-complex X = {Xi, δi} ∈ RC(R) is trivial if each δi = 0. The full

subcategory of all trivial repe-complexes is denoted by RCtr(R). Note that there is a natural

forgetful functor from RC(R) to RCtr(R) by forgetting the repe-difference.

Let C be a class of R-modules, we denote by RC(C) the class of repe-complexes with

terms in C. The notation RCtr(C) is defined similarly.

The connection between the repetitive category and the algebra R̂ is that the repetitive

category is equivalent to modR̂, that is, the module category of the algebra R̂, as abelian

categories; see [18] for details. Thus, we may identify RC(R) = modR̂.

2.2.3 As shown in [18], R̂ is a self-injective algebra and then the category RC(R)(= modR̂)

is a Frobenius category, where the projective (and also injective) objects are of the form

· · · δi+1
 Pi ⊕ Ii

δi Pi−1 ⊕ Ii−1
δi−1
 · · · ,

where Pi ∈ projR, Ii ∈ injR and δi =
(
0 δ′i
0 0

)
such that δ′i : Pi ⊗R DR→ Ii−1 is an isomor-

phism (considered inRC⊗(R)) or, equivalently, δ′i : Pi→HomR(DR, Ii−1) is an isomorphism

(considered in RCH(R)). Thus, its stable category RC(R) is a triangulated category. We

will call it the stable repetitive category of modR (or simply, of R).

It was shown in [18] that there is a fully faithful triangle embedding from the derived

category Db(modR) to the stable repetitive category RC(R). Moreover, there is a triangle

equivalence between Db(modR) and RC(R) if and only if R has finite global dimension.

We note that this result was generalized in [28] and also a simple proof of this result was

presented there.

For basic knowledge on triangulated categories, derived categories and the tilting theory,

we refer to [18].

§3. Cotorsion pairs and good Wakamatsu-tilting modules

3.1 Cotorsion pair counter equivalences

A pair of subcategories (B,A) in modR is called a cotorsion pair, if B = KerExt1R(−,A)

and A= KerExt1R(B,−). A cotorsion pair (B,A) is called hereditary provided that B is

resolving, or equivalently, A is coresolving. Moreover, a cotorsion pair (B,A) is called

complete provided that, for each X ∈modR, there exist exact sequences 0→X →A→
B→ 0 and 0→A′→B′→X → 0 for some A, A′ ∈ A and B, B′ ∈ B. We refer to the book

[16] for general results on cotorsion pairs.

Let (B,A) be a cotorsion pair in modR and (G,K) be a cotorsion pair in modS. Similar

to torsion theory counter equivalences in the Brenner–Butler theorem (see [11, 13]), we say

that there is a cotorsion pair counter equivalence between (B,A) and (G,K) provided that

there is an equivalence H :A −→←−G : T and an equivalence H′ :K −→←−B : T′, all as additive

categories. Moreover, we say that two bimodules SVR and RV
′
S represent the cotorsion pair

counter equivalence if H = HomR(V,−), T =−⊗S V and H′ = HomS(V ′,−), T′ =−⊗R V ′.
There are close relations between Wakamatsu-tilting modules and cotorsion pair counter

equivalences, as shown in the following proposition.

Proposition. Let T be a Wakamatsu-tilting R-module with S = End(TR)op.

(1) Both pairs (KerExt1R(−, TX ), TX ) and (XT ,KerExt1R(XT ,−)) are hereditary cotorsion

pairs.
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(2) The bimodules STR and RDTS represent a cotorsion pair counter equivalence

between the cotorsion pair (KerExt1R(−, TX ), TX ) in modR and the cotorsion pair

(XDT ,KerExt1S(XDT ,−)) in modS.

(3) The bimodules RDTS and STR represent a cotorsion pair counter equivalence

between the cotorsion pair (KerExt1S(−, DTX ), DTX ) in modS and the cotorsion pair

(XT ,KerExt1R(XT ,−)) in modR.

Proof.

(1) follows from [22, Proposition 3.1] and Proposition 2.1.1.

(2) follows from Proposition 2.1.1(5).

(3) is obtained from (2) by replacing STR with RDTS .

3.2 Good Wakamatsu-tilting modules

3.2.1 In general, the two cotorsion pairs in Proposition 3.1(1) are not complete. For

instance, consider the case T =R. Then XR is the class of all Gorenstein projective

modules (note that we only consider finitely generated modules). It is well known

that this class is not a precovering class in general; see, for instance, [29]. Thus, the

cotorsion pair (XR,KerExt1R(XR,−)) cannot be complete. Dually, the cotorsion pair

(KerExt1R(−, DRX ), DRX ) in case T =DR is not complete in general.

However, the other cotorsion pair of the two cotorsion pairs in Proposition 3.1(1), that

is, the cotorsion pair

(KerExt1R(−, RX ), RX )(= (projR,modR))

for T =R and the cotorsion pair

(XDR,KerExt1R(XDR,−))(= (modR, injR))

for T =DR, respectively, is clearly complete. This leads to the following general definition.

Definition. A Wakamatsu-tilting bimodule STR is said to be good if the bimodules STR
and RDTS represent a cotorsion pair counter equivalence between a complete hereditary

cotorsion pair (B,A) in modR and a complete hereditary cotorsion pair (G,K) in modS.

Furthermore, an R-module T is said to be a good Wakamatsu-tilting module if STR is a

good Wakamatsu-tilting bimodule with S = End(TR)op.

For example, R and DR are good Wakamatsu-tilting modules. In general, if STR is a

good Wakamatsu-tilting bimodule, then RDTS is also a good Wakamatsu-tilting bimodule

by the definition and the fact that DDT = T .

In general, we do not know if the following question has an affirmative answer.

Question. Are all Wakamatsu-tilting modules good Wakamatsu-tilting modules?

However, we will see in Section 5 that the answer to the above question is ‘yes’ for

algebras of finite representation type.

3.2.2 By the definition, we have the following property of Wakamatsu-tilting bimodules.

Proposition. Let STR be a Wakamatsu-tilting bimodule. Assume that (B,A) is a

hereditary cotorsion pair in modR and (G,K) is a hereditary cotorsion pair in modS such

that the bimodules STR and RDTS represent a cotorsion pair counter equivalence between
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them. Then

(1) B ⊆ XT , A⊆ TX and G ⊆ XDT , K ⊆ DTX
(2) addmodRT = B

⋂
A and addmodSDT = G

⋂
K

Proof. (1) First, we show that addmodRT ⊆ B
⋂
A and addmodSDT ⊆ G

⋂
K.

Note that all the involved subcategories in (1) are closed under finite direct sums and

direct summands. Since G is resolving, we have that S ∈ G. By the equivalence between A
and G, we obtain that T = S ⊗S T ∈ A. It follows that addmodRT ⊆A. Dually, since K is

coresolving, we have that DS ∈ K. It follows from the equivalence between B and K that

T = HomS(S, T ) = HomS(DT, DS) ∈ B. Hence, addmodRT ⊆ B too. Thus, we obtain that

addmodRT ⊆ B
⋂
A. Dually, one also has addmodSDT ⊆ G

⋂
K.

Clearly, B = KerExt1R(−,A) = KerExt>1R (−,A)⊆KerExt>1R (−, T ) follows from addmodR

T ⊆ B
⋂
A and the fact that (B,A) is a hereditary cotorsion pair. Take any B ∈ B,

then B ⊗R DT ∈ K. Take an exact sequence 0→B ⊗R DT → I → Y → 0 with I ∈ injS =

addmodSDS. Since K is coresolving, we have that I, Y ∈ K too. Applying the func-

tor HomS(DT,−), we obtain an induced exact sequence 0→HomS(DT, B ⊗R DT )→
HomS(DT, I)→HomS(DT, Y )→ 0 since K = KerExt1S(G,−)⊆KerExt1S(DT,−) by the

fact that DT ∈ G. Note that B 'HomS(DT, B ⊗R DT ), HomS(DT, I) ∈ addmodRT and

HomS(DT, Y ) ∈ B, so one can easily see that B ∈ XT . Thus, B ⊆ XT . By the equivalence in

Proposition 3.1(3), we also obtain that K ⊆ DTX .

Now considering the Wakamatsu-tilting module RDTS and applying the above result, we

can obtain that G ⊆ XDT and that A⊆ TX .

(2) If X ∈ B
⋂
A, then X ∈ B. Following the proof of (1), we obtain that there is an exact

sequence 0→X → TX →X ′→ 0 with TX ∈ addmodRT and X ′ ∈ B. Since X ∈ A too, we

have that Ext1R(X ′, X) = 0. It follows that the exact sequence splits. Hence, X ∈ addmodRT .

Together with the first claim in the proof of (1), we obtain that addmodRT = B
⋂
A. Dually,

we also have that addmodSDT = G
⋂
K.

3.2.3 Recall that a subcategory A⊆modR is covariantly finite (or a preenveloping class) if

for any X ∈modR, there is an object AX ∈ A and a homomorphism uX :X →AX such that

HomR(uX , A) is surjective for any object A ∈ A; see, for instance, [3]. Dually, a subcategory

B ⊆modR is contravariantly finite (or a precovering class) if for any X ∈modR, there is

an object BX ∈ B and a homomorphism vX :BX →X such that HomR(B, vX) is surjective

for any object B ∈ B.

A cotorsion pair (B,A) is complete if and only if A is covariantly finite, if and only if B
is contravariantly finite; see [3, Proposition 1.9].

Let A be a subcategory of modR. An R-module T is said to be Ext-projective in A
if T ∈ A

⋂
KerExt1R(−,A). Moreover, it is said to be an Ext-projective generator in A if,

for any A ∈ A, there exists an exact sequence 0→A′→ TA→A→ 0 with TA ∈ addmodRT

and A′ ∈ A. Dually, an R-module T is said to be an Ext-injective cogenerator in A if

T ∈ A
⋂

KerExt1R(A,−) and, for any A ∈ A, there exists an exact sequence 0→A→ TA→
A′→ 0 with TA ∈ addmodRT and A′ ∈ A.
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Lemma. Let A be a subcategory closed under extensions and direct summands.

(1) Assume that A has an Ext-projective generator T . If 0→X → Y → Z→ 0 is an exact

sequence which stays exact after applying the functor HomR(T,−), where Y, Z ∈ A,

then X ∈ A too.

(2) Assume that A has an Ext-injective cogenerator T . If 0→X → Y → Z→ 0 is an exact

sequence which stays exact after applying the functor HomR(−, T ), where X, Y ∈ A,

then Z ∈ A too.

Proof. (1) By the assumptions, we can construct the following commutative diagram,

where TZ ∈ addmodRT and Z ′ ∈ A:

0

��

0

��
Z ′

��

Z ′

��
0 // X

(1,0)
// X ⊕ TZ

(01) //

(fh)��

TZ

hzz

//

t
��

0

0 // X
f

// Y
g

//

��

Z //

��

0

0 0

Since A is closed under extensions and direct summands, we have that X ∈ A from the

middle column.

(2) Dually.

3.2.4 Lemma. Let T be a Wakamatsu-tilting R-module, S = End(TR)op. Assume that

HomR(T,−) :A−→←−G :−⊗S T define an equivalence. Then the following are equivalent:

(1) A is coresolving and T is an Ext-projective generator in A.

(2) G is resolving and DT is an Ext-injective cogenerator in G.

Proof. (1) ⇒ (2) The condition that T is an Ext-projective generator in A means

that T ∈ A⊆KerExt1R(T,−) and that every A ∈ A admits an exact sequence 0→A′→
TA→A→ 0 with TA ∈ addmodRT and A′ ∈ A. This implies that A⊆KerExt>1R (T,−).

In particular, A⊆ TX .

Note that, for any X ∈ A, there is an exact sequence 0→X → I →X ′→ 0 with

I ∈ injR⊆A and X ′ ∈ A since A is coresolving. Applying the functor

HomR(T,−), we have an exact sequence 0→HomR(T, X)→HomR(T, I)→
HomR(T, X ′)→ 0. Since HomR(T, I) ∈ addmodSDT and Ext1S(HomR(T, X), DT )'
Ext1S(HomR(T, X),HomR(T, DR)) = 0, we obtain that DT is an Ext-injective cogenerator

in HomR(T,A) = G.

It is clear that G is closed under direct summands. Assume now there is an exact sequence

([) : 0→X → Y
g−→ Z→ 0 with Z ∈ G, then Z ∈HomR(T,A)⊆KerTorS1 (−, T ). Applying

the functor −⊗S T , we obtain an induced exact sequence ([⊗S T ) : 0→X ⊗S T → Y ⊗S
T
g⊗ST−→ Z ⊗S T → 0.
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Assume first X ∈ G too, then X ⊗S T ∈ A. It follows that Y ⊗S T ∈ A too since A is

closed under extensions. Note now that there is an exact sequence 0→HomR(T, X ⊗S
T )→HomR(T, Y ⊗S T )→HomR(T, Z ⊗S T )→ 0, so we have that HomR(T, Y ⊗S T )' Y
since HomR(T, X ⊗S T )'X and HomR(T, Z ⊗S T )' Z. Thus, Y ∈HomR(T,A) = G. This

shows that G is closed under extensions.

Assume now Y ∈ G, then HomR(T, g ⊗S T )' g. In particular, we have that

HomR(T, X ⊗S T )'X and the homomorphism HomR(T, g ⊗S T ) is surjective. It follows

that the exact sequence ([⊗S T ) stays exact after applying the functor HomR(T,−). By

Lemma 3.2.3, we obtain that X ⊗S T ∈ A. Hence, X ∈HomR(T,A) = G. This shows that

G is closed under kernels of epimorphisms. Then we see that G is resolving.

(2) ⇒ (1) Dually.

3.2.5 Proposition. Let STR be a Wakamatsu-tilting module. Assume that (B,A) is a

hereditary cotorsion pair in modR and that T is an Ext-projective generator in A,

then (HomR(T,A), B ⊗R DT ) is a hereditary cotorsion pair in modS. In particular, the

bimodules STR and RDTS represent a cotorsion pair counter equivalence between (B,A)

and (HomR(T,A), B ⊗R DT ) in this case.

Proof. Since T is an Ext-projective generator in A, we see that T ∈
KerExt1R(−,A)

⋂
A= B

⋂
A and that, for any A ∈ A, there is an exact sequence 0→

A′→ TA→A→ 0 with TA ∈ addmodRT and A′ ∈ A. In particular, for any X ∈ A
⋂
B, there

is an exact sequence 0→X ′→ TX →X → 0 with TX ∈ addmodRT and X ′ ∈ A, which is

clearly split. Hence, X ∈ addmodRT . It follows that addmodRT = B
⋂
A. Moreover, by an

argument similar to the one used in the proof of [22, Proposition 2.13(b)], we have that

T is also an Ext-injective cogenerator in B. Note that these facts imply that A⊆ TX and

that B ⊆ XT . In particular, HomR(T,−) :A−→←−HomR(T,A) :−⊗S T define an equivalence

and HomS(DT,−) : B ⊗R DT−→←−B :−⊗R DT define an equivalence, by Proposition 2.1.1.

The above arguments, in particular, show that Lemma 3.2.4 can be applied to A
(considering the Wakamatsu-tilting bimodule STR) and B (considering the Wakamatsu-

tilting bimodule RDTS); thus, we see that HomR(T,A) is resolving and that B ⊗R DT
is coresolving. It is also clear that the bimodules STR and RDTS represent a counter

equivalence between two pairs (B,A) and (HomR(T,A), B ⊗R DT ), by assumptions. So,

it just remains to show that (HomR(T,A), B ⊗R DT ) is a cotorsion pair.

We divide the remaining proof into three steps.

Step 1. ExtiS(HomR(T, A), B ⊗R DT ) = 0, for any A ∈ A and any B ∈ B and for any i> 0.

Note that there is a natural isomorphism

DHomS(S, B ⊗R DT )'HomR(B, S ⊗S T ).

It induces a natural isomorphism, for any Si ∈ addmodSS,

(¶) DHomS(Si, B ⊗R DT )'HomR(B, Si ⊗S T ).

Now take A ∈ A; since T is an Ext-projective generator, there is a long exact sequence

(†) · · · → Tn→ · · · → T1→ T0→A→ 0,

where each Ti ∈ addmodRT and each image in A. Here we consider the sequence (†) as a

(cochain) complex with the term A at the first position.
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Since B ∈KerExt1R(−,A), we have the following induced exact sequence HomR(B, †):

· · · →HomR(B, Tn)→ · · · →HomR(B, T1)→HomR(B, T0)→HomR(B, A)→ 0.

On the other hand, by applying the functor DHomS(HomR(T,−), B ⊗R DT ), we have

a complex DHomS(HomR(T, †), B ⊗R DT ):

· · · →DHomS(HomR(T, Tn), B ⊗R DT )→ · · · →DHomS(HomR(T, T1), B ⊗R DT )

→DHomS(HomR(T, T0), B ⊗R DT )→DHomS(HomR(T, A), B ⊗R DT )→ 0.

Since HomR(T, †) is exact, the functor DHomS(HomR(T,−), B ⊗R DT ) is right exact.

By the above isomorphism (¶), we obtain the following isomorphisms of complexes:

DHomS(HomR(T, †), B ⊗R DT )'HomR(B,HomR(T, †)⊗S T )'HomR(B, †).

But the later is exact, so we obtain that, for i> 1,

ExtiS(HomR(T, A), B ⊗R DT )'Hi(HomS(HomR(T, †), B ⊗R DT ))

'DH−i(DHomS(HomR(T, †), B ⊗R DT ))'DH−i(HomR(B, †)) = 0.

Thus, Step 1 is established. In particular, we obtain that HomR(T,A)⊆
KerExt1S(−, B ⊗R DT ) and that B ⊗R DT ⊆KerExt1S(HomR(T,A),−) due to the arbitrar-

ity of A ∈ A and B ∈ B.

Step 2. KerExt1S(−, B ⊗R DT )⊆HomR(T,A).

Take any Y ∈KerExt1S(−, B ⊗R DT ) and a projective resolution of Y , where we consider

as a (cochain) complex with the term Y at the zeroth position:

(]) · · · fn+1−→ Sn
fn−→ · · · f3−→ S2

f2−→ S1
f1−→ S0

f0−→ Y → 0.

Note that DT =R⊗R DT ∈ B ⊗R DT and that B ⊗R DT is coresolving, so we obtain

that

Y ∈KerExt1S(−, B ⊗R DT ) = KerExt>0
S (−, B ⊗R DT )

⊆KerExt>0
S (−, DT ) = KerTorS>0(−, T ).

Then we have an induced exact sequence:

(] ⊗ S T ) · · · → Sn ⊗S T → · · · → S2 ⊗S T → S1 ⊗S T → S0 ⊗S T → Y ⊗S T → 0.

For any B ∈ B, applying the left exact functor HomR(B,−), we obtain a complex

HomR(B, ]⊗S T ):

· · · →HomR(B, Sn ⊗S T )→ · · · →HomR(B, S2 ⊗S T )→HomR(B, S1 ⊗S T )

→HomR(B, S0 ⊗S T )→HomR(B, Y ⊗S T )→ 0.

https://doi.org/10.1017/nmj.2019.35 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.35


REPETITIVE EQUIVALENCES AND TILTING THEORY 109

Applying the right exact functor DHomS(−, B ⊗R DT ) to the sequence (]), we obtain a

complex DHomS(], B ⊗R DT ):

· · · →DHomS(Sn, B ⊗R DT )→ · · · →DHomS(S2, B ⊗R DT )

→DHomS(S1, B ⊗R DT )→DHomS(S0, B ⊗R DT )→DHomS(Y, B ⊗R DT )→ 0,

which is indeed exact since Si, Y ∈KerExt>0
S (−, B ⊗R DT ).

By the natural isomorphism (¶) in Step 1 again, we have isomorphisms of truncated

complexes

(DHomS(], B ⊗R DT ))<0 ' (HomR(B, ]⊗S T ))<0,

where (−)<0 denotes the truncated complex of a complex by replacing the ith term with 0

for all i> 0.

Since B ∈KerExt1R(−, Si ⊗S T ) and HomR(B,−) is left exact, we obtain that, for i> 4,

Ext1R(B, Yi ⊗S T )'H−i+2(HomR(B, ]⊗S T )), where Yi = Imfi. But the latter homology

is 0 by the above isomorphism of truncated complexes and by the fact that the complex

DHomS(], B ⊗R DT ) is exact. This shows that Yi ⊗S T ∈KerExt1R(B,−) =A, for all i> 4.

Now consider the exact sequence obtained from (] ⊗ S T ):

0→ Y4 ⊗S T → S3 ⊗S T → S2 ⊗S T → S1 ⊗S T → S0 ⊗S T → Y ⊗S T → 0.

As also each Si ⊗S T ∈ addmodRT ⊆A and A is coresolving, we obtain that each

Yi ⊗S T ∈ A, where Yi = Imfi for 06 i6 3. Thus, the exact sequence ]⊗S T is indeed in

A. Then we have an induced exact sequence HomR(T, ]⊗S T ):

· · · →HomR(T, Sn ⊗S T )→ · · · →HomR(T, S1 ⊗S T )

→HomR(T, S0 ⊗S T )→HomR(T, Y ⊗S T )→ 0.

Since Si 'HomR(T, Si ⊗S T ) for each i, it follows that

Y 'HomR(T, Y ⊗S T ) ∈HomR(T,A).

This shows that KerExt1S(−, B ⊗R DT )⊆HomR(T,A). Together with Step 1, we obtain

that KerExt1S(−, B ⊗R DT ) = HomR(T,A).

Step 3. KerExt1S(HomR(T,A),−)⊆ B ⊗R DT .

Note that there is an isomorphism

HomS(HomR(T, A), DS)'DHomR(HomS(DT, DS), A),

for any A ∈modR and that it induces an isomorphism

HomS(HomR(T, A), Ii)'DHomR(HomS(DT, Ii), A),

for any Ii ∈ addmodSDS.

Now take any X ∈KerExt1S(HomR(T,A),−) and consider an injective resolution of X:

(\) 0→X
g0−→ I0

g1−→ I1
g2−→ I2

g3−→ · · · gn−→ In
gn+1−→ · · · ;

here, we consider (\) as a (cochain) complex with the term X at the zeroth position. Since

DT 'HomR(T, DR) ∈HomR(T,A) and HomR(T,A) is resolving, we obtain that

X ∈KerExt1S(HomR(T,A),−) = KerExt>0
S (HomR(T,A),−)⊆KerExt>0

S (DT,−).
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Thus, for any A ∈ A, applying the functor HomS(HomR(T, A),−), we have an induced

exact complex HomS(HomR(T, A), \):

0→HomS(HomR(T, A), X)−→HomS(HomR(T, A), I0)

−→HomS(HomR(T, A), I1)−→ · · · −→HomS(HomR(T, A), In)−→ · · · .

On the other hand, by applying the functor DHomR(HomS(DT,−), A), we also have the

following induced complex DHomR(HomS(DT, \), A):

0→DHomR(HomS(DT, X), A)−→DHomR(HomS(DT, I0), A)

−→DHomR(HomS(DT, I1), A)−→ · · · −→DHomR(HomS(DT, In), A)−→ · · · .

Since HomS(DT, Ii) ∈ addmodRHomS(DT, DS) = addmodRT and A ∈KerExt1R(T,−)

and since HomS(DT, \) is exact and HomR(−, A) is left exact, we can obtain that, for

any i> 2,

Ext1R(HomS(DT, Xi+1), A)'H−i(HomR(HomS(DT, \), A)),

where Xi := Imgi. However, by the above-mentioned isomorphism (∗) and the fact that

HomS(HomR(T, A), \) is exact, we further have that

H−i(HomR(HomS(DT, \), A))'DHi(DHomR(HomS(DT, \), A))

'DHi(HomS(HomR(T, A), \)) = 0.

It follows that HomS(DT, Xi+1) ∈KerExt1R(−,A) = B for any i> 2. Since B is resolving

and HomS(DT, Ii) ∈ addmodRT ⊆ B, we also obtain that each HomS(DT, Xi) ∈ B for each

06 i6 2, where X0 :=X and Xi := Imgi for i= 1, 2, from the exact sequence

0→HomS(DT, X)→HomS(DT, I0)→HomS(DT, I2)

→HomS(DT, I3)→HomS(DT, X3)→ 0.

The above arguments show that the exact sequence HomS(DT, \) is indeed in B. Then we

have an induced exact sequence HomS(DT, \)⊗R DT as follows since B ⊆KerExt1R(−, T ) =

KerTorR1 (−, DT ):

0→HomS(DT, X)⊗R DT →HomS(DT, I0)⊗R DT

→HomS(DT, I1)⊗R DT → · · · →HomS(DT, In)⊗R DT → · · · .

It follows that

X 'HomS(DT, X)⊗R DT ∈ B ⊗R DT

since Ii 'HomS(DT, Ii)⊗R DT for each i. This shows that

KerExt1S(HomR(T,A),−)⊆ B ⊗R DT.

Together with Step 1, we obtain that KerExt1S(HomR(T,A),−) = B ⊗R DT .

Altogether, we obtain that (HomR(T,A), B ⊗R DT ) is a hereditary cotorsion pair.
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3.2.6 Corollary. Let T ∈modR be Wakamatsu-tilting with S = End(TR)op. Assume that

the functor HomR(T,−) gives an equivalence between a covariantly finite coresolving

subcategory A in modR and a contravariantly finite resolving subcategory G in modS. If T

is an Ext-projective generator in A, then T is a good Wakamatsu-tilting module.

Proof. Since G is a contravariantly finite resolving subcategory in modS, there is a

cotorsion pair (G,KerExt1S(G,−)) in modS, by [3, Proposition 1.10]. Dually, there is a

cotorsion pair (KerExt1R(−,A),A) in modR since A is a covariantly finite coresolving

subcategory in modR. Note that both cotorsion pairs are complete and hereditary by

[3, Proposition 3.3 and the Remark after Proposition 3.4]. Since T is an Ext-projective

generator in A, by Proposition 3.2.5, the bimodules STR and RDTS represent a cotorsion

pair counter equivalence between the above two cotorsion pairs. Hence, T is a good

Wakamatsu-tilting module by the definition.

§4. The proof of main results

The whole section will be devoted to the proof of the two results mentioned in Section 1.

Let R be an Artin algebra and T be a good Wakamatsu-tilting module with S =

End(TR)op. Then STR is a good Wakamatsu-tilting bimodule. Assume that (B,A) is a

complete hereditary cotorsion pair in modR and (G,K) is a complete hereditary cotorsion

pair in modS such that the bimodules STR and RDTS represent a cotorsion pair counter

equivalence between these two cotorsion pairs.

The sketch of our proof of Theorem 1 is as follows.

First, we construct a functor LT :RCtr(R)→RC(S) and a functor −⊗̂DT :RC(R)→
RC(S). Then we give a natural homomorphism

lXY : HomRCtr(R)(X, Y )→HomRC(S)(X ⊗̂DT, LT (Y ))

which is functorial in both variables. After this, associated with an object X ∈RC(R), we

use the condition that (B,A) is a complete cotorsion pair in modR to obtain an object

AX ∈RCtr(A) and establish a homomorphism uX ∈HomRCtr(R)(X, AX). We then show

that the assignment X 7−→ Cok(l(uX )) induces our desired functor ST :RC(R)→RC(S).

We use the dual method to construct another desired functor QDT :RC(S)→RC(R). Then

we prove that there are natural isomorphisms QDTST ' 1RC(R) and STQDT ' 1RC(S).

4.1 From RC(R) to RC(S): the functor ST
4.1.1 The functor LT :RCtr(R)→RC(S)

Let X = {Xi} ∈ RCtr(R). We define LT (X) ∈RC(S) as follows:

(l1) the underlying module LT (X)i = HomR(T, Xi−1)⊕Xi ⊗R DT and

(l2) the structure map δ⊗i (LT (X)) : LT (X)i ⊗S DS→ LT (X)i−1 is given by
(0 δLi
0 0

)
, where

δLi is the composition:

HomR(T, Xi−1)⊗S DS
'−→HomR(T, Xi−1)⊗S T ⊗R DT

εTXi−1
⊗RDT
−→ Xi−1 ⊗R DT.

From the functor property of HomR(T,−) and −⊗R DT , one can easily see that LT is a

functor from RCtr(R) to RC(S).
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Remark.

(1) If X ∈RCtr(addmodRT ), that is, X = {Xi} with each Xi ∈ addmodRT , then

HomR(T, Xi−1) ∈ addmodSS and δLi defined above is an isomorphism for each i. It

follows that LT (X) is a projective object in RC(S) in this case.

(2) As a special case, if T =R, then we obtain the functor LR :RCtr(R)→RC(R) which

sends objects in RCtr(addmodRR) to a projective object in RC(R).

4.1.2 The functor −⊗̂DT :RC(R)→RC(S)

Let Y = {Yi, δ⊗i (Y )} ∈ RC(R). We define Y ⊗̂DT ∈RC(S) by setting

(t1) the underlying module is (Y ⊗̂DT )i = Yi ⊗R DT and

(t2) the structure map δ⊗i (Y ⊗̂DT ) is given by the composition

Yi ⊗R DT ⊗S DS
'−→ Yi ⊗R DT ⊗S T ⊗R DT

'−→ Yi ⊗R DR⊗R DT
δ⊗i (Y )⊗RDT−→ Yi−1 ⊗R DT.

From the functor property of −⊗R DT , one can see that −⊗̂DT is a functor from RC(R)

to RC(S).

4.1.3 The homomorphism lXY : HomRCtr(R)(X, Y )→HomRC(S)(X ⊗̂DT, LT (Y ))

Recall that we have a forgetful functor from RC(R) to RCtr(R). For any X ∈RC(R) and

Y ∈RCtr(R), there is a canonical homomorphism

lXY : HomRCtr(R)(X, Y )−→HomRC(S)(X ⊗̂DT, LT (Y ))

which is functorial in both variables, defined by

lXY : u= {ui} 7−→ f = {fi}, withfi =
(
−θli , ui ⊗R DT

)
,

where θli is given by the composition

Xi ⊗R DT
ηTXi⊗RDT−→ HomR(T, Xi ⊗R DT ⊗S T )

'−→HomR(T, Xi ⊗R DR)

HomR(T,δ
⊗
i (X))

−→ HomR(T, Xi−1)
HomR(T,ui−1)−→ HomR(T, Yi−1).

Remark. Using the fact that RDRR ' R(DT ⊗S T )R and the adjoint isomorphism

ΓT : HomR(Xi ⊗R DR, Yi−1)'HomS(Xi ⊗R DT,HomR(T, Yi−1)),

one can easily check that θli is just the image of the natural homomorphism δ⊗i (X) · ui−1
under ΓT , that is, θli = ΓT (δ⊗i (X) · ui−1).

In the following, we simply write l instead of lXY .

It is easy to see that, for any commutative diagram in RC(R)

X
u //

x
��

Y

y
��

X ′
u′ // Y ′,
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there is an induced commutative diagram in RC(S)

X ⊗̂DT
l(u)

//

x ⊗̂DT
��

LT (Y )

LT (y)

��
X ′ ⊗̂DT

l(u′)
// LT (Y ′).

4.1.4 A monomorphism uX :X →AX in RCtr(R) with AX ∈RCtr(A), for X ∈RC(R)

Let X = {Xi} ∈ RC(R). Since (B,A) is a complete cotorsion pair in modR, there

are exact sequences 0→Xi
(u
X
)i−→ (AX)i

(π
X
)i−→ (BX)i→ 0 with (AX)i ∈ A and (BX)i ∈ B,

for each i. This gives an exact sequence 0→X
u
X−→AX

π
X−→BX → 0 in RCtr(R) with

AX = {(AX)i} ∈ RCtr(A) and BX = {(BX)i} ∈ RCtr(B).

Now let Y = {Yi} ∈ RC(R) and h= {hi} ∈HomRC(R)(X, Y ). Then we have an exact

sequence 0→ Y
u
Y−→AY

π
Y−→BY → 0 in RCtr(R) with AY = {(AY )i} ∈ RCtr(A) and BY =

{(BY )i} ∈ RCtr(B), as above. Using that B = KerExt1R(−,A), it is easy to see that there

is a homomorphism hA ∈HomRCtr(R)(AX , AY ) and further hB ∈HomRCtr(R)(BX , BY ) such

that the following diagram in RCtr(R) is commutative with exact rows.

0 // X
u
X //

h
��

AX
π
X //

hA
��

BX //

hB
��

0

0 // Y
u
Y // AY

π
Y // BY // 0.

4.1.5 The cokernel Cok(l(uX ))

Applying the functor −⊗R DT to the exact sequences

0→Xi
(u
X
)i−→ (AX)i

(π
X
)i−→ (BX)i→ 0

above, we obtain induced exact sequences

0 // Xi ⊗R DT
(u
X
)i⊗RDT

// (AX)i ⊗R DT // (BX)i ⊗R DT // 0

since (BX)i ∈ B ⊆KerExt1R(−, T ) = KerTorR1 (−, DT ) for each i. It follows that, by applying

the homomorphism l in 4.1.3 to the homomorphism uX in 4.1.4, there is an induced exact

sequence

0 // X ⊗̂DT
l(u

X
)

// LT (AX)
π
lX // Cok(l(uX)) // 0.
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Remark. From the definition of Cok(l(uX )), one sees that, for each i, Cok(l(uX ))i is

given by the pushout

Xi ⊗R DT
θli //

(u
X
)i⊗RDT

��

HomR(T, (AX)i−1)

��
(AX)i ⊗R DT // Cok(l(uX ))i.

Moreover, for Y ∈RC(R) and h ∈HomRC(R)(X, Y ), by applying the homomorphism l to

the left square in the commutation diagram in 4.1.4, we obtain the following commutative

diagram in RC(S), for some hCok:

0 // X ⊗̂DT
l(u

X
)

//

h ⊗̂DT
��

LT (AX)
π
lX //

LT (hA)

��

Cok(l(uX )) //

hCok

��

0

0 // Y ⊗̂DT
l(u

Y
)

// LT (AY )
π
lY // Cok(l(uY )) // 0

4.1.6 The assignment ST :RC(R)→RC(S) given by X 7−→ Cok(l(uX )) is a functor

By 4.1.5, it is sufficient to prove that ST (h) := hCok = 0 in RC(S) provided h= 0. We

divide the proof into two steps.

Step 1 : Consider each piece in the commutative diagram in 4.1.4. If h= {hi}= 0, then hi = 0

for each i. Thus, we have that (uX )i(hA)i = 0 and, consequently, (hA)i = (πX )igi for some

gi : (BX)i→ (AY )i. Since (BX)i ∈ B ⊆ XT for each i and T is an Ext-injective cogenerator

in B (see the first part in the proof of Proposition 3.2.5), there are exact sequences

0→ (BX)i
bi−→ T(BX)i → (B′X)i→ 0 with T(BX)i ∈ addmodRT and (B′X)i ∈ B ⊆

KerExt1R(−,A). It follows that there exists ti ∈HomR(T(BX)i , (AY )i) such that gi = biti.

Altogether, we obtain the following commutative diagram:

(AX)i
(π
X
)i
//

(hA)i
��

(BX)i

bi
��gizz

(AY )i T(BX)i .ti

oo

This induces the following commutative diagram in RCtr(R), where TBX = {T(BX)i}:

AX
π
X //

hA
��

BX

b
��g||

AY TBX .
t

oo

Set k := πX b. Then LT (hA) = LT (kt) = LT (k)LT (t).
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Step 2 : Consider the commutative diagram in 4.1.5. Since (uX )i(πX )i = 0, it holds

that HomR(T, (uX )i) ·HomR(T, (πX )i) = 0 and (uX )i ⊗R DT · (πX )i ⊗R DT = 0. Then

we see that l(uX )LT (k) = l(uX )LT (πX )LT (b) = 0 · LT (b) = 0 by the definition of the

functor LT in 4.1.1 and the morphism l(uX ) in 4.1.3. Hence, there is some

θ ∈HomRC(S)(Cok(l(uX )), LT (TBX )) such that LT (k) = π
lX
θ. Consequently, we have

that LT (hA) = LT (k)L(t) = π
lX
θLT (t). Now we obtain that π

lX
hCok = LT (hA)π

lY
=

π
lX
θLT (t)π

lY
. Since πlX is epic, we get that hCok = θLT (t)π

lY
. That is, we have the following

commutative diagram:

Cok(l(uX ))
θ //

hCok

��

LT (TBX )

LT (t)

��
Cok(l(uY )) LT (AY )

π
lY

oo

Note that LT (TBX ) is a projective–injective object in RC(S), so hCok = 0 in RC(S).

4.1.7 The functor ST :RC(R)→RC(S)

We will show that the functor ST factors through RC(R).

To see this, it is enough to show that ST (X) is a projective object in RC(S) whenever

X is a projective object in RC(R).

Without loss of generality, we assume that X = {Xi} is an indecomposable projective

object in RC(R). Thus, X is of the form

· · · 0 HomR(DR, I)
1
 I  0 · · · ,

where I is indecomposable injective and is on the (k − 1)th position, for some k [18, 2.2

Lemma].

Note that Xk = HomR(DR, I) ∈ addmodRR⊆ B and Xk−1 = I ∈ addmodRDR⊆A, so,

following 4.1.4, we can choose AX to be of the form

· · · 0 Tk I  0 · · · ,

where AXk = Tk ∈ addmodRT . And we have that the homomorphism uX :X →AX is of the

form

X : · · ·  0  0  HomR(DR, I)  I  0  · · ·
↓ uX ↓ uk ↓ 1
AX : · · ·  0  0  Tk  I  0  · · ·

Then, from the structure of l(uX ), we can see that l(uX ) is of the form

X ⊗̂DT : 0  0  HomR(DR, I)⊗R DT  I ⊗R DT  0
↓ l(uX ) ↓ ↓ (−θlk , uk ⊗R DT ) ↓ 1

LT (AX) : 0  HomR(T, Tk)
(0,δLk+1

)
 HomR(T, I)⊕ Tk ⊗R DT  I ⊗R DT  0,

where θlk is defined as in 4.1.3 and δLk+1
is defined as in 4.1.1, respectively. One checks

that both homomorphisms θlk and δLk+1
are, in fact, isomorphisms. So we obtain that
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ST (X) = Coker(l(uX )) is of the form

· · ·  0  HomR(T, Tk)
δ′k+1
 Tk ⊗R DT  0  0  · · · ,

where δ′k+1 is the induced isomorphism: HomR(T, Tk)⊗S DS→ Tk ⊗R DT . Since Tk ⊗R
DT ∈ addmodS(T ⊗R DT ) = addmodSDS, we see that Tk ⊗R DT is an injective S-module

and that ST (X) is a projective object in RC(S).

It follows that the functor ST factors through RC(R). We still denote by ST the induced

functor from RC(R) to RC(S).

4.2 From RC(S) to RC(R): the functor QDT

The functor QDT is indeed defined in a way dual to the construction of ST .

4.2.1 The functor RDT :RCtr(S)→RC(R)

Dually to 4.1.1, for any X = {Xi} ∈ RCtr(S), we define RDT (X) ∈RC(R) as follows:

(r1) the underlying module is RDT (X)i = HomS(DT, Xi)⊕Xi+1 ⊗S T and

(r2) the structure map δHi (RDT (X)) is given by
(
0 δHRi

0 0
)
, where δHRi is the composition

HomS(DT, Xi)
HomS(DT,η

T
Xi

)
−→ HomS(DT,HomR(T, Xi ⊗S T ))

'HomR(DT ⊗S T, Xi ⊗S T )'HomR(DR, Xi ⊗S T ).

Equivalently, the structure map δ⊗i (RDT (X)) is given by
(
0 δ⊗Ri

0 0
)
, where δ⊗Ri is the

composition

HomS(DT, Xi)⊗R DR'HomS(DT, Xi)⊗R DT ⊗S T
εDTXi−→Xi ⊗S T.

It is easy to see that RDT is a functor.

Remark.

(1) If X ∈RCtr(addmodSDT ), that is, X = {Xi} with each Xi ∈ addmodSDT , then

HomS(DT, Xi) ∈ addmodRR and δRi defined above is an isomorphism for each i. It

follows that RDT (X) is a projective object in RC(R) in this case.

(2) As a special case, if T = S, then we obtain the functor RDS :RCtr(S)→RC(S) which

sends objects in RCtr(addmodSDS) to a projective object in RC(S).

4.2.2 The functor Ĥom(DT,−) :RC(S)→RC(R)

Let Y = {Yi, δHi (Y )} ∈ RC(S). We define Ĥom(DT, Y ) ∈RC(R) by setting

(h1) the underlying module is Ĥom(DT, Y )i = HomS(DT, Yi) and

(h2) the structure map δHi (Ĥom(DT, Y )) is given by the composition

HomS(DT, Yi)
HomS(DT,δ

H
i (Y ))

−→ HomS(DT,HomS(DS, Yi−1))

'HomR(DR,HomS(DT, Yi−1)).

Then from the functor property of HomS(DT,−), one can see that Ĥom(DT,−) is a

functor from RC(S) to RC(R).

https://doi.org/10.1017/nmj.2019.35 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.35


REPETITIVE EQUIVALENCES AND TILTING THEORY 117

4.2.3 The homomorphism rXY

Dually to the homomorphism lXY , for any X ∈RCtr(S) and Y ∈RC(S), we have a

canonical homomorphism

rXY : HomRCtr(S)(X, Y )→HomRC(R)(RDT (X), Ĥom(DT, Y )),

which is functorial in both variables, defined by

rXY : u= {ui} 7−→ f = {fi} with fi =

(
HomS(DT, ui)

−ζri

)
,

where ζri :Xi+1 ⊗S T →HomS(DT, Yi) equals to

(ui+1 ⊗S T ) · (δHi+1(Y )⊗S T ) · εTHomS(DT,Yi)
,

that is, the composition

Xi+1 ⊗S T
ui+1⊗ST−→ Yi+1 ⊗S T

δHi+1(Y )⊗ST−→ HomS(DS, Yi)⊗S T

'HomS(T ⊗R DT, Yi)⊗S T

'HomR(T,HomS(DT, Yi))⊗S T
εT
HomS(DT,Yi)−→ HomS(DT, Yi).

Remark. Using the fact that SDSS ' ST ⊗R DTS and the adjoint isomorphism

ΓDT : HomS(Xi+1 ⊗S DS, Yi)'HomS(Xi+1 ⊗S T,HomS(DT, Yi)),

one can easily check that ζri is the image of the natural homomorphism (ui+1 ⊗S DS) ·
δ⊗i+1(Y ) under ΓDT , that is, ζri = ΓDT ((ui+1 ⊗S DS) · δ⊗i+1(Y )).

In the following, we simply write r instead of rXY .

4.2.4 An epimorphism vY :GY → Y in RCtr(S) with GY ∈RCtr(G), for Y ∈RC(S)

Since (G,K) is a complete hereditary cotorsion pair in modS, it follows that, for any

Y = {Yi} ∈ RC(S), there is an exact sequence 0→KY
k
Y−→GY

v
Y−→ Y → 0 in RCtr(S) with

KY ∈RCtr(K) and GY ∈RCtr(G).

Moreover, for any h ∈HomRC(S)(X, Y ), there is an induced commutative diagram as

follows since Ext1S(G,K) = 0:

0 // KX

k
X //

hK
��

GX
v
X //

hG
��

X //

h
��

0

0 // KY

k
Y // GY

v
Y // Y // 0.
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4.2.5 The kernel Ker(r(vY ))

Applying the functor Ĥom(DT,−) to the bottom exact sequence in the above diagram,

we obtain an induced exact sequence

0→ Ĥom(DT, KY )→ Ĥom(DT, GY )→ Ĥom(DT, Y )→ 0

since (KY )i ∈ K ⊆KerExt1S(DT,−) for each i. Thus, after applying the homomorphism r in

4.2.3 to the homomorphism vY in 4.2.4, we obtain the following exact sequence in RC(R):

0→Ker(r(vY ))
λrY−→ RDT (GY )

r(v
Y
)

−→ Ĥom(DT, Y )→ 0.

Moreover, for any h ∈HomRC(S)(X, Y ), by applying the homomorphism r to the right

part of the commutative diagram in 4.2.4, we obtain the following commutative diagram in

RC(R), for some hKer:

0 // Ker(r(vX ))
λrX //

hKer

��

RDT (GX)
r(v

X
)
//

RDT (hG)

��

Ĥom(DT, X) //

Ĥom(DT,h)
��

0

0 // Ker(r(vY ))
λrY // RDT (GY )

r(v
Y
)
// Ĥom(DT, Y ) // 0.

4.2.6 The assignment QDT :RC(S)→RC(R) given by Y 7−→Ker(r(vY )) is a functor

By 4.2.5, it is sufficient to prove that QDT (h) := hKer = 0 in RC(R) provided h= 0. This

is also divided into two steps.

Step 1 : Consider each piece in the commutative diagram in 4.2.4. If h= {hi}= 0, then hi = 0

for each i. Thus, we have that (hG)i(vY )i = 0 and, consequently, (hG)i = gi(kY )i for some gi :

(GX)i→ (KY )i. Since (KY )i ∈ K ⊆ DTX for all i, there are exact sequences 0→ (K ′Y )i→
DT(KY )i

bi−→ (KY )i→ 0 with DT(KY )i ∈ addmodSDT and (K ′Y )i ∈ K ⊆KerExt1S(G,−). It

follows that there exists ti ∈HomR((GX)i, DT(KY )i) such that gi = tibi. Altogether, we

obtain the following commutative diagram:

(GX)i
ti //

gi

$$
(hG)i

��

DT(KY )i

bi
��

(GY )i (KY )i
(kY )i

oo

It follows that there is a commutative diagram in RCtr(S),

GX
t //

g

##
hG
��

DTKY

b
��

GY KY ,
kY

oo

where DTKY := {DT(KY )i}.
Set β := bkY . Then RDT (hG) = RDT (tβ) = RDT (t)RDT (β).
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Step 2 : Consider the commutative diagram in 4.2.5. Since (kY )i(vY )i = 0 in

4.2.4, we see that RDT (β)r(vY ) = 0 by the definitions. Hence, there is some θ ∈
HomRC(R)(RDT (DTKY ),Ker(r(vY ))) such that RDT (β) = θλrY . Consequently, we have that

RDT (hG) = RDT (t)RDT (β) = RDT (t)θλrY . Now we obtain that hKerλrY = λrXRDT (hG) =

λrXRDT (t)θλrY . Since λrY is monomorphic, we get that hKer = λrXRDT (t)θ, that is, the

following diagram is commutative:

Ker(r(vX))
λrX //

hKer

��

RDT (GX)

RDT (t)

��
Ker(r(vY )) RDT (DTKY)

θ

oo

Note that RDT (DTKY ) is a projective–injective object in RC(R), so hKer = 0 in RC(R).

4.2.7 The functor QDT :RC(S)→RC(R)

We will show that the functor QDT factors through RC(S).

To see this, it is enough to show that QDT (X) is a projective object in RC(R), whenever

X is a projective object in RC(S).

Without loss of generality, we assume that X = {Xi} is an indecomposable projective

object in RC(S). Thus, we have that X has the form

· · ·  0  P
1
 P ⊗S DS  0  · · · ,

where P is indecomposable projective and is on the (k+1)th position, for some k; see [18].

Note that Xk+1 = P ∈ addmodSS ⊆ G and that Xk = P ⊗S DS ∈ addmodSDS ⊆K, so,

following 4.2.4, we can choose GX to be of the form

· · ·  0  P  DTk  0  · · · ,

where (GX)k =DTk ∈ addmodSDT . And we have an epimorphism vX :GX →X in RCtr(S)

which is of the form

GX : · · ·  0  0  P  DTk  0  · · ·
↓ vX ↓ 1 ↓ vk
X : · · ·  0  0  P  P ⊗S DS  0  · · ·

Then, from the structure of r(vX ) in 4.2.3, we can see that r(vX ) is of the form

RDT (GX) :

r(v
X
)��

0 HomS(DT, P ) 

1��

HomS(DT, DTk)⊕ P ⊗S T
(δRk

,0)T

 

(HomS(DT,vk),ζrk )
T

��

DTk ⊗S T  

��

0

Ĥom(DT, X) : 0 HomS(DT, P ) HomS(DT, P ⊗S DS) 0 0,

where ζrk is defined as in 4.2.3 and δRk is defined as in 4.2.1. One checks that both

homomorphisms ζrk and δRk are, in fact, isomorphisms. So we obtain that QDT (X) =

Ker(r(vX )) is of the form

· · ·  0  0  HomS(DT, DTk)
δ′k DTk ⊗S T  0  · · · ,

https://doi.org/10.1017/nmj.2019.35 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.35


120 J. WEI

where δ′k is an induced isomorphism: HomS(DT, DTk)→HomR(DR, DTk ⊗S T ). Since

HomS(DT, DTk) ∈ addmodR(HomS(DT, DT )) = addmodRR, we see that HomS(DT, DTk)

is projective and that QDT (X) is a projective object in RC(R).

It follows that the functor QDT factors through RC(S). The induced functor from RC(S)

to RC(R) is still denoted by QDT .

4.3 The isomorphism QDTST ' 1RC(R)

4.3.1 Computing the composition QDTST

Take any X = {Xi, δ
⊗
i } ∈ RC(R). From the chosen exact sequence 0→X

u
X−→AX

π
X−→

BX → 0 in RCtr(R) with AX ∈RCtr(A) and BX ∈RCtr(B), as in 4.1.4, we obtain an exact

sequence

0→X ⊗̂DT
l(u

X
)

−→ LT (AX)
s−→ ST (X)→ 0

by the construction of the functor ST in 4.1.5. Note that, for each i, ST (X)i is given by the

pushout diagram

Xi ⊗R DT
θli //

(u
X
)i⊗RDT

��

HomR(T, (AX)i−1)

s1i
��

(AX)i ⊗R DT
s2i // ST (X)i.

Now we take a projective R-module P(AX)i such that P(AX)i

pi−→ (AX)i→ 0 is exact. Then

we have a pullback diagram

0 // Xi

(u
X
)i
//

qi

��

P(AX)i
//

pi

��

(BX)i // 0

0 // Xi

(u
X
)i
// (AX)i // (BX)i // 0.

Since B is closed under kernels of epimorphisms, we see that Xi ∈ B. By applying the

functor −⊗R DT , the diagram above induces the following commutative diagram with exact

rows since B ⊆KerTorR1 (−, DT ):

0 // Xi ⊗R DT
(u
X
)i⊗RDT

//

qi⊗RDT
��

P(AX)i ⊗R DT //

pi⊗RDT
��

(BX)i ⊗R DT // 0

0 // Xi ⊗R DT
(u
X
)i⊗RDT

// (AX)i ⊗R DT // (BX)i ⊗R DT // 0

Now, one can check that the following diagram is commutative with exact rows, for

each i, where the lower row is obtained from the first pushout diagram in this section.

Here, tPi = (−(qi ⊗R DT ) · θli , (uX )i ⊗R DT ), ti = (−θli , (uX )i ⊗R DT ), sPi =
( s1i
(pi⊗RDT )·s2i

)
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and si =
( s1i
s2i

)
.

0 // Xi ⊗R DT
tPi //

qi⊗RDT

��

HomR(T, (AX)i−1)⊕ P(AX)i ⊗R DT
sPi //1 0

0 pi ⊗R DT


��

ST (X)i // 0

0 // ST (X)i
ti // HomR(T, (AX)i−1)⊕ (AX)i ⊗R DT

si // ST (X)i // 0.

Denote LPAX := {HomR(T, (AX)i−1)⊕ P(AX)i ⊗R DT} ∈ RCtr(S). Note that Xi ⊗R
DT ∈ K and HomR(T, (AX)i−1)⊕ P(AX)i ⊗R DT ∈ G, so we have an exact sequence in

RCtr(S) from the first row in the above commutative diagram

0→X ⊗R DT−→LPAX
sP−→ ST (X)→ 0

with X ⊗R DT ∈RCtr(K) and LPAX ∈RC
tr(G), as in 4.2.4. By applying the homomorphism

r in 4.2.3 to the homomorphism sP : LPAX → ST (X), we have an exact sequence in RC(R)

by the construction of the functor QDT in 4.2.5

0→QDTST (X)
λ−→ RDT (LPAX )

r(sP )−→ Ĥom(DT, ST (X))→ 0,

where r(sP ) is defined as in 4.2.3.

4.3.2 The object X ⊕ LR(P+
AX

) in RC(R)

Denote P+
AX

:= {P(AX)i+1
}, then P+

AX
∈RCtr(addmodRR). Applying the functor LR in the

remark in 4.1.1, we obtain that LR(P+
AX

) is a projective object in RC(R). Hence, the object

X ⊕ LR(P+
AX

) is isomorphic to X in RC(R).

We will prove that QDTST (X)'X ⊕ LR(P+
AX

) naturally. And then, QDTST ' 1RC(R).

The general strategy is as follows. First, we construct a natural homomorphism ξ :X ⊕
LR(P+

AX
)→ RDT (LPAX ). Second, we show that ξ · r(sP ) = 0, that is, the composition of ξ

and the homomorphism r(sP ) : RDT (LPAX )→ Ĥom(DT, ST (X)) in the exact sequence above

is 0. Thus, we obtain a homomorphism φ :X ⊕ LR(P+
AX

)→QDTST (X). Finally, we prove

that φ is indeed a natural isomorphism.

4.3.3 The homomorphism ξ :X ⊕ LR(P+
AX

)→ RDT (LPAX )

Recall from the construction in 4.3.1 that X = {Xi, δ
⊗
i } and,

LR(P+
AX

) = {HomR(R, P(AX)i)⊕ P(AX)i+1
⊗R DR}= {P(AX)i ⊕ P(AX)i+1

⊗R DR},
where the structure map δ⊗i (LR(P+

AX
)) : (LR(P+

AX
))i ⊗DR→ (LR(P+

AX
))i−1 is given by( 0 1P(AX )i

⊗RDR

0 0

)
, and that

RDT (LPAX ) = {HomS(DT, (LPAX )i)⊕ (LPAX )i+1 ⊗S T}

= {HomS(DT,HomR(T, (AX)i−1)⊕ P(AX)i ⊗R DT )

⊕ (HomR(T, (AX)i)⊕ P(AX)i+1
⊗R DT )⊗S T},

where the structure map

δ⊗i (RDT (LPAX )) : (RDT (LPAX ))i ⊗R DR→ (RDT (LPAX ))i−1

is defined in 4.2.1.
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By the definition, we have that δ⊗i (RDT (LPAX )) =

(0 0 γ11i 0

0 0 0 γ22i
0 0 0 0
0 0 0 0

)
, where

γ11i : HomS(DT,HomR(T, (AX)i−1))⊗R DR→HomR(T, (AX)i−1)⊗S T is given by the

composition

γ11i : HomS(DT,HomR(T, (AX)i−1))⊗R DR

'HomS(DT,HomR(T, (AX)i−1))⊗R DT ⊗S T
εDT
HomR(T,(AX )i−1)

⊗ST
−→ HomR(T, (AX)i−1)⊗S T,

and γ22i : HomS(DT, P(AX)i ⊗R DT )⊗R DR→ P(AX)i ⊗R DT ⊗S T is defined similarly as

γ11i by replacing HomR(T, (AX)i−1) with P(AX)i ⊗R DT .

Let ξ = {ξi} :X ⊕ LR(P+
AX

)→ RDT (LPAX ) be a homomorphism. We may assume that

ξi = (ξai , ξ
b
i ), where

ξai :Xi ⊕ P(AX)i ⊕ P(AX)i+1
⊗R DR→HomS(DT, (LPAX )i)

and

ξbi :Xi ⊕ P(AX)i ⊕ P(AX)i+1
⊗R DR→ (LPAX )i+1 ⊗S T.

4.3.3.1 The homomorphism ξai in modR We set ξai =

(ξa11i ξ
a12
i

ξ
a21
i ξ

a22
i

ξ
a31
i ξ

a32
i

)
:

Xi ⊕ P(AX)i ⊕ P(AX)i+1
⊗R DR−→HomS(DT,HomR(T, (AX)i−1)⊕ P(AX)i ⊗R DT ).

Using the isomorphism SDSS ' ST ⊗R DTS and the adjoint isomorphism

ΓDT : HomS(−⊗R DT,−)'HomR(−,HomS(DT,−)),

we define the components of ξai as follows.

• The morphism ξa11i = ΓDT (θli) : Xi→HomS(DT,HomR(T, (AX)i−1)), where θli :

Xi ⊗R DT →HomR(T, (AX)i−1) is defined in 4.1.3.

In other words, the morphism ξa11i is given by the composition:

ηDR
Xi
·HomR(DR, δ⊗i (X) ·HomR(DR, (uX )i−1)) = δHi (X) ·HomR(DR, (uX )i−1)

and some natural isomorphisms

Xi

ηDR
Xi−→HomR(DR, Xi ⊗R DR)

HomR(DR,δ
⊗
i (X))

−→ HomR(DR, Xi−1)

HomR(DR,(uX )i−1)−→ HomR(DR, (AX)i−1)'HomR(DT ⊗S T, (AX)i−1)

'HomS(DT,HomR(T, (AX)i−1)).

• The morphism

ξa22i = ΓDT (1(P(AX )i
⊗RDT ))

= ηDT
P(AX )i

: P(AX)i →HomS(DT, P(AX)i ⊗R DT ).
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• The remaining morphisms ξa12i , ξa21i , ξa31i , ξa32i are all 0.

So we have that ξai =

(
ξ
a11
i 0

0 ξ
a22
i

0 0

)
, where

ξa11i = ΓDT (θli), and

ξa22i = ΓDT (1(P(AX )i
⊗RDT )).

4.3.3.2 The homomorphism ξbi in modR We set ξbi =

(ξb11i ξ
b12
i

ξ
b21
i ξ

b22
i

ξ
b31
i ξ

b32
i

)
:

Xi ⊕ P(AX)i ⊕ P(AX)i+1
⊗R DR→ (HomR(T, (AX)i)⊕ P(AX)i+1

⊗R DT )⊗S T,

where the components are defined naturally as follows.

• The morphism ξb11i = (uX )i · (εT(AX)i
)−1 :Xi→HomR(T, (AX)i)⊗S T (note that εT(AX)i

is

an isomorphism since (AX)i ∈ A), that is, is given by the composition

Xi
(u
X
)i−→ (AX)i

(εT
(AX )i

)−1

−→ HomR(T, (AX)i)⊗S T.

• The morphism ξb21i = pi · (εT(AX)i
)−1 : P(AX)i →HomR(T, (AX)i)⊗S T , that is, is given by

the composition

P(AX)i

pi−→ (AX)i
(εT

(AX )i
)−1

−→ HomR(T, (AX)i)⊗S T.

• The morphism ξb32i : P(AX)i+1
⊗R DR→ P(AX)i+1

⊗R DT ⊗S T is the natural isomor-

phism given by R(DT ⊗S T )R ' RDRR.

• The remaining morphisms ξb12i , ξb22i , ξb31i are all 0.

So we have that ξbi =

(ξb11i 0

ξ
b21
i 0

0 ξ
b32
i

)
, where ξb11i = (uX )i · (εT(AX)i

)−1, ξb21i = pi · (εT(AX)i
)−1,

and ξb32i is the natural isomorphism.

4.3.3.3 ξ is a homomorphism in RC(R) We now show that the above-defined

morphism ξ :X ⊕ LR(P+
AX

)→ RDT (LPAX ) is compatible with structure maps, that is,

ξi ⊗R DR · δ⊗i (RDT (LPAX )) = δ⊗i (X ⊕ LR(P+
AX

)) · ξi−1

holds for each i.

Indeed, by the involved definitions, we have that

ξi ⊗R DR · δ⊗i (RDT (LPAX )) =

ξa11i 0 ξb11i 0

0 ξa22i ξb21i 0

0 0 0 ξb32i

⊗R DR ·


0 0 γ11i 0
0 0 0 γ22i
0 0 0 0
0 0 0 0


=

0 0 ξa11i ⊗R DR · γ11i 0
0 0 0 ξa22i ⊗R DR · γ22i
0 0 0 0
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and that

δ⊗i (X ⊕ LR(P+
AX

)) · ξi−1 =

δ⊗i (X) 0 0
0 0 1
0 0 0

ξa11i−1 0 ξb11i−1 0

0 ξa22i−1 ξb21i−1 0

0 0 0 ξb32i−1



=

δ⊗i (X) · ξa11i−1 0 δ⊗i (X) · ξb11i−1 0

0 0 0 ξb32i−1
0 0 0 0



• δ⊗i (X) · ξa11i−1 = 0. In fact, since ξa11i−1 is the composition of the morphism δHi−1(X) ·
HomR(DR, (uX )i−2) and some natural isomorphisms by the construction, we see that

δ⊗i (X) · ξa11i−1 factors through δ⊗i (X) · δHi−1(X). But the latter is 0 as X is a repe-complex.

Thus, δ⊗i (X) · ξa11i−1 = 0.

• ξa11i ⊗R DR · γ11i = δ⊗i (X) · ξb11i−1. This follows from the involved definitions and the

following commutative diagram:

Xi ⊗R DR
1 //

δHi (X)⊗RDR
��

Xi ⊗R DR

δ⊗i (X)
��

HomR(DR, Xi−1)⊗R DR
εDRXi−1

//

HomR(DR,(uX)i−1)⊗RDR
��

Xi−1

(uX)i−1

��
HomR(DR, (AX)i−1)⊗R DR

εDR
(AX )i−1

//

'
��

(AX)i−1

'
��

HomS(DT,HomR(T, (AX)i−1))⊗R DT ⊗S T
ω // HomR(T, (AX)i−1)⊗S T,

where ω := εDTHomR(T,(AX)i−1)
⊗S T . The last square is commutative since εDT⊗STM =

εDTHomR(T,M) ⊗S T · ε
T
M .

• ξa22i ⊗R DR · γ22i = ξb32i−1. This follows from the involved definitions and the equality

1(P(AX )i
⊗RDT ) = ηDT(P(AX )i

) ⊗R DT · ε
DT
(P(AX )i

⊗RDT ).

Then we can easily conclude that the morphism ξ :X ⊕ LR(P+
AX

)→ RDT (LPAX ) is, in

fact, a homomorphism in RC(R).

4.3.4 The composition ξ · r(sP ) = 0, and so ξ factors through a homomorphism φ :X ⊕
LR(P+

AX
)→QDTST (X)

4.3.4.1 The analysis of the homomorphism s : LT (AX)→ ST (X) in 4.3.1 Recall

from 4.3.1 that s= {si} : LT (AX)→ ST (X) is a homomorphism in RC(S) which is the cok-

ernel of the homomorphism l(uX ). Note that (LT (AX))i = HomR(T, (AX)i−1)⊕ (AX)i ⊗R
DT , so we write that si =

(
s1i s

2
i

)
as we have done in the last commutative diagram in 4.3.1.
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The fact that s is a homomorphism inRC(S) implies that there is the following commutative

diagram, for each i:

[HomR(T, (AX)i−1))⊕ (AX)i)⊗R DT ]⊗S DS

δ⊗i (LT (AX))
��

(
s1i s

2
i

)
⊗SDS
// ST (X)i ⊗S DS

δ⊗i (ST (X))
��

HomR(T, (AX)i−2))⊕ (AX)i−1)⊗R DT

(
s1i−1s

2
i−1

)
// ST (X)i−1.

By the definition of δ⊗i (LT (AX)) (see 4.1.1) and the above commutative diagram, we

obtain that (s2i ⊗S DS) · δ⊗i (ST (X)) = 0 and that (s1i ⊗S DS) · δ⊗i (ST (X))' (εTAXi−1
⊗R

DT ) · s2i−1.

4.3.4.2 The homomorphism r(sP ) : RDT (LPAX )→ Ĥom(DT, ST (X)) Recall from

4.3.1 that

sP = {sPi }=

{(
s1i

(pi ⊗R DT ) · s2i

)}
: LPAX → ST (X).

By 4.2.3, we know that

RDT (LPAX ) = {HomS(DT, (LPAX )i)⊕ (LPAX )i+1 ⊗S T}

and that

r(sP )i =
(
HomS(DT, sPi )−ζri

)
,

where ζri = ΓDT ((sPi+1 ⊗S DS) · δ⊗i+1(ST (X))).

For convenience, we set r(sP )i =
(
r1i r

2
i

)
, where

r1i = HomS(DT, sPi ) : HomS(DT, (LPAX )i)→HomS(DT, ST (X)i)

and

r2i =−ζri : (LPAX )i+1 ⊗S T →HomS(DT, ST (X)i).

4.3.4.3 Checking ξ · r(sP ) = 0 To check ξ · r(sP ) = 0, we need only to check that

ξai r
1
i + ξbi r

2
i = 0 for each i, since ξi = (ξai , ξ

b
i ) and r(sP )i =

(
r1i r

2
i

)
. Note that r1i =

HomS(DT, sPi ) and r2i =−ζri , so it is enough to check that ξai ·HomS(DT, sPi ) = ξbi · ζri .

Since ξai =

(
ξa11 0
0 ξa22
0 0

)
, ξbi =

( ξb11 0

ξb21 0

0 ξb32

)
, ζri = ΓDT ((sPi+1 ⊗S DS) · δ⊗i+1(ST (X))) and sPi =( s1i

(pi⊗RDT )·s2i

)
, we just check the following.

(1) ξa11 ·HomS(DT, s1i ) = ξb11 · ΓDT ((s1i+1 ⊗S DS) · δ⊗i+1(ST (X))).

By 4.3.3.1, we have that

ξa11 ·HomS(DT, s1i ) = ΓDT (θli) ·HomS(DT, s1i ) = ΓDT (θli · s
1
i ),
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where the later equality uses the naturality of ΓDT . On the other hand, by 4.3.3.2 and

4.3.4.1, we obtain that

ξb11 · ΓDT ((s1i+1 ⊗S DS) · δ⊗i+1(ST (X)))

= ((uX )i · (εT(AX)i
)−1) · ΓDT ((εT(AX)i

⊗R DT ) · s2i )

= ΓDT ((((uX )i · (εT(AX)i
)−1)⊗R DT ) · (εT(AX)i

⊗R DT ) · s2i )

= ΓDT (((uX )i ⊗R DT ) · s2i ).

But ((uX )i ⊗R DT ) · s2i = θli · s1i by the pushout diagram on ST (X)i in 4.3.1. Hence,

equality (1) holds.

(2) ξa22 ·HomS(DT, (pi ⊗R DT ) · s2i ) = ξb21 · ΓDT ((s1i+1 ⊗S DS) · δ⊗i+1(ST (X))).

By 4.3.3.1 and the naturality of ΓDT ,

ξa22 ·HomS(DT, (pi ⊗R DT ) · s2i )

= ΓDT (1P(AX )i
⊗RDT ) ·HomS(DT, (pi ⊗R DT ) · s2i )

= ΓDT (1P(AX )i
⊗RDT · ((pi ⊗R DT ) · s2i ))

= ΓDT ((pi ⊗R DT ) · s2i ).

On the other hand, by 4.3.3.2 and 4.3.4.1 and the naturality of ΓDT ,

ξb21 · ΓDT ((s1i+1 ⊗S DS) · δ⊗i+1(ST (X)))

= (pi · (εT(AX)i
)−1) · ΓDT ((εT(AX)i

⊗R DT ) · s2i )

= ΓDT (((pi · (εT(AX)i
)−1)⊗R DT ) · (εT(AX)i

⊗R DT ) · s2i )

= ΓDT ((pi ⊗R DT ) · s2i ).

Hence, equality (2) holds.

(3) 0 = ξb32 · ΓDT (((pi+1 ⊗R DT ) · s2i+1)⊗S DS · δ
⊗
i+1(ST (X))).

In fact, the equality holds by observing that

ΓDT (((pi+1 ⊗R DT ) · s2i+1)⊗S DS · δ⊗i+1(ST (X)))

= ΓDT ((pi+1 ⊗R DT ⊗S DS) · (s2i+1 ⊗S DS) · δ⊗i+1(ST (X)))

= 0

since (s2i+1 ⊗S DS) · δ⊗i+1(ST (X)) = 0 by 4.3.4.1.

Altogether, we prove that ξ · r(sP ) = 0 and, therefore, ξ factors through QDTST (X) =

Ker(r(sP )) by a homomorphism

φ :X ⊕ LR(P+
AX

)→QDTST (X)

in RC(R), that is, ξ = φ · λ.
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4.3.5 The induced homomorphism φ :X ⊕ LR(P+
AX

)→QDTST (X) is an isomorphism

We now prove that the induced homomorphism φ :X ⊕ LR(P+
AX

)→QDTST (X) is an

isomorphism. Clearly, it is equivalent to show that φi : (X ⊕ LR(P+
AX

))i→QDTST (X)i is

an isomorphism, for each i.

We will show that there is the following commutative diagram (∗) with exact rows, for

each i:

0 // Xi

(−qi,(uX )i,0)
//

ηDT

Xi��

Xi ⊕ LR(P+
AX

)i
βi //

φi

��

C1
//

σi

��

0

0 // HomS(DT, Xi ⊗R DT )
ai // QDTST (X)i

λ2i // C2
// 0,

where

C1 := (AX)i ⊕ P(AX)i+1
⊗R DR,

C2 := HomR(T, (AX)i)⊗S T ⊕ P(AX)i+1
⊗R DT ⊗S T ,

Xi ∈ B is obtained in 4.3.1, the morphism ai is given in 4.3.5.2, the morphism βi =(
(u
X
)i 0

pi 0
0 1

)
and the morphism σi is the direct sum of two canonical isomorphisms. Note

that LR(P+
AX

)i = P(AX)i ⊕ P(AX)i+1
⊗R DR.

Then, since Xi ∈ B implies that ηDT
Xi

is an isomorphism, we obtain that φi is also an

isomorphism from the above commutative diagram.

4.3.5.1 The upper row in the diagram (∗) is exact In fact, the pullback of pi :

P(AX)i → (AX)i and (uX )i :Xi→ (AX)i in 4.3.1 gives an exact sequence

0→Xi
(−qi,(uX)i)−→ Xi ⊕ P(AX)i

(uX )i
pi


−→ (AX)i→ 0

since pi is surjective. The direct sum of the above exact sequence and the trivial exact

sequence

0→ 0→ P(AX)i+1
⊗R DR

1−→ P(AX)i+1
⊗R DR→ 0

gives us the exact sequence in the upper row in the diagram (∗).

4.3.5.2 The bottom row in the diagram (∗) is exact Note that we have the

following exact sequence in 4.3.1

0→QDTST (X)
λ−→ RDT (LPAX )

r(sP )−→ Ĥom(DT, ST (X))→ 0

and that

RDT (LPAX )i = HomS(DT, (LPAX )i)⊕ (LPAX )i+1 ⊗S T

= HomS(DT,HomR(T, (AX)i−1)⊕ P(AX)i ⊗R DT )

⊕ (HomR(T, (AX)i)⊕ P(AX)i+1
⊗R DT )⊗S T.
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So we have the following pullback diagram:

0 // Kerλ2i
e //

q

��

QDTST (X)i
λ2i //

λ1i
��

C3
//

−r2i
��

0

0 // HomS(DT, Xi ⊗R DT )
bi // C4

r1i // HomS(DT, ST (X)i) // 0,

where

C3 := (HomR(T, (AX)i)⊕ P(AX)i+1
⊗R DT )⊗S T ,

C4 := HomS(DT,HomR(T, (AX)i−1)⊕ P(AX)i ⊗R DT ),

r1i , r
2
i and λ1i , λ

2
i are the components of the homomorphisms r(sP )i and λi, respectively,

and bi = HomS(DT, ti) with

ti = (−(qi ⊗R DT ) · θli , (uX)i ⊗R DT ) :

Xi ⊗R DT →HomR(T, (AX)i−1)⊕ P(AX)i ⊗R DT

is given in 4.3.1.

As the morphism λi : QDTST (X)i→ (RDT (LPAX ))i is injective, we obtain that the

morphism q in the left column is an isomorphism. Note that r1i := HomS(DT, sPi ) is

surjective since Xi ⊗R DT ∈ K ⊆KerExt>0
S (DT,−) by the construction (see 4.3.1), so we

can deduce that the upper row in the above diagram is exact. Thus, we get the bottom

exact sequence in the diagram (∗) by setting ai = q−1e.

4.3.5.3 The diagram (∗) is commutative At first, it is easy to see that the right

part of the diagram (∗) is commutative from the constructions of the morphisms ξ in 4.3.3

and φ in 4.3.4, which show that βiσi = ξbi = φiλ
2
i .

As for the left part of the diagram (∗), we first show the following equality of

compositions:

(†1) ηDT
Xi
· ai · λ1i = (−qi, (uX)i, 0) · φi · λ1i .

Indeed, we have that

ηDT
Xi
· ai · λ1i

= ηDT
Xi
· bi (by the commutative diagram in 4.3.5.2)

= ηDT
Xi
·HomS(DT, ti) (since bi = HomS(DT, ti))

= ΓDT (1Xi⊗RDT ) ·HomS(DT, ti)

= ΓDT (1Xi⊗RDT · ti) (by the naturality of ΓDT )

= ΓDT (ti)

= ΓDT ((−(qi ⊗R DT ) · θli , (uX)i ⊗R DT ))
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and we also have that

(−qi, (uX)i, 0) · φi · λ1i
= (−qi, (uX)i, 0) · ξai (since ξi = (ξai , ξ

b
i ) = φi · λi)

= (−qi, (uX)i, 0) ·
(
ξa11 00 ξa220 0

)
(by 4.3.3.1)

= (−qi · ξa11, (uX)i · ξa22)

Since ξa11 = ΓDT (θli) and ξa22 = ΓDT (1(P(AX )i
⊗RDT )) by the construction in 4.3.3.1, we

obtain that

qi · ξa11 = qi · ΓDT (θli) = ΓDT (qi ⊗R DT · θli)
and that

(uX)i · ξa22 = (uX)i · ΓDT (1(P(AX )i
⊗RDT ))

= ΓDT ((uX)i ⊗R DT · 1(P(AX )i
⊗RDT )) = ΓDT ((uX)i ⊗R DT ).

Hence, we see that the equality (†1) holds.

Since ai · λ2i = 0 and

(−qi, (uX)i, 0) · φi · λ2i = (−qi, (uX)i, 0) · ξbi = 0,

we also get that

(†2) ηDT
Xi
· ai · λ2i = (−qi, (uX)i, 0) · φi · λ2i .

Now, from the property of the pullback in 4.3.5.2, we know that the two equalities (†1)
and (†2) together imply that

ηDT
Xi
· ai = (−qi, (uX)i, 0) · φi.

Thus, the left part of the diagram is also commutative.

4.3.6 The isomorphism φ :X ⊕ LR(P+
AX

)→QDTST (X) is natural on X

For any X, Y ∈RC(R) and h ∈HomRC(R)(X, Y ), there is an induced morphism

hA ∈HomRCtr(R)(AX , AY ), following from the construction in 4.1.4. Moreover, following

from the construction in 4.3.1 and the definition of P+
AX

in 4.3.2, we see that the morphism

hA induces a morphism p+hA ∈HomRCtr(R)(P
+
AX
, P+

AY
). Then, one can prove that(

h 0
0 LR(p+hA)

)
:X ⊕ LR(P+

AX
)→ Y ⊕ LR(P+

AY
)

is a morphism in RC(R).

It is not hard to show that the following diagram is commutative:

Y ⊕ LR(P+
AX

)
φ
X //

(
h 00 LR(p+hA)

)
��

QDTST (X)

QDTST (h)

��
Y ⊕ LR(P+

AY
)

φ
Y // QDTST (Y ).

Thus, the isomorphism φ is natural on X. This means that QDTST ' 1RC(R) naturally.
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4.4 The isomorphism STQDT ' 1RC(S)
Dually to the proof of 4.3, one can show that STQDT ' 1RC(S) naturally.

Namely, for an object Y ∈RC(S), one uses that (G,K) is a complete hereditary cotorsion

pair in modS to obtain exact sequences 0→ (KY )i→ (GY )i→ Yi→ 0, for each i. Then

taking an injective S-module I(GY )i and a monomorphism (GY )i→ I(GY )i , one can show

that there is a natural isomorphism STQDT (Y )→ Y ⊕ RDS(I−GY ), where I−GY = {I(GY )i−1
}

and RDS(I−GY ) is a projective object in RC(S) by Remark (2) in 4.2.1. And then one gets

that STQDT ' 1RC(S) naturally.

4.5 The last proof of Theorem 1

Recall that the natural functor [1] is an automorphism of repetitive categories, where

(X[1])i =Xi−1 for an object in a repetitive category.

Define FT := [−1]ST :RC(R)→RC(S) and GT := QDT [1] :RC(S)→RC(R). Then we

have that FTGT ' 1RC(S) naturally and that GTFT ' 1RC(R) naturally. So FT and GT

give a repetitive equivalence between R and S.

It is easy to check that FT |A 'HomR(T,−) and that GT |G '−⊗S T from the definitions

of the two functors. Now the proof of the theorem is complete.

4.6 The proof of Proposition 2

Assume that the equivalence is given by the functor F :RC(R)→RC(S). By assump-

tions, F restricts to an equivalence A→G. Note that G is resolving and S ∈ G. Let

T = F−1(S). Then T ∈ A. By the triangle equivalence, we have that, for any A ∈ A,

ExtiR(T, A)'HomRC(R)(T, Σ
iA)'HomRC(S)(S, Σ

iF (A))' ExtiS(S, F (A)),

where Σ is the translation functor in stable repetitive categories. In particular, we obtain

that HomR(T, A)'HomS(S, F (A))' F (A) and that ExtiR(T, A) = 0 for all i > 0. It follows

that S ' End(TR)op and that ExtiR(T, T ) = 0 for all i > 0. Note that A is coresolving and

DR ∈ A, so we also have that F (DR)'HomR(T, DR)'DT . Thus, we get that

ExtiS(ST , ST )' ExtiS(DT, DT )'HomRC(S)(DT, Σ
iDT )

'HomRC(S)(F (DR), ΣiF (DR))'HomRC(R)(DR, Σ
iDR)' ExtiR(DR, DR).

It follows that End(ST )op 'R and that ExtiS(ST , ST ) = 0 for all i > 0. Thus, T is a

Wakamatsu-tilting module.

By assumption, F |A 'HomR(T,−) gives the equivalence A→G. It follows that F−1|G '
−⊗S T by the uniqueness of the adjoint. Note that HomR(T,−) and −⊗S T are exact

functors on A and G, respectively, since F is a triangle functor. As A is coresolving,

for any A ∈ A, the exact sequence 0→A→ I →A′→ 0 with I ∈ injR is a sequence in

A. Applying the exact functor HomR(T,−), we obtain that Ext1R(T, A) = 0. It follows

that T ∈ A
⋂

KerExt1R(−,A), i.e, T is Ext-projective in A. Dually, we have also that

TorS1 (X, T ) = 0 for any X ∈ G. In particular, for any A ∈ A, suppose that A=X ⊗S T
for some X ∈ G and take an exact sequence 0→X ′→ P →X → 0 with P ∈ projS, then

the sequence is in G since G is resolving, and, hence, there is an induced exact sequence

0→X ′ ⊗S T → P ⊗S T →X ⊗S T → 0 since −⊗S T is exact in G. The last sequence gives

an exact sequence 0→A′′→ TA→A→ 0 with TA = P ⊗S T ∈ addmodRT and A′′ =X ′ ⊗S
T ∈ A. It follows that T is an Ext-projective generator in A. Now applying Corollary 3.2.6,

we conclude that T is a good Wakamatsu-tilting module.

https://doi.org/10.1017/nmj.2019.35 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.35


REPETITIVE EQUIVALENCES AND TILTING THEORY 131

§5. Examples

5.1 Tilting modules and cotilting modules

Let R be an Artin algebra. Recall that an R-module T ∈modR is tilting provided the

following three conditions are satisfied:

(1) the projective dimension of T is finite;

(2) ExtiR(T, T ) = 0 for all i > 0;

(3) there is an exact sequence 0→R→ T0→ · · · → Tn→ 0 for some integer n, where each

Ti ∈ addmodRT .

Dually, an R-module T ∈modR is cotilting provided the following three conditions are

satisfied:

(1) the injective dimension of T is finite;

(2) ExtiR(T, T ) = 0 for all i > 0;

(3) there is an exact sequence 0→ Tn→ · · · → T0→DR→ 0 for some integer n, where

each Ti ∈ addmodRT .

An R-module T is a tilting module if and only if DT is a cotilting left R-module if

and only if DT is a cotilting S-module, where S = End(TR)op. Note also that both tilting

modules and cotilting modules are Wakamatsu-tilting modules.

We need the following well-known results on tilting modules and cotilting modules.

Proposition.

(1) The cotorsion pair (KerExt1R(−, TX ), TX ) is complete provided that T is a tilting

module.

(2) The cotorsion pair (XT ,KerExt1R(XT ,−)) is complete provided that T is a cotilting

module.

Proof. (2) follows from [3, Section 5] and (1) is just the dual of (2).

5.1.1 Tilting modules are good Wakamatsu-tilting

Assume TR is a tilting module of finite projective dimension. Let S = End(TR)op. Then

STR is a good Wakamatsu-tilting module. Hence, there is an equivalence between stable

repetitive categories RC(R) and RC(S).

Indeed, if STR is a tilting module of finite projective dimension, then T is Wakamatsu-

tilting and RDTS is a cotilting module of finite injective dimension. By Proposition 3.1, we

obtain that the bimodules STR and RDTS represent a cotorsion pair counter equivalence

between the complete hereditary cotorsion pair (KerExt1R(−, TX ), TX ) in modR and the

complete hereditary cotorsion pair (XDT ,KerExt1S(XDT ,−)) in modS. It follows from the

definition that STR is a good Wakamatsu-tilting bimodule.

5.1.2 Cotilting modules are good Wakamatsu-tilting

Assume now TR is a cotilting module of finite injective dimension with S = End(TR)op.

Then STR is also a good Wakamatsu-tilting module. Hence, there is an equivalence between

stable repetitive categories RC(R) and RC(S).
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Indeed, dually to 5.1.1, if STR is a cotilting module of finite injective dimension, then

RDTS is a tilting module of finite projective dimension. By Proposition 3.1 again, we obtain

that the bimodules STR and RDTS represent a cotorsion pair counter equivalence between

the complete hereditary cotorsion pair (XT ,KerExt1R(XT ,−)) in modR and the complete

hereditary cotorsion pair (KerExt1S(−, DTX ), DTX ) in modS. It follows from the definition

that STR is also a good Wakamatsu-tilting bimodule.

5.2 Wakamatsu-tilting modules of finite type

5.2.1 We say that a Wakamatsu-tilting R-module T is of finite type provided that either

the subcategory KerExt1R(−, TX ) or KerExt1R(XT ,−) is of finite representation type. In

particular, if R is an algebra of finite representation type, then each subcategory of modR

is of finite representation type, and, hence, every Wakamatsu-tilting module in modR is of

finite type.

We note that, if T is a Wakamatsu-tilting R-module of finite type with S = End(TR)op,

then DT is a Wakamatsu-tilting S-module of finite type. This follows from the equivalences

in Proposition 3.1.

Proposition. A Wakamatsu-tilting module of finite type is always a good Wakamatsu-

tilting module. In particular, every Wakamatsu-tilting module over an algebra of finite

representation type is good.

Proof. Let T be a Wakamatsu-tilting R-module of finite type with S = End(TR)op.

Assume first that the subcategory KerExt1R(XT ,−) is of finite representation type. Then

the hereditary cotorsion pair (XT ,KerExt1R(XT ,−)) in modR is complete. Moreover, by

the equivalence in Proposition 3.1(3), the subcategory KerExt1S(−, DTX ) is also of finite

representation type. Thus, the hereditary cotorsion pair (KerExt1S(−, DTX ), DTX ) in modS

is also complete. It follows that the bimodules STR and RDTS represent a cotorsion pair

counter equivalence between the complete hereditary cotorsion pair (XT ,KerExt1R(XT ,−))

in modR and the complete hereditary cotorsion pair (KerExt1S(−, DTX ), DTX ) in modS.

Similarly, in case that KerExt1R(−, TX ) is of finite representation type, we have that

the bimodules STR and RDTS represent a cotorsion pair counter equivalence between

the complete hereditary cotorsion pair (KerExt1R(−, TX ), TX ) in modR and the complete

hereditary cotorsion pair (XDT ,KerExt1S(XDT ,−)) in modS. Altogether, we see that T is

a good Wakamatsu-tilting module in either case.

5.2.2 Two trivial examples of Wakamatsu-tilting modules of finite type over an algebra

R are the modules R and DR. In the first case, the subcategory KerExt1R(−, TX ) = projR

is of finite representation type, while the subcategory KerExt1R(XT ,−) = injR is of finite

representation type in the second case.

The following is an example of a Wakamatsu-tilting module of finite type over an algebra

of infinite representation type.

Example. Let R be the bound path algebra given by the following quiver over a field

with the relation given by rad2R= 0.

1

α
))
2

β

ii //
γ
// 3 //δ // 4

ε
))
5

ε

ii //
ζ
// 6

η
//

θ

// 7
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The following is the preprojective part of the AR-quiver of the algebra:

2
1

!!

3
2

!!

· · · 1 · · ·

· · · 1

??

· · · 2

!!

==

· · · 13
2

��

??

7
66

!!!!

· · ·

1
2

==

· · · 3

��

· · · 4
5

!!

· · · 6

?? ??

· · · · · ·

4
35

==

!!

· · · 46
5

??

��
· · · 4

!!

· · · 5

??

��

· · · 46
35

==

!!

· · · 4 · · ·

5
4

??

6
5

==

· · · 4
3

??

The algebra is of infinite representation type. Over this algebra, we have a Wakamatsu-

tilting module of finite type (and, hence, a good Wakamatsu-tilting module)

T =
2
1
⊕ 1 3

2
⊕ 3⊕ 4

3 5
⊕ 5

4
⊕ 6

5
⊕ 7

6 6
.

Indeed, one can check that the subcategory KerExt1R(−, TX ) is of finite representation

type, while the subcategory TX is of infinite representation type.

5.3 Repetitive equivalences are not derived equivalences

The following example shows that repetitive equivalences are not derived equivalences.

Example. [26] Let R be the bound path algebra given by the following quiver over a

field with the relation given by rad2R= 0:

1

α
))
2

β

ii //
γ
// 3 //δ // 4

ε
))
5

ε

ii

The algebra is of finite representative type and the following is the AR-quiver of the

algebra:

2
1

!!

3
2

!!

· · · 1 · · ·

· · · 1

??

· · · 2

!!

==

· · · 13
2

��

??

1
2

==

· · · 3

��

· · · 4
5

��
4
35

==

!!

· · · 4 · · ·

· · · 4

!!

· · · 5

??

· · · 4
3

??

5
4

??
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Over this algebra, we have a Wakamatsu-tilting module of finite type (and, hence, a good

Wakamatsu-tilting module)

T =
2
1
⊕ 1 3

2
⊕ 3⊕ 4

3 5
⊕ 5

4
.

The endomorphism algebra S := End(TR)op is the algebra defined by the following quiver

over the field with the relation given by rad2R= 0 except the path 2→ 3→ 4.

1
))
2ii //// 3 //// 4

))
5ii

The algebra is also of finite representative type and the AR-quiver of the algebra is as

follows:

5
4

  
· · · 4

>>

· · · 5

��

· · · 4
3
2

��

· · · 1 · · ·

4
3
2
5

??

��

· · · 1
4
3

2

��

??

2
1

  

3
2

@@

  

· · · 4
13
2

5

@@

  

· · · 4
3

  
· · · 1

>>

· · · 2

>>

!!

· · · 13
2

>>

!!

· · · 4
35

>>

!!

· · · 4 · · ·

1
2

==

· · · 3

==

· · · 4
5

==

Then, R is repetitive equivalent to S. However, R is not derived equivalent to S. Indeed,

these two algebras are not even singularity equivalent. Recall that the singularity category

of the algebra R, denoted by Dsg(R), is the quotient triangulated category of Db(modR)

with respect to the full subcategory formed by perfect complexes (a complex in Db(modR) is

perfect provided that it is isomorphic to a bounded complex consisting of finitely generated

projective modules). Two algebras R and S are singularity equivalent if there is a triangle

equivalence between Dsg(R) and Dsg(S). It is obvious that derived equivalences induce

singularity equivalences.

In fact, let us consider the simple module S4 = 4 in modR. It is easy to see

that, for any natural number n, the (2n)th syzygy Ω2n(S4) = 2(n) ⊕ 4 and the (2n+

1)th syzygy Ω2n+1(S4) = 1(n) ⊕ 3⊕ 5. Note that, considered in the singularity cate-

gory Dsg(R), the endomorphism algebra HomDsg(R)(S4, S4) = lim
n→∞

HomR(Ωn(S4), Ω
n(S4)),

where HomR(−,−) is defined in the (projectively) stable module category modR; see

[8, Proposition 2.3]. Thus, the endomorphism algebra HomDsg(R)(S4, S4) is infinite dimen-

sional.

Assume that there is an equivalence between Dsg(R) and Dsg(S), and denote the

image of S4 to be S′4. Note that every complex in Dsg(S) is isomorphic to a finitely

generated S-module (see [8, Lemma 2.2]), so we may assume that S′4 is in modS. Since

every simple module in modS satisfies that all its syzygies have composition length 1

(up to projective direct summands), we see that every module in modS satisfies that all
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its syzygies have composition length less than a fixed number (up to projective direct

summands). Altogether, we have that the endomorphism algebra HomDsg(S)(S
′
4, S

′
4) =

lim
n→∞

HomS(Ωn(S′4), Ω
n(S′4)) is finite dimensional. However, the singularity equivalence

assumption makes HomDsg(S)(S
′
4, S

′
4) 'HomDsg(R)(S4, S4) to be infinite dimensional, which

leads to a contradiction. Hence, R and S are not singularity equivalent. In particular, R

and S are not derived equivalent.

From the above example, we also see that repetitive equivalences do not imply singularity

equivalences. We do not know whether or not singularity equivalences imply repetitive

equivalences.
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