Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-02-05T20:04:10.814Z Has data issue: false hasContentIssue false

PRESENTING INFINITESIMAL q-SCHUR ALGEBRAS

Published online by Cambridge University Press:  13 January 2025

QIANG FU*
Affiliation:
School of Mathematical Sciences, Key Laboratory of Intelligent Computing and Applications (Ministry of Education) Tongji University Shanghai, 200092 China
CHENGQUAN SUN
Affiliation:
School of Mathematical Sciences Tongji University Shanghai, 200092 China suncq131@163.com
Rights & Permissions [Opens in a new window]

Abstract

Let be a commutative ring containing a primitive $l'$th root $\varepsilon $ of $1$. The infinitesimal q-Schur algebras over form an ascending chain of subalgebras of the q-Schur algebra , which are useful in studying representations of the Frobenius kernel of the associated quantum linear group. Let be the quantized enveloping algebra of $\mathfrak {gl}_n$ over . There is a natural surjective algebra homomorphism $\zeta _{d}$ from to . The map $\zeta _{d}$ restricts to a surjective algebra homomorphism $\zeta _{d,r}$ from to , where is a certain Hopf subalgebra of , which is closely related to Frobenius–Lusztig kernels of . We give the extra defining relations needed to define the infinitesimal q-Schur algebra as a quotient of . The map $\zeta _{d,r}$ induces a surjective algebra homomorphism , where is the modified quantum algebra associated with . We also give a generating set for the kernel of $\dot {\zeta }_{d,r}$. These results can be used to give a classification of irreducible -modules over a field of characteristic p.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

1 Introduction

Let ${{\mathbf {U}}(\mathfrak {gl}_n)}$ be the quantized enveloping algebra of $\mathfrak {gl}_n$ over $\mathbb Q(v)$ (v an indeterminate) with Chevalley type generators $E_i$ , $F_i$ , and $K_j^{\pm 1}$ for $1\leqslant i\leqslant n-1$ and $1\leqslant j\leqslant n$ . Beilinson, Lusztig, and MacPherson (BLM) [Reference Beilinson, Lusztig and MacPherson3] constructed a realization for the quantum group ${{\mathbf {U}}(\mathfrak {gl}_n)}$ via a geometric setting of q-Schur algebras. A presentation of the q-Schur algebra ${\boldsymbol {\mathcal S}}(n,d)$ was given by Doty–Giaquinto [Reference Doty and Giaquinto8]. Du–Parshall [Reference Du and Parshall15] provided an approach to the $\mathfrak {sl}_n$ type presentation of the q-Schur algebra ${\boldsymbol {\mathcal S}}(n,d)$ using the Beilinson–Lusztig–MacPherson’s construction of ${{\mathbf {U}}(\mathfrak {gl}_n)}$ . The problem of describing the defining relations of a generalized q-Schur algebra as a quotient of a quantized enveloping algebra was investigated by Doty [Reference Doty7], Doty–Giaquinto–Sullivan [Reference Doty, Giaquinto and Sullivan9], [Reference Doty, Giaquinto and Sullivan10].

Infinitesimal Schur algebras are certain important subalgebras of Schur algebras (cf. [Reference Doty, Nakano and Peters11]). The polynomial representations of the group scheme $G_r T$ of degree d are equivalent to the representation theory of the infinitesimal Schur algebras . Here, $G_r$ is the r-th Frobenius kernel of the general linear group G over , and T is the subscheme of G arising from diagonal elements. A theory of the infinitesimal q-Schur algebra was studied by Cox [Reference Cox4], [Reference Cox5].

Let ${\mathcal Z}=\mathbb Z[v,v^{-1}]$ and be a commutative ring of characteristic p. Let be a primitive $l'$ th root of $1$ . We will regard as a ${\mathcal Z}$ -module by specializing v to $\varepsilon $ . Let , where ${U_{\mathcal Z}(\mathfrak {gl}_n)}$ is the ${\mathcal Z}$ -subalgebra of ${{\mathbf {U}}(\mathfrak {gl}_n)}$ generated by the elements $E_i^{(m)}$ , $F_i^{(m)}$ , $K_j^{\pm 1}$ , and $\big [ {K_j;0 \atop t} \big ]$ for $1\leqslant i\leqslant n-1$ , $1\leqslant j\leqslant n$ and $m,t\in \mathbb N$ . For $r\geqslant 1$ , let be the -subalgebra of generated by the elements $E_{i}^{(m)}$ , $F_{i}^{(m)}$ , $K_{j}^{\pm 1}$ , and $\big [{K_j;0 \atop t} \big ]$ for $1 \leqslant i \leqslant n-1$ , $1 \leqslant j \leqslant n$ , $t \in \mathbb {N}$ and $0 \leqslant m,t<l p^{r-1}$ , where $l=l'$ if $l'$ is odd, and $l=l'/2$ otherwise. Furthermore, let , where is the zero part of . Then, we have

and . In the case where $l'=l$ is an odd number, let

The algebra is the Lusztig’s small quantum group, and is called Frobenius–Lusztig kernels of (cf. [Reference Drupieski12], [Reference Lusztig22]). The representation theory of and was studied in [Reference Drupieski12].

Jimbo [Reference Jimbo20] proved that there is a natural surjective algebra homomorphism $\zeta _d$ from ${{\mathbf {U}}(\mathfrak {gl}_n)}$ to the q-Schur algebra ${\boldsymbol {\mathcal S}}(n,d)$ . The map $\zeta _d:{{\mathbf {U}}(\mathfrak {gl}_n)}\rightarrow {\boldsymbol {\mathcal S}}(n,d)$ induces a surjective algebra homomorphism

where is the infinitesimal q-Schur algebra over (cf. [Reference Fu18, Prop. 6.1]). Note that is a quotient algebra of in the case where $l'=l$ is odd. We prove in Theorem 4.10 that $\ker \zeta _{d,r}$ is generated by the elements $1-\sum _{\mu \in \Lambda (n,d)} K_{\mu }$ , $K_{i} K_{\lambda }-\varepsilon ^{\lambda _{i}} K_{\lambda }$ , $\big [{K_i;0 \atop t}\big ] K_{\lambda }-\big [{{\lambda }_i \atop t}\big ]_{\varepsilon } K_{\lambda }$ for $1 \leqslant i \leqslant n$ , $t \in \mathbb {N}$ and $\lambda \in \Lambda (n,d)$ , where $\Lambda (n,d)$ is the set of all compositions of d into n parts.

Let $\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$ be the modified quantum group with generators $E_i1_{\lambda }$ , $1_{\lambda } F_i$ , and $1_{\lambda }$ for $1\leqslant i\leqslant n-1$ and ${\lambda }\in \mathbb Z^{n}$ . The map $\zeta _d:{{\mathbf {U}}(\mathfrak {gl}_n)}\rightarrow {\boldsymbol {\mathcal S}}(n,d)$ induces a surjective algebra homomorphism

$$ \begin{align*}\dot{\zeta}_d:\dot{{{\mathbf{U}}}}(\mathfrak{gl}_n)\rightarrow{\boldsymbol{\mathcal S}}(n,d).\end{align*} $$

Let , where $\dot {{U}}_{\mathcal Z}(\mathfrak {gl}_n)$ is the ${\mathcal Z}$ -subalgebra of $\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$ generated by the elements $E_i^{(m)}1_{\lambda }$ , $1_{\lambda } F_i^{(m)}$ for $1\leqslant i\leqslant n-1$ , $m\in \mathbb N$ and ${\lambda }\in \mathbb Z^{n}$ . Let be the -subalgebra of generated by the elements $E_{i}^{(m)}1_{\lambda }$ and $1_{\lambda } F_{i}^{(m)}$ for $1 \leqslant i \leqslant n-1$ , $\lambda \in \mathbb Z^{n}$ and $0 \leqslant m<l p^{r-1}$ . The map $\dot {\zeta }_d:\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)\rightarrow {\boldsymbol {\mathcal S}}(n,d)$ induces a surjective algebra homomorphism

We prove in Theorem 5.5 that $\ker \dot {\zeta }_{d,r}$ is generated by the elements $1_{\lambda }$ for ${\lambda }\not \in \Lambda (n,d)$ .

The organization of the paper is as follows. We recall the BLM construction of the quantum group ${{\mathbf {U}}(\mathfrak {gl}_n)}$ in Section 2. In Section 3, we introduce the infinitesimal q-Schur algebra . A generating set for the kernel of the epimorphism is obtained in Section 4. In Section 5, we investigate the kernel of the epimorphism . In Section 6, we discuss the classical case. In Section 7, we investigate Borel subalgebras of the infinitesimal q-Schur algebra . As an application, we give a classification of irreducible -modules over a field of characteristic p in Section 8.

Throughout this paper, let ${\mathcal Z}=\mathbb Z[v,v^{-1}]$ where v is an indeterminate. For $i\in \mathbb Z$ let $[i]=\frac {v^i-v^{-i}}{v-v^{-1}}$ . For integers $N,t$ with $t\geqslant 0$ , let

$$ \begin{align*} \left[{N\atop t}\right]=\frac{[N][N-1]\cdots[N-t+1]}{[t]^!}\in{\mathcal Z,} \end{align*} $$

where $[t]^{!}=[1][2]\cdots [t]$ .

Let be a commutative ring containing a primitive $l'$ th root $\varepsilon $ of $1$ with $l'\geqslant 1$ . Let $l\geqslant 1$ be defined by

$$ \begin{align*}l= \begin{cases} l'&\text{if } l' \text{ is odd},\\ l'/2&\text{if } l' \text{ is even}. \end{cases}\end{align*} $$

Let p be the characteristic of . The commutative ring will be viewed as a ${\mathcal Z}$ -module by specializing v to $\varepsilon $ . For $c\in \mathbb Z$ and $t\in \mathbb N$ , we will denote the image of $\big [{c\atop t}\big ]\in {\mathcal Z}$ in by $\big [{c\atop t}\big ]_{\varepsilon }$ . For $\mu \in \mathbb Z^{n}$ and ${\lambda }\in \mathbb N^{n}$ let $\big [{\mu \atop {\lambda }}\big ]_{\varepsilon }=\big [{\mu _1\atop {\lambda }_1}\big ]_{\varepsilon }\cdots \big [{\mu _n\atop {\lambda }_n}\big ]_{\varepsilon }.$

2 The BLM construction of $ {{\mathbf {U}}(\mathfrak {gl}_n)} $

Following [Reference Jimbo20], we define the quantized enveloping algebra ${{\mathbf {U}}(\mathfrak {gl}_n)}$ of $\mathfrak {gl}_n$ to be the $\mathbb Q(v)$ algebra with generators

$$ \begin{align*}E_i,\ F_i\quad(1\leqslant i\leqslant n-1),\ K_j,\ K_j^{-1}\quad(1\leqslant j\leqslant n),\end{align*} $$

and relations

$\mathrm{(a)}\ K_{i}K_{j}=K_{j}K_{i},\ K_{i}K_{i}^{-1}=1;$

$\mathrm{(b)}\ K_{i}E_j=v^{\delta _{i,j}-\delta _{i,j+1}} E_jK_{i};$

$\mathrm{(c)}\ K_{i}F_j=v^{\delta _{i,j+1}-\delta _{i,j}} F_jK_{i};$

$\mathrm{(d)}\ E_iE_j=E_jE_i,\ F_iF_j=F_jF_i\ when\ |i-j|>1;$

$\mathrm{(e)}\ E_iF_j-F_jE_i=\delta _{i,j}\frac {\widetilde K_{i} -\widetilde K_{i}^{-1}}{v-v^{-1}},\ where \ \widetilde K_i =K_{i}K_{i+1}^{-1};$

$\mathrm{(f)}\ E_i^2E_j-(v+v^{-1})E_iE_jE_i+E_jE_i^2=0\ when\ |i-j|=1;$

$\mathrm{(g)}\ F_i^2F_j-(v+v^{-1})F_iF_jF_i+F_jF_i^2=0\ when\ |i-j|=1.$

Following [Reference Lusztig22], let ${U_{\mathcal Z}(\mathfrak {gl}_n)}$ be the Lusztig integral form of ${{\mathbf {U}}(\mathfrak {gl}_n)}$ generated by $E_{i}^{(m)}, F_{i}^{(m)}$ , $K_{j}^{\pm 1}$ , and $\big [{K_j;c \atop t}\big ](1 \leqslant i \leqslant n-1,1 \leqslant j \leqslant n, m, t \in \mathbb {N}, c \in \mathbb {Z})$ , where

$$ \begin{align*}E_{i}^{(m)}=\frac{E_{i}^{m}}{[m]^!}, \quad F_{i}^{(m)}=\frac{F_{i}^{m}}{[m]^!} \quad \text{and} \quad \left[{K_{j}; c \atop t}\right]=\prod_{s=1}^{t} \frac{K_{j} v^{c-s+1}-K_{j}^{-1} v^{-c+s-1}}{v^{s}-v^{-s}}, \end{align*} $$

with $[m]^{!}=[1][2] \cdots [m]$ and $[i]=\frac {v^{i}-v^{-i}}{v-v^{-1}}$ . The following result is given by Lusztig [Reference Lusztig21].

Lemma 2.1. The following formulas hold in ${U_{\mathcal Z}(\mathfrak {gl}_n)}:$

  1. (1) $E_i^{(m)}\big [{K_j;c\atop t}\big ]=\big [{K_j;c+m(-\delta _{i,j}+\delta _{i+1,j})\atop t}\big ] E_i^{(m)};$

  2. (2) $F_i^{(m)}\big [{K_j;c\atop t}\big ]=\big [{K_j;c-m(-\delta _{i,j}+\delta _{i+1,j})\atop t}\big ] F_i^{(m)};$

  3. (3) For $k,l\in \mathbb N$ , we have

    $$ \begin{align*}E_i^{(k)}F_i^{(l)}=\sum_{0\leqslant t\leqslant k\atop t\leqslant l}F_i^{(l-t)} \bigg[{\widetilde K_i;2t-k-l\atop t}\bigg]E_i^{(k-t)},\end{align*} $$

    where $\big [ {\widetilde K_i;c \atop t} \big ] = \prod _{s=1}^t \frac {\widetilde K_iv^{c-s+1}-\widetilde K_i^{-1}v^{-c+s-1}}{v^s-v^{-s}}$ .

Let $\Pi (n)=\{\alpha _i\mid 1\leqslant i\leqslant n-1\}$ , where $\alpha _i=\boldsymbol {e}_i-\boldsymbol {e}_{i+1}$ with $\boldsymbol e_i=(0,\ldots ,0,\underset i1,0\cdots ,0)\in \mathbb Z^n.$ We have the following direct sum decomposition:

$$ \begin{align*} {{\mathbf{U}}(\mathfrak{gl}_n)}=\bigoplus\limits_{\nu\in\mathbb Z\Pi(n)}{{\mathbf{U}}(\mathfrak{gl}_n)}_\nu, \end{align*} $$

where ${{\mathbf {U}}(\mathfrak {gl}_n)}_\nu $ is defined by the conditions ${{\mathbf {U}}(\mathfrak {gl}_n)}_{\nu '}{{\mathbf {U}}(\mathfrak {gl}_n)}_{\nu "}\subseteq {{\mathbf {U}}(\mathfrak {gl}_n)}_{\nu '+\nu "}$ , $K_j^{\pm 1}\in {{\mathbf {U}}(\mathfrak {gl}_n)}_0$ , $E_i\in {{\mathbf {U}}(\mathfrak {gl}_n)}_{\alpha _i}$ , $F_i\in {{\mathbf {U}}(\mathfrak {gl}_n)}_{-\alpha _i}$ for all $\nu ',\nu "\in \mathbb Z\Pi (n)$ , $1\leqslant i\leqslant n-1$ and $1\leqslant j\leqslant n$ .

Following [Reference Lusztig23, 23.1], we introduce the modified quantum group $\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$ associated with ${{\mathbf {U}}(\mathfrak {gl}_n)}$ as follows. Let

$$ \begin{align*}\dot{{{\mathbf{U}}}}(\mathfrak{gl}_n)=\bigoplus\limits_{{\lambda},\mu\in\mathbb Z^{n}}{}_{\lambda}{{\mathbf{U}}(\mathfrak{gl}_n)}_\mu,\end{align*} $$

where

$$ \begin{align*}{}_{\lambda}{{\mathbf{U}}(\mathfrak{gl}_n)}_\mu={{\mathbf{U}}(\mathfrak{gl}_n)}/\left(\sum_{{\mathbf{j}}\in\mathbb Z^{n}}(K^{\mathbf{j}}- v^{{\lambda}\cdot{\mathbf{j}}}){{\mathbf{U}}(\mathfrak{gl}_n)}+\sum_{{\mathbf{j}}\in\mathbb Z^{n}}{{\mathbf{U}}(\mathfrak{gl}_n)}(K^{\mathbf{j}} -v^{\mu\cdot{\mathbf{j}}})\right),\end{align*} $$

and ${\lambda }\cdot {\mathbf {j}}=\sum _{1\leqslant i\leqslant n}{\lambda }_ij_i$ . Let $\pi _{{\lambda },\mu }: {{\mathbf {U}}(\mathfrak {gl}_n)}\rightarrow {}_{{\lambda }}{{\mathbf {U}}(\mathfrak {gl}_n)}_{\mu }$ be the canonical projection.

We define the product in $\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$ as follows. For ${\lambda }', \mu ', {\lambda }", \mu " \in \mathbb Z^{n}$ with ${\lambda }'-\mu '$ , ${\lambda }"-\mu " \in \mathbb Z \Pi (n)$ and any $t \in {{\mathbf {U}}(\mathfrak {gl}_n)}_{{\lambda }'-\mu '}$ , $s \in {{\mathbf {U}}(\mathfrak {gl}_n)}_{{\lambda }"-\mu "}$ , define

$$ \begin{align*}\pi_{{\lambda}',\mu'}(t) \pi_{{\lambda}", \mu"}(s)= \begin{cases}\pi_{{\lambda}',\mu"}(t s), & \text { if } \mu'={\lambda}" ,\\ 0 & \text { otherwise. }\end{cases} \end{align*} $$

Then $\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$ becomes an associative $\mathbb Q(v)$ -algebra with the above product. Moreover, the algebra $\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$ is naturally a ${{\mathbf {U}}(\mathfrak {gl}_n)}$ -bimodule defined by $t' \pi _{{\lambda }', {\lambda }"}(s) t"=\pi _{{\lambda }'+\nu ', {\lambda }"-\nu "}(t' s t")$ for $t' \in {{\mathbf {U}}(\mathfrak {gl}_n)}_{\nu '}, s \in {{\mathbf {U}}(\mathfrak {gl}_n)}, t" \in {{\mathbf {U}}(\mathfrak {gl}_n)}_{\nu "}$ , and ${\lambda }', {\lambda }" \in \mathbb Z^{n} .$ Let $\dot {{U}}_{\mathcal Z}(\mathfrak {gl}_n)$ be the ${\mathcal Z}$ -subalgebra of $\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$ generated by the elements $E_{i}^{(m)} 1_{\lambda }$ and $1_{\lambda } F_{i}^{(m)}$ for $1 \leqslant i \leqslant n-1$ and $m \in \mathbb {N}$ , where $1_{\lambda }=\pi _{\lambda , \lambda }(1)$ .

We now follow [Reference Dipper and James6] to recall the definition of q-Schur algebras as follows. The Hecke algebra ${{\mathcal H}_{\mathcal Z}(d)}$ associated with ${\mathfrak S}_d$ is the ${\mathcal Z}$ -algebra generated by $T_i$ ( $1\leqslant i\leqslant d-1$ ), with the following relations:

$$ \begin{align*}(T_i+1)(T_i-q)=0,\;\; T_iT_{i+1}T_i=T_{i+1}T_iT_{i+1},\;\;T_iT_j=T_jT_i\;(|i-j|>1). \end{align*} $$

where $q=v^2$ . Let ${\boldsymbol {\mathcal H}}(d)={{\mathcal H}_{\mathcal Z}(d)}\otimes _{\mathcal Z}\mathbb Q(v)$ . If $w=s_{i_1}s_{i_2}\cdots s_{i_m}$ is reduced let $T_w=T_{i_1}T_{i_2}\cdots T_{i_m}$ . Then the set $\{T_w\mid w\in {\mathfrak S}_d\}$ forms a ${\mathcal Z}$ -basis for ${{\mathcal H}_{\mathcal Z}(d)}$ . Let $\Lambda (n,d)=\{{\lambda }\in \mathbb N^{n}\mid \sigma ({\lambda })=d\}$ , where $\sigma ({\lambda })=\sum _{1\leqslant i\leqslant n}{\lambda }_i$ . For ${\lambda }\in \Lambda (n,d)$ , let $x_{{\lambda }}=\sum _{w\in {\mathfrak S}_{{\lambda }}}T_w$ , where ${\mathfrak S}_{{\lambda }}$ is the Young subgroup of ${\mathfrak S}_d$ . The endomorphism algebras

$$ \begin{align*}{\mathcal S}_{\mathcal Z}(n,d):=\operatorname{End}_{{{\mathcal H}_{\mathcal Z}(d)}}\bigg( \bigoplus_{{\lambda}\in\Lambda(n,d)}x_{{\lambda}}{{\mathcal H}_{\mathcal Z}(d)}\bigg),\quad {\boldsymbol{\mathcal S}}(n,d):=\operatorname{End}_{{\boldsymbol{\mathcal H}}(d)}\bigg( \bigoplus_{{\lambda}\in\Lambda(n,d)}x_{{\lambda}}{\boldsymbol{\mathcal H}}(d)\bigg),\end{align*} $$

are called q-Schur algebras over ${\mathcal Z}$ and over $\mathbb Q(v)$ , respectively.

We now recall the BLM construction of ${{\mathbf {U}}(\mathfrak {gl}_n)}$ . Let $\widetilde {\Theta }(n)$ be the set of all $n \times n$ matrices over $\mathbb {Z}$ with all off diagonal entries in $\mathbb {N}$ . Let $\Theta (n)$ be the set of all $n\times n$ matrices over $\mathbb N$ . Let ${\Theta (n,d)}$ be the set of all $n \times n$ matrices A over $\mathbb {N}$ such that $\sigma (A)=d$ , where $\sigma (A)=\sum _{1 \leqslant i, j \leqslant n} a_{i, j}$ . For $A \in \widetilde {\Theta }(n)$ , let $\operatorname {ro}(A)=(\sum _{j} a_{1, j}, \ldots , \sum _{j} a_{n, j})$ and $\operatorname {co}(A)=$ $(\sum _{i} a_{i, 1}, \ldots , \sum _{i} a_{i, n})$ .

The q-Schur algebra ${\mathcal S}_{\mathcal Z}(n,d)$ was reconstructed using the geometry of pairs of n-step filtrations on a d-dimensional vector space in [Reference Beilinson, Lusztig and MacPherson3]. In particular, a normalized ${\mathcal Z}$ -basis $\{[A]\}_{A \in {\Theta (n,d)}}$ for ${\mathcal S}_{\mathcal Z}(n,d)$ was constructed. Using the stabilization property of multiplication for q-Schur algebra, an important ${\mathcal Z}$ -algebra $K_{\mathcal Z}(n)$ (without $ 1 $ ), with basis $\{[A]\}_{A \in \widetilde {\Theta }(n)} $ , was constructed in [1, §4]. Let ${\mathbf K}(n)=K_{\mathcal Z}(n)\otimes _{\mathcal Z}\mathbb Q(v)$ . Following [Reference Beilinson, Lusztig and MacPherson3, 5.1], we define $\widehat {{\mathbf K}}(n)$ to be the vector space of all formal (possibly infinite) $\mathbb {Q}(v)$ -linear combinations $\sum _{A \in \widetilde {\Theta }(n)} \beta _{A}[A]$ satisfying the following property: for any ${\mathbf {x}} \in \mathbb Z^{n}$ , the sets $\{A \in \widetilde {\Theta }(n) \mid \beta _{A} \neq 0, \operatorname {ro}(A)={\mathbf {x}}\}$ and $\{A \in \widetilde {\Theta }(n) \mid \beta _{A} \neq 0, \operatorname {co}(A)={\mathbf {x}}\}$ are finite. The product of two elements $\sum _{A \in \widetilde {\Theta }(n)} \beta _{A}[A]$ , $\sum _{B \in \widetilde {\Theta }(n)} \gamma _{B}[B]$ in $\widehat {{\mathbf K}}(n)$ is defined to be $\sum _{A, B} \beta _{A} \gamma _{B}[A] \cdot [B]$ , where $[A] \cdot [B]$ is the product in $K_{\mathcal Z}(n).$ Then $\widehat {{\mathbf K}}(n)$ is an associative algebra.

Let $\Theta ^\pm (n)$ be the set of all $A \in \Theta (n)$ such that all diagonal entries are zero. For $A \in \Theta ^\pm (n)$ and ${\mathbf {j}} \in \mathbb {Z}^{n}$ , let

$$ \begin{align*}\begin{aligned} A({\mathbf{j}},d) &=\sum_{\lambda \in \Lambda(n,d-\sigma(A))} v^{\lambda \cdot {\mathbf{j}}}[A+\operatorname{diag}(\lambda)] \in {\boldsymbol{\mathcal S}}(n,d), \\ A({\mathbf{j}}) &=\sum_{\lambda \in \mathbb{Z}^{n}} v^{\lambda \cdot {\mathbf{j}}}[A+\operatorname{diag}(\lambda)] \in \widehat{{\mathbf K}}(n), \end{aligned} \end{align*} $$

where ${\lambda }\cdot{{\mathbf {j}}}=\sum _{1\leqslant i\leqslant n}{\lambda }_i{j_i}$ .

We shall denote by $\mathbf {V}(n)$ the subspace of $\widehat {{\mathbf K}}(n)$ spanned by the elements $A({\mathbf {j}})$ for $A \in \Theta ^{\pm }(n)$ and ${\mathbf {j}} \in \mathbb {Z}^{n}$ . For $1 \leqslant i, j \leqslant n$ , let $E_{i, j} \in \Theta (n)$ be the matrix whose $(i,j)$ -entry is $1$ and the other entries are $0$ . The following result was given by Beilinson–Lusztig–MacPherson [Reference Beilinson, Lusztig and MacPherson3].

Theorem 2.2. $(1)$ $\mathbf {V}(n)$ is a subalgebra of $\widehat {{\mathbf K}}(n)$ and there is an algebra isomorphism ${{\mathbf {U}}(\mathfrak {gl}_n)}\stackrel {\thicksim }{\,\rightarrow }\mathbf {V}(n)$ satisfying

$$ \begin{align*}E_h\mapsto E_{h,h+1}(\mathbf{0}),\ K_1^{j_1}K_2^{j_2}\cdots K_n^{j_n}\mapsto 0({\mathbf{j}}),\ F_h\mapsto E_{h+1,h}(\mathbf{0}).\end{align*} $$

$(2)$ There is an algebra epimorphism $\zeta _d:{{\mathbf {U}}(\mathfrak {gl}_n)}\rightarrow {\boldsymbol {\mathcal S}}(n,d)$ satisfying

$$ \begin{align*}E_h\mapsto E_{h,h+1}(\mathbf{0},d),\ K_1^{j_1}K_2^{j_2}\cdots K_n^{j_n}\mapsto 0({\mathbf{j}},d),\ F_h\mapsto E_{h+1,h}(\mathbf{0},d).\end{align*} $$

We shall identify ${{\mathbf {U}}(\mathfrak {gl}_n)}$ with $\mathbf {V}(n)$ . By [Reference Du and Fu14] we have the following result (cf. [Reference Fu17]).

Lemma 2.3. $(1)$ There is an algebra isomorphism $\varphi :\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)\rightarrow {\mathbf K}(n)$ satisfying

$$ \begin{align*}\pi_{{\lambda}\mu}(u)\mapsto[\operatorname{diag}({\lambda})]u[\operatorname{diag}(\mu)],\end{align*} $$

for all $u\in {{\mathbf {U}}(\mathfrak {gl}_n)}$ and ${\lambda },\mu \in \mathbb Z^{n}$ . Furthermore, we have $\varphi (\dot {{U}}_{\mathcal Z}(\mathfrak {gl}_n))=K_{\mathcal Z}(n)$ .

$(2)$ There is a surjective algebra homomorphism $\dot {\zeta }_d:{\mathbf K}(n)\rightarrow {\boldsymbol {\mathcal S}}(n,d)$ such that

$$ \begin{align*} { \dot{\zeta}_d([A])=\begin{cases}[A], &\text{ if } A\in{\Theta(n,d)};\\ 0, &\text{ otherwise.} \end{cases}} \end{align*} $$

We shall identify $\dot {{U}}_{\mathcal Z}(\mathfrak {gl}_n)$ with $K_{\mathcal Z}(n)$ .

3 The infinitesimal q-Schur algebra

Let . We shall denote the images of $E_{i}^{(m)}, F_{i}^{(m)}$ , etc. in by the same letters. Let (resp. ) be the subalgebra of generated by the elements $E_{i}^{(m)}$ (resp. $F_{i}^{(m)}$ ) for $1\leqslant i\leqslant n-1$ and $m\in \mathbb N$ . Let be the subalgebra of generated by the elements $K_{j}^{\pm 1}$ and $\big [{K_j;0 \atop t} \big ]$ for $1 \leqslant j \leqslant n$ and $t \in \mathbb {N}$ . Then we have . The algebras and are both $\mathbb {N}$ -graded in terms of the degrees of monomials in the $E_{i}^{(m)}$ and $F_{i}^{(m)}$ .

For $r\geqslant 1$ , let be the -subalgebra of generated by the elements $E_{i}^{(m)}$ , $F_{i}^{(m)}$ , $K_{j}^{\pm 1}$ , and $\big [{K_j;0 \atop t} \big ]$ for $1 \leqslant i \leqslant n-1$ , $1 \leqslant j \leqslant n$ , $t \in \mathbb {N}$ and $0 \leqslant m,t<l p^{r-1}$ . Furthermore, let

Clearly, the algebra is a Hopf subalgebra of . Let (resp. ) be the subalgebra of generated by the elements $E_{i}^{(m)}$ (resp. $F_{i}^{(m)}$ ) for $1\leqslant i\leqslant n-1$ and $0 \leqslant m<l p^{r-1}$ . Then we have .

Let $\Theta ^+(n)=\left \{A \in \Theta (n) \mid a_{i, j}=0, \forall i \geqslant j\right \}$ and $\Theta ^-(n)=\left \{A \in \Theta (n) \mid a_{i, j}=0, \forall i \leqslant j\right \}$ . For $A \in \widetilde \Theta (n)$ , write $A=A^{+}+\operatorname {diag}({\lambda })+A^{-}$ with $A^{+} \in \Theta ^+(n)$ , $A^{-} \in \Theta ^-(n)$ and ${\lambda }\in \mathbb Z^{n}$ . Let

$$ \begin{align*}\Theta^\pm(n)_r=\{A\in\Theta^\pm(n)\mid a_{i,j}<lp^{r-1},\,\forall i\not=j\}.\end{align*} $$

Let

(3.1) $$ \begin{align} \Theta^+(n)_r=\Theta^\pm(n)_r\cap\Theta^+(n),\ \Theta^-(n)_r=\Theta^\pm(n)_r\cap\Theta^-(n). \end{align} $$

For $A \in \Theta ^\pm (n)_r$ , let

where

$$ \begin{align*} M_{j}=M_{j}(A^{+})=E_{j-1}^{(a_{j-1, j})}(E_{j-2}^{(a_{j-2, j})} E_{j-1}^{(a_{j-2, j})}) \cdots(E_{1}^{(a_{1, j})} E_{2}^{(a_{1, j})} \cdots E_{j-1}^{(a_{1, j})}), \end{align*} $$

and

$$ \begin{align*}M_{j}^{\prime}=M_{j}^{\prime}(A^{-})=(F_{j-1}^{(a_{j, 1})} \cdots F_{2}^{(a_{j, 1})} F_{1}^{(a_{j, 1})}) \cdots(F_{j-1}^{(a_{j, j-2})} F_{j-2}^{(a_{j, j-2})}) F_{j-1}^{(a_{j, j-1})}. \end{align*} $$

For $A \in \Theta ^\pm (n)$ let

$$ \begin{align*}\operatorname{deg}(A)= \sum_{1 \leqslant i, j \leqslant n}|j-i| a_{i, j}.\end{align*} $$

Then we have $\textrm {deg}(E^{(A^+)})=\textrm {deg}(A^+)$ and $\textrm {deg}(F^{(A^-)})=\textrm { deg}(A^-)$ for $A\in \Theta ^\pm (n)$ . For ${\lambda }\in \mathbb N^{n}$ and ${\mathbf {j}}\in \mathbb Z^{n}$ let

$$ \begin{align*}K_{\lambda}=\prod_{1 \leqslant i \leqslant n}\bigg[ {K_i;0 \atop {\lambda}_i} \bigg],\,K^{{\mathbf{j}}}=\prod_{1 \leqslant i \leqslant n}K_i^{j_i}.\end{align*} $$

The following result is given in [Reference Fu18, Lem. 6.3].

Proposition 3.1. $(1)$ The set $\big \{E^{(A^+)} K^\delta K_{\lambda } F^{(A^-)} \mid A \in \Theta ^\pm (n)_r,\, \delta ,{\lambda } \in \mathbb N^{n},\, \delta _{i} \in \{0,1\},\,\forall i\big \}$ forms a -basis for .

$(2)$ The set $\big \{E^{(A^+)} \mid A \in \Theta ^+(n)_r\}$ (resp. $\big \{F^{(A^-)} \mid A \in \Theta ^-(n)_r\}$ ) forms a -basis for (resp. ).

For $A\in \widetilde \Theta (n)$ let

$$ \begin{align*}\sigma_{i,j}(A) =\begin{cases} \sum_{s\leqslant i;t\geqslant j}a_{s,t}&\text{if } i<j\\ \sum_{s\geqslant i;t\leqslant j}a_{s,t}&\text{if } i>j. \end{cases}\end{align*} $$

Following [Reference Beilinson, Lusztig and MacPherson3], for $A,B\in \widetilde \Theta (n)$ , define $B \preccurlyeq A$ if and only if $\sigma _{i,j}( B )\leqslant \sigma _{i,j}(A)$ for all $i\not =j$ . Put $ B \prec A$ if $ B \preccurlyeq A$ and $\sigma _{i,j}( B )<\sigma _{i,j}(A)$ for some $i\not =j$ .

Proposition 3.2. $(1)$ The set $\big \{A^+(\mathbf {0}) K^\delta K_{\lambda } A^-(\mathbf {0}) \mid A \in \Theta ^\pm (n)_r,\,\delta ,\lambda \in \mathbb {N}^{n},\, \delta _{i} \in \{0,1\}, \forall i \big \}$ forms a -basis for .

$(2)$ The set $\big \{A(\mathbf {0}) \mid A \in \Theta ^+(n)_r\}$ (resp. $\big \{A(\mathbf {0}) \mid A \in \Theta ^-(n)_r\}$ ) forms a -basis for (resp. ).

Proof. By [Reference Beilinson, Lusztig and MacPherson3, 4.6(c)] for $A \in \Theta ^\pm (n)_r$ , we have

(3.2) $$ \begin{align} E^{(A^+)}=A^+(\mathbf{0})+f,\quad F^{(A^-)}=A^-(\mathbf{0})+g, \end{align} $$

where f is a -linear combination of $B(\mathbf {0})$ for $B\in \Theta ^+(n)$ with $B\prec A^+$ and g is a -linear combination of $C(\mathbf {0})$ for $C\in \Theta ^-(n)$ with $C\prec A^-$ . By [Reference Fu18, Lem. 6.3] we know that f must a -linear combination of $B(\mathbf {0})$ for $B\in \Theta ^+(n)_r$ with $B\prec A^+$ and g is a -linear combination of $C(\mathbf {0})$ for $C\in \Theta ^-(n)_r$ with $C\prec A^-$ . Now the assertion follows from Proposition 3.1.

Let . We shall denote the images of $E_{i}^{(m)}1_{\lambda }$ , $1_{\lambda } F_{i}^{(m)}$ , $E^{(A^+)} 1_{\lambda }$ , $1_{\lambda }F^{(A^-)}$ in by the same letters. For $A\in \widetilde \Theta (n)$ let

Let be the -subalgebra of generated by the elements $E_{i}^{(m)}1_{\lambda }$ and $1_{\lambda } F_{i}^{(m)}$ for $1 \leqslant i \leqslant n-1$ , $\lambda \in \mathbb Z^{n}$ and $0 \leqslant m<l p^{r-1}$ .

For $ A \in \widetilde \Theta (n)$ and $1 \leqslant i \leqslant n$ , let

$$ \begin{align*}{\boldsymbol\sigma}(A)=(\sigma_1(A),\sigma_2(A),\ldots,\sigma_n(A)),\end{align*} $$

where $ \sigma _{i}(A)=a_{i,i}+\sum _{1 \leqslant j<i}(a_{i j}+a_{j i})$ . Let

$$ \begin{align*} \begin{aligned} \widetilde\Theta(n)_r&=\{A\in\widetilde\Theta(n)\mid a_{i,j}<lp^{r-1},\,\forall i\not=j\}. \end{aligned} \end{align*} $$

We have the following monomial, BLM and PBW bases of .

Proposition 3.3. Each of the following sets forms a -basis of :

  1. (1) ${\mathscr M}_r:=\{E^{(A^+)} 1_{{\boldsymbol \sigma }(A)} F^{(A^-)} \mid A\in \widetilde \Theta (n)_r\};$

  2. (2) ${\mathscr L}_r:=\{[A]_{\varepsilon }\mid A\in \widetilde \Theta (n)_r\};$

  3. (3) ${\mathscr P}_r:=\{A^+(\mathbf {0}) 1_{{\boldsymbol \sigma }(A)} A^-(\mathbf {0}) \mid A\in \widetilde \Theta (n)_r\}$ .

Proof. Let be the -submodule of spanned by the elements $[A]_{\varepsilon }$ for $A\in \widetilde \Theta (n)_r$ . By [Reference Beilinson, Lusztig and MacPherson3, 4.6(a)] for $1\leqslant h\leqslant n-1$ , $0\leqslant m<lp^{r-1}$ , $A\in \widetilde \Theta (n)_r$ , we have

$$ \begin{align*}E_h^{(m)} [A]_{\varepsilon}=\sum_{{\mathbf{t}}\in\Lambda(n,m)\atop a_{h+1,u}\geqslant t_u,\,\forall u\not=h+1}\varepsilon^{\beta({\mathbf{t}})} \prod_{1\leq u\leq n}{\bigg[{a_{h,u}+t_u\atop t_u}\bigg]_{\varepsilon}}\big[A+\sum_{1\leq u\leq n}t_u(E_{h,u}-E_{h+1,u})\big]_{\varepsilon},\end{align*} $$

where $\beta ({\mathbf {t}})=\sum _{j> u}(a_{h,j}-a_{h+1,j})t_u+\sum _{u<u'}t_ut_{u'}$ . If $A+\sum _{u}t_u(E_{h,u}-E_{h+1,u})\not \in \widetilde \Theta (n)_r$ for some ${\mathbf {t}}\in \Lambda (n,m)$ , then we have $a_{h,u}+t_u\geqslant lp^{r-1}$ for some $u\not =h$ . Since $A\in \widetilde \Theta (n)_r$ , ${\mathbf {t}}\in \Lambda (n,m)$ and $m<lp^{r-1}$ , we have $a_{h,u}<lp^{r-1}$ and $t_u<lp^{r-1}$ . Hence, by [Reference Fu18, Cor. 3.4] we have $\big [{a_{h,u}+t_u\atop t_u}\big ]_{\varepsilon }=0$ . Therefore, we have

Similarly, we have

for $1\leqslant h\leqslant n-1$ and $0\leqslant m<lp^{r-1}$ . Consequently, we have

(3.3)

Furthermore, by [Reference Beilinson, Lusztig and MacPherson3, 4.6(c)] for $A \in \widetilde \Theta (n)_r$ ,

(3.4) $$ \begin{align} E^{(A^+)} 1_{{\boldsymbol\sigma}(A)} F^{(A^-)}=[A]_{\varepsilon} +f, \end{align} $$

where f is a -linear combination of $[B]_{\varepsilon }$ for $B\in \widetilde \Theta (n)$ with $B\prec A$ . By (3.3), we see that f must be a -linear combination of $[B]_{\varepsilon }$ for $B\in \widetilde \Theta (n)_r$ with $B\prec A$ . It follows from (3.2) that

(3.5) $$ \begin{align} A^+(\mathbf{0}) 1_{{\boldsymbol\sigma}(A)} A^-(\mathbf{0})=[A]_{\varepsilon} +g, \end{align} $$

where g is a -linear combination of $[B]_{\varepsilon }$ for $B\in \widetilde \Theta (n)_r$ with $B\prec A$ . Therefore, each of the sets ${\mathscr M}_r$ , ${\mathscr L}_r$ , ${\mathscr P}_r$ forms a -basis of and

Hence, by (3.3) we have . The proof is completed.

Let . By [Reference Du13] we have $\zeta _d({U_{\mathcal Z}(\mathfrak {gl}_n)})={\mathcal S}_{\mathcal Z}(n,d)$ . Therefore, the map $\zeta _d: {{\mathbf {U}}(\mathfrak {gl}_n)} \rightarrow {\boldsymbol {\mathcal S}}(n,d)$ given in Theorem 2.2 restricts to a surjective algebra homomorphism

(3.6) $$ \begin{align} \zeta_{d}: {U_{\mathcal Z}(\mathfrak{gl}_n)} \rightarrow {\mathcal S}_{\mathcal Z}(n,d). \end{align} $$

A generating set for the kernel of $\zeta _{d}:{U_{\mathcal Z}(\mathfrak {gl}_n)} \rightarrow {\mathcal S}_{\mathcal Z}(n,d)$ was given in [Reference Fu and Gao19]. The map $\zeta _{d}$ induces, upon tensoring with , a surjective algebra homomorphism

(3.7)

Let

$$ \begin{align*}\mathtt{e}_i=\zeta_{d} (E_i),\,\mathtt{f}_i=\zeta_{d}(F_i),\,\mathtt{k}_j=\zeta_{d}(K_j),\end{align*} $$

for $1 \leqslant i \leqslant n-1$ and $1\leqslant j \leqslant n$ . For $A \in \Theta (n)$ and ${\lambda }\in \mathbb N^{n} $ , let

$$ \begin{align*}{\mathtt e}^{(A^+)}=\zeta_{d}(E^{(A^+)}),\,{\mathtt f}^{(A^-)}=\zeta_{d}(F^{(A^-)}),\,\mathtt{k}_{\lambda}= \zeta_{d}(K_{\lambda}).\end{align*} $$

For $ A \in {\Theta (n,d)}$ , let

By [Reference Du and Parshall15, Cor. 5.3], we have

(3.8) $$ \begin{align} \mathtt{k}_{\lambda}=[\operatorname{diag}({\lambda})]_{\varepsilon}, \end{align} $$

for ${\lambda }\in \Lambda (n,d)$ .

Let be the infinitesimal q-Schur algebra introduced in [Reference Cox4]. The algebra is a -subalgebra of the q-Schur algebra . Let

$$ \begin{align*}\Theta(n,d)_r=\{A \in {\Theta(n,d)} \mid a_{ij} < lp^{r-1} \ \text{for all} \ i \neq j\}.\end{align*} $$

According to [Reference Cox4, 5.3.1] and the proof of [Reference Fu16, Th. 5.5], we have the following result.

Lemma 3.4. The set ${\mathscr L}_{d,r}:=\{[A]_{\varepsilon } \mid A \in \Theta (n,d)_r\}$ forms a -basis of .

By [Reference Fu18, Prop. 6.4], we have the following result.

Lemma 3.5. For $d\in \mathbb N$ we have

The map $\dot {\zeta }_d: \dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)={\mathbf K}(n)\rightarrow {\boldsymbol {\mathcal S}}(n,d)$ given in Lemma 2.3 restricts to a surjective algebra homomorphism

(3.9) $$ \begin{align} \dot{\zeta}_{d}: \dot{{U}}_{\mathcal Z}(\mathfrak{gl}_n)\rightarrow {\mathcal S}_{\mathcal Z}(n,d); \end{align} $$

tensoring with , we obtain a surjective algebra homomorphism

(3.10)

Combining Lemma 2.3 with Proposition 3.3, we obtain the following result.

Lemma 3.6. For $d\in \mathbb N$ we have .

For ${\lambda },\mu \in \mathbb Z^{n}$ , write ${\lambda }\leqslant \mu \Leftrightarrow {\lambda }_i\leqslant \mu _i$ for $1\leqslant i\leqslant n$ . We have the following monomial and PBW bases of .

Proposition 3.7. Each of the following set forms a -basis of :

  1. (1) ${\mathscr M}_{d,r}=\{{\mathtt e}^{(A^+)}\mathtt {k}_{{\lambda }} {\mathtt f}^{(A^-)} \mid A \in \Theta ^\pm (n)_r,\,{\lambda }\in \Lambda (n,d),\,{\lambda }\geqslant {\boldsymbol \sigma }(A)\};$

  2. (2) ${\mathscr P}_{d,r}=\{A^+(\mathbf {0},d) \mathtt {k}_{{\lambda }} A^-(\mathbf {0},d) \mid A \in \Theta ^\pm (n)_r,\,{\lambda }\in \Lambda (n,d),\,{\lambda }\geqslant {\boldsymbol \sigma }(A)\}.$

Proof. By Lemma 2.3, (3.4), (3.5), and (3.8), for $A \in \Theta ^\pm (n)_r$ , ${\lambda }\in \Lambda (n,d)$ with ${\lambda }\geqslant {\boldsymbol \sigma }(A)$ , we have

$$ \begin{align*} \begin{aligned} {\mathtt e}^{(A^+)} \mathtt{k}_{{\lambda}} {\mathtt f}^{(A^-)} &=\dot{\zeta}_{d}(E^{(A^+)} 1_{{\lambda}}F^{(A^-)})=[A+{\lambda}-{\boldsymbol\sigma}(A)]_{\varepsilon} +f,\\ A^+(\mathbf{0},d) \mathtt{k}_{{\lambda}} A^-(\mathbf{0},d) &=[A+{\lambda}-{\boldsymbol\sigma}(A)]_{\varepsilon} +g,\\ \end{aligned} \end{align*} $$

where . Now the assertion follows from Lemma 3.4.

4 The algebra

For $d\in \mathbb N$ let

where $I_{d,r}$ is the two-sided ideal of generated by the elements $1-\sum _{\mu \in \Lambda (n,d)} K_{\mu }$ , $K_{i} K_{\lambda }-\varepsilon ^{\lambda _{i}} K_{\lambda }$ and $\big [{K_i;0 \atop t}\big ] K_{\lambda }-\big [{{\lambda }_i \atop t}\big ]_{\varepsilon } K_{\lambda }$ for $1 \leqslant i \leqslant n$ , $t \in \mathbb {N}$ and $\lambda \in \Lambda (n,d)$ . For $1\leqslant i\leqslant n-1$ , $t\in \mathbb N$ and $0\leqslant m<lp^{r-1}$ let

$$ \begin{align*}\mathbf{e}_i^{(m)}=E_i^{(m)}+I_{d,r},\,\mathbf{f}_i^{(m)}=F_i^{(m)}+I_{d,r}.\end{align*} $$

Furthermore, for $1\leqslant j\leqslant n$ , $c\in \mathbb Z$ , $t\in \mathbb N$ and ${\lambda }\in \mathbb N^{n}$ let

$$ \begin{align*}\mathbf{k}_j=K_j+I_{d,r},\, \bigg[{\mathbf{k}_j;c \atop t}\bigg]=\bigg[{K_j;c \atop t}\bigg]+I_{d,r},\,\mathbf{k}_{\lambda}=K_{\lambda}+I_{d,r}.\end{align*} $$

We will prove in Theorem 4.10 that the algebra is isomorphic to the infinitesimal q-Schur algebra .

Lemma 4.1. $(1)$ For ${\lambda },\mu \in \Lambda (n,d)$ we have $\mathbf {k}_{\lambda }\mathbf {k}_\mu =\delta _{{\lambda },\mu }\mathbf {k}_{\lambda }$ .

$(2)$ Assume $\nu \in \mathbb N^{n}$ is such that $\sigma (\nu )>d$ . Then we have $\mathbf {k}_\nu =0$ .

Proof. For $1\leqslant i\leqslant n$ and $t\in \mathbb N$ , we have $\big [{\mathbf {k}_i;0 \atop t}\big ]\mathbf {k}_\mu = \big [{ \mu _i\atop t}\big ]_{\varepsilon } \mathbf {k}_\mu $ . It follows that

$$ \begin{align*}\mathbf{k}_{\lambda} \mathbf{k}_\mu = \bigg[{ \mu\atop{\lambda}}\bigg]_{\varepsilon} \mathbf{k}_\mu.\end{align*} $$

If $\big [{ \mu \atop {\lambda }}\big ]_{\varepsilon }\not =0$ , then we have $\mu \geqslant {\lambda }$ . This implies that $\mu ={\lambda }$ since ${\lambda },\mu \in \Lambda (n,d)$ . Therefore, we have $\mathbf {k}_{\lambda }\mathbf {k}_\mu =\delta _{{\lambda },\mu }\mathbf {k}_{\lambda }$ . Furthermore, since $1=\sum _{{\gamma } \in \Lambda (n,d)}\mathbf {k}_{\gamma }$ and $\sigma (\nu )>d$ , we have

$$ \begin{align*}\mathbf{k}_\nu= \sum_{{\gamma} \in \Lambda(n,d)}\mathbf{k}_\nu\mathbf{k}_{\gamma} =\sum_{{\gamma} \in \Lambda(n,d)}\bigg[{ {\gamma}\atop\nu}\bigg]_{\varepsilon} \mathbf{k}_{\gamma}=\sum_{{\gamma} \in \Lambda(n,d)\atop\sigma({\gamma})\geqslant\sigma(\nu)>d}\bigg[{ {\gamma}\atop\nu}\bigg]_{\varepsilon} \mathbf{k}_{\gamma}=0.\end{align*} $$

The proof is completed.

For $a,b\in \mathbb Z$ , we have

(4.1) $$ \begin{align} \begin{aligned} \bigg[{b+a\atop t}\bigg]_{\varepsilon}&=\sum_{0\leqslant j\leqslant t}\varepsilon^{a(t-j)-bj}\bigg[{a\atop j}\bigg]_{\varepsilon}\bigg[{b\atop t-j}\bigg]_{\varepsilon}. \end{aligned} \end{align} $$

Lemma 4.2. Let ${\lambda }\in \Lambda (n,d)$ . Then we have $\big [{\mathbf {k}_i;c\atop t}\big ] \mathbf {k}_{\lambda }=\big [{{\lambda }_i+c\atop t}\big ]_{\varepsilon } \mathbf {k}_{\lambda }$ for $1\leqslant i\leqslant n$ , $c\in \mathbb Z$ , $t\in \mathbb N$ .

Proof. Assume $c\geqslant 0$ . By [Reference Lusztig22, 2.3 (g9), (g10)], we have

$$ \begin{align*}\left[{\mathbf{k}_i;\pm c\atop t}\right]=\sum_{0\leqslant j\leqslant t}\varepsilon^{c(t-j)}\left[{\pm c\atop j}\right]_{\varepsilon}\mathbf{k}_i^{\mp j}\left[{\mathbf{k}_i;0\atop t-j}\right]. \end{align*} $$

Hence, by (4.1), we have

$$ \begin{align*} \left[{\mathbf{k}_i;\pm c\atop t}\right]\mathbf{k}_{\lambda} =\sum_{0\leqslant j\leqslant t}\varepsilon^{c(t-j)\mp j{\lambda}_i}\left[{\pm c\atop j}\right]_{\varepsilon}\left[{{\lambda}_i\atop t-j}\right]_{\varepsilon}\mathbf{k}_{\lambda}=\bigg[{{\lambda}_i\pm c\atop t}\bigg]_{\varepsilon}\mathbf{k}_{\lambda}. \end{align*} $$

The proof is completed.

By the definition of , we have the following result.

Lemma 4.3. There is an algebra anti-automorphism $\tau _d$ on such that

$$ \begin{align*}\tau_d(\mathbf{e}_i^{(m)})=\mathbf{f}_i^{(m)},\quad \tau_d(\mathbf{f}_i^{(m)})=\mathbf{e}_i^{(m)}, \quad \tau_d(\mathbf{k}_j)=\mathbf{k}_j,\quad\tau_d\bigg(\bigg[{\mathbf{k}_j;0\atop t}\bigg]\bigg)=\bigg[{\mathbf{k}_j;0\atop t}\bigg], \end{align*} $$

for $1\leqslant i \leqslant n-1$ , $1\leqslant j \leqslant n$ , $t\in \mathbb N$ and $0\leqslant m<lp^{r-1}$ .

Lemma 4.4. Let ${\lambda },\mu \in \Lambda (n,d)$ and $a\in \mathbb N$ .

$(1)$ If ${\lambda }_{i+1}<a$ for some $1\leqslant i \leqslant n-1$ , then we have $\mathbf {e}_i^{(a)}\mathbf {k}_{\lambda }=\mathbf {k}_{\lambda }\mathbf {f}_i^{(a)}=0$ .

$(2)$ If $\mu _{j}<a$ for some $1\leqslant j \leqslant n-1$ , then we have $\mathbf {k}_\mu \mathbf {e}_j^{(a)}=\mathbf {f}_j^{(a)}\mathbf {k}_\mu =0$ .

Proof. By Lemma 2.1 and 4.2, we have

$$ \begin{align*} \begin{aligned} \mathbf{e}_i^{(a)}\mathbf{k}_{\lambda}&=\mathbf{e}_i^{(a)}\prod_{s\not=i,i+1} \left[{\mathbf{k}_s;0\atop{\lambda}_s}\right]\left[{\mathbf{k}_i;a\atop{\lambda}_i+a}\right]\mathbf{k}_{\lambda} =\mathbf{k}_{{\lambda}+a\boldsymbol{e}_i-{\lambda}_{i+1}\boldsymbol{e}_{i+1}}\mathbf{e}_i^{(a)}\mathbf{k}_{\lambda},\\ \mathbf{k}_\mu\mathbf{e}_j^{(a)}&=\mathbf{k}_\mu\prod_{s\not=j,j+1} \left[{\mathbf{k}_s;0\atop\mu_s}\right]\left[{\mathbf{k}_{j+1};a\atop\mu_{j+1}+a}\right]\mathbf{e}_j^{(a)} =\mathbf{k}_\mu\mathbf{e}_j^{(a)}\mathbf{k}_{{\lambda}+a\boldsymbol{e}_{j+1}-\mu_j\boldsymbol{e}_j}. \end{aligned} \end{align*} $$

Hence, by Lemma 4.1 we have $\mathbf {k}_{{\lambda }+a\boldsymbol {e}_i-{\lambda }_{i+1}\boldsymbol {e}_{i+1}}=0$ and $\mathbf {k}_{{\lambda }+a\boldsymbol {e}_{j+1}-\mu _j\boldsymbol {e}_j}=0$ , since ${\lambda }_{i+1}<a$ , $\mu _j<a$ and ${\lambda },\mu \in \Lambda (n,d)$ . Therefore we have $\mathbf {e}_i^{(a)}\mathbf {k}_{\lambda }=\mathbf {k}_\mu \mathbf {e}_j^{(a)}=0$ . Consequently, we have $\mathbf {k}_{\lambda }\mathbf {f}_i^{(a)}=\tau _d(\mathbf {e}_i^{(a)}\mathbf {k}_{\lambda })=0$ and $\mathbf {f}_j^{(a)}\mathbf {k}_\mu =\tau _d(\mathbf {k}_\mu \mathbf {e}_j^{(a)})=0$ .

Lemma 4.5. Let ${\lambda } \in \Lambda (n,d)$ and $a\in \mathbb N$ . If ${\lambda }_{i+1}\geqslant a$ for some $1\leqslant i \leqslant n-1$ , then we have $\mathbf {e}_i^{(a)}\mathbf {k}_{\lambda }=\mathbf {k}_{{\lambda }+a\alpha _i}\mathbf {e}_i^{(a)}$ and $\mathbf {k}_{\lambda }\mathbf {f}_i^{(a)}=\mathbf {f}_i^{(a)}\mathbf {k}_{{\lambda }+a\alpha _i}$ , where $\alpha _i=\boldsymbol {e}_i-\boldsymbol {e}_{i+1}$ .

Proof. By Lemma 2.1 and 4.2, we have

$$ \begin{align*} \begin{aligned} \mathbf{e}_i^{(a)}\mathbf{k}_{\lambda} &=\prod_{j\not=i,i+1}\left[{\mathbf{k}_j;0\atop{\lambda}_j}\right] \left[{\mathbf{k}_i;-a\atop{\lambda}_i}\right]\left[{\mathbf{k}_{i+1};a\atop{\lambda}_{i+1}}\right] \mathbf{e}_i^{(a)}\\ &= \sum_{\mu\in\Lambda(n,d)} \prod_{j\not=i,i+1}\left[{\mathbf{k}_j;0\atop{\lambda}_j}\right] \left[{\mathbf{k}_i;-a\atop{\lambda}_i}\right]\left[{\mathbf{k}_{i+1};a\atop{\lambda}_{i+1}}\right] \mathbf{k}_\mu \mathbf{e}_i^{(a)}. \end{aligned} \end{align*} $$

Hence, by Lemma 4.4, we have

$$ \begin{align*} \mathbf{e}_i^{(a)}\mathbf{k}_{\lambda} =\sum_{\mu\in\Lambda(n,d)\atop\mu_i\geqslant a}\left[{\mu-a\alpha_i\atop{\lambda}}\right]_{\varepsilon} \mathbf{k}_\mu \mathbf{e}_i^{(a)} =\sum_{\mu\in\Lambda(n,d),\,\mu-a\alpha_i\geqslant{\lambda}}\left[{\mu-a\alpha_i\atop{\lambda}}\right]_{\varepsilon} \mathbf{k}_\mu \mathbf{e}_i^{(a)}=\mathbf{k}_{{\lambda}+a\alpha_i} \mathbf{e}_i^{(a)}. \end{align*} $$

Therefore, we have $\mathbf {k}_{\lambda }\mathbf {f}_i^{(a)}=\tau _d(\mathbf {e}_i^{(a)}\mathbf {k}_{\lambda })= \tau _d(\mathbf {k}_{{\lambda }+a\alpha _i} \mathbf {e}_i^{(a)} )=\mathbf {f}_i^{(a)}\mathbf {k}_{{\lambda }+a\alpha _i}$ .

For simplicity, we set $\mathbf {k}_{\lambda }=0$ if ${\lambda }\not \in \mathbb N^{n}$ with $\sigma ({\lambda })=d$ , where $\sigma ({\lambda })=\sum _{1\leqslant i\leqslant n}{\lambda }_i$ . Then, by Lemma 4.4 and 4.5, we have the following result.

Lemma 4.6. For ${\lambda } \in \mathbb Z^{n}$ with $\sigma ({\lambda })=d$ and $a\in \mathbb N$ we have $\mathbf {e}_i^{(a)}\mathbf {k}_{\lambda }=\mathbf {k}_{{\lambda }+a\alpha _i}\mathbf {e}_i^{(a)}$ and $\mathbf {k}_{\lambda }\mathbf {f}_i^{(a)}=\mathbf {f}_i^{(a)}\mathbf {k}_{{\lambda }+a\alpha _i}$ .

For $A\in \Theta ^\pm (n)$ let $\mathbf {e}^{(A^+)}=E^{(A^+)}+I_{d,r}$ and $\mathbf {f}^{(A^-)}=F^{(A^-)}+I_{d,r}$ .

Lemma 4.7. Let $A\in \Theta ^\pm (n)_r$ and ${\lambda } \in \mathbb Z^{n}$ with $\sigma ({\lambda })=d$ . Then, we have $\mathbf {e}^{(A^+)}\mathbf {k}_{\lambda }=\mathbf { k}_{{\lambda }-\textrm {co}(A^+)+\textrm {ro}(A^+)}\mathbf {e}^{(A^+)}$ and $\mathbf {k}_{\lambda }\mathbf {f}^{(A^-)}= \mathbf {f}^{(A^-)}\mathbf {k}_{{\lambda }+\textrm {co}(A^-)-\textrm {ro}(A^-)}$ .

Proof. By Lemma 4.6, we have $ \mathbf {e}^{(A^+)}\mathbf {k}_{\lambda }=\mathbf {k}_\mu \mathbf {e}^{(A^+)}$ and $\mathbf {k}_{\lambda }\mathbf {f}^{(A^-)}=\mathbf {f}^{(A^-)}\mathbf {k}_\nu $ where

$$ \begin{align*}\mu={\lambda}+\sum_{2\leqslant j\leqslant n}\sum_{1\leqslant k<j}a_{k,j}\sum_{k\leqslant s<j}\alpha_s={\lambda}+\sum_{2\leqslant j\leqslant n}\sum_{1\leqslant k<j}a_{k,j}(\boldsymbol{e}_k-\boldsymbol{e}_j)={\lambda}-\textrm{co}(A^+)+\textrm{ro}(A^+), \end{align*} $$

and

$$ \begin{align*}\nu={\lambda}+\sum_{2\leqslant j\leqslant n}\sum_{1\leqslant k<j}a_{j,k}\sum_{k\leqslant s<j}\alpha_s ={\lambda}+\sum_{2\leqslant j\leqslant n}\sum_{1\leqslant k<j}a_{j,k}(\boldsymbol{e}_k-\boldsymbol{e}_j)={\lambda}+\textrm{co}(A^-)-\textrm{ro}(A^-).\end{align*} $$

The proof is completed.

Recall the sets $\Theta ^+(n)_r$ and $\Theta ^-(n)_r$ defined in (3.1).

Lemma 4.8. Let ${\lambda } \in \Lambda (n,d)$ .

  1. (1) If $A \in \Theta ^+(n)_r$ and ${\lambda }_i<\sigma _i(A)$ for some i, then we have $\mathbf {e}^{(A)}\mathbf {k}_{\lambda }=0$ .

  2. (2) If $A \in \Theta ^-(n)_r$ and ${\lambda }_i<\sigma _i(A)$ for some i, then we have $\mathbf {k}_{\lambda }\mathbf {f}^{(A)}=0$ .

Proof. If $A \in \Theta ^+(n)_r$ and ${\lambda }_i<\sigma _i(A)$ for some i, then by Lemma 4.6 we have

$$ \begin{align*} \mathbf{e}^{(A)}\mathbf{k}_{\lambda}=\mathbf{m}_n\mathbf{m}_{n-1}\cdots \mathbf{m}_2\mathbf{k}_{\lambda}=\mathbf{m}_n\mathbf{m}_{n-1}\cdots\mathbf{m}_{i+1}\mathbf{k}_\mu\mathbf{m}_i\mathbf{m}_{i-1}\cdots\mathbf{m}_2, \end{align*} $$

where $\mathbf {m}_j=\mathbf {e}^{(a_{j-1,j})}_{j-1}(\mathbf {e}_{j-2}^{(a_{j-2, j})} \mathbf {e}_{j-1}^{(a_{j-2, j})}) \cdots (\mathbf {e}_{1}^{(a_{1, j})} \mathbf { e}_{2}^{(a_{1, j})} \cdots \mathbf {e}_{j-1}^{(a_{1, j})})$ and

$$ \begin{align*}\mu={\lambda}+\sum_{2\leqslant j\leqslant i}\sum_{1\leqslant k<j}a_{k,j}\sum_{k\leqslant s<j}\alpha_s={\lambda}+\sum_{2\leqslant j\leqslant i}\sum_{1\leqslant k<j}a_{k,j}(\boldsymbol{e}_k-\boldsymbol{e}_j). \end{align*} $$

Since $\mu _i={\lambda }_i-\sigma _i(A)<0$ we have $\mathbf {k}_\mu =0$ . Hence, we have $\mathbf {e}^{(A)}\mathbf {k}_{\lambda }=0$ . Assume now that $A \in \Theta ^-(n)_r$ and ${\lambda }_i<\sigma _i(A)$ for some i. Then, we have $\mathbf {k}_{\lambda }\mathbf {f}^{(A)}=\tau _d(\mathbf {e}^{({}^tA)}\mathbf {k}_{\lambda })=0$ . The proof is completed.

For $A \in \Theta ^\pm (n)_r$ and ${\lambda } \in \Lambda (n,d)$ , let

$$ \begin{align*}\mathbf{m}^{(A,{\lambda})}=\mathbf{e}^{(A^+)} \mathbf{k}_{\lambda} \mathbf{f}^{(A^-)}.\end{align*} $$

Proposition 4.9. The set $\mathbf {M}_{d,r}=\{\mathbf {m}^{(A,{\lambda })}| A \in \Theta ^\pm (n)_r,\, {\lambda } \in \Lambda (n,d),\, {\lambda }\geqslant {\boldsymbol \sigma }(A)\}$ is a spanning set for .

Proof. By the definition of $I_{d,r}$ we have $\mathbf {k}_i=\sum _{{\lambda }\in \Lambda (n,d)}\varepsilon ^{{\lambda }_i}\mathbf {k}_{\lambda }$ and $\mathbf {k}_{\lambda }=\sum _{\mu \in \Lambda (n,d)} \big [{\mu \atop {\lambda }}\big ]_{\varepsilon }\mathbf {k}_\mu $ for ${\lambda }\in \Lambda (n,d)$ and $1\leqslant i\leqslant n$ . Hence, by Proposition 3.1, we see that the algebra is spanned by the elements $\mathbf {e}^{(A^+)} \mathbf {k}_{\lambda } \mathbf {f}^{(A^-)}$ for $A\in \Theta ^\pm (n)_r$ and $\lambda \in \Lambda (n,d)$ . Therefore, to prove the proposition, we have to show that if ${\lambda }_i< \sigma _i(A)$ for some i, then $\mathbf {m}^{(A,{\lambda })}$ lies in the span of $\mathbf {M}_{d,r}$ .

We argue by induction on $\textrm {deg}(A)$ . The result follows from Lemma 4.4 in the cases where $\textrm {deg}(A)=1$ . Assume now that $\textrm {deg}(A)>1$ , and suppose ${\lambda }_i<\sigma _i(A)$ for some $1\leqslant i\leqslant n$ . For $2\leqslant j\leqslant n$ let

$$ \begin{align*} \begin{aligned} \mathbf{m}_j&=\mathbf{e}^{(a_{j-1,j})}_{j-1}(\mathbf{e}_{j-2}^{(a_{j-2, j})} \mathbf{e}_{j-1}^{(a_{j-2, j})}) \cdots(\mathbf{e}_{1}^{(a_{1, j})} \mathbf{ e}_{2}^{(a_{1, j})} \cdots \mathbf{e}_{j-1}^{(a_{1, j})}),\\ \mathbf{m}_j'&=(\mathbf{f}_{j-1}^{(a_{j, 1})} \cdots \mathbf{f}_{2}^{(a_{j, 1})} \mathbf{ f}_{1}^{(a_{j, 1})}) \cdots(\mathbf{f}_{j-1}^{(a_{j, j-2})} \mathbf{f}_{j-2}^{(a_{j, j-2})}) \mathbf{f}_{j-1}^{(a_{j, j-1})}. \end{aligned} \end{align*} $$

Then, we have $\mathbf {e}^{(A^+)} =\mathbf {m}_n\mathbf {m}_{n-1}\cdots \mathbf {m}_2$ and $\mathbf {f}^{(A^-)} =\mathbf {m}_2^{\prime }\mathbf {m}_{3}^{\prime }\cdots \mathbf {m}_n'$ . Let $A_i$ be the submatrix of A consisting of the first i rows and columns, and write $\mathbf {e}^{(A^+)}=\mathbf {x}_1 \mathbf {e}^{(A_i^{+})}, \mathbf { f}^{(A^-)}=\mathbf {f}^{(A_i^-)}\mathbf {x}_1^\prime $ . Then,

$$ \begin{align*}\mathbf{m}^{(A,{\lambda})}=\mathbf{x}_1 \mathbf{e}^{(A_i^{+})}\mathbf{k}_{\lambda}\mathbf{f}^{(A_i^-)}\mathbf{x}_1^\prime,\end{align*} $$

where $\mathbf {x}_1=\mathbf {m}_n\mathbf {m}_{n-1}\cdots \mathbf {m}_{i+1}$ and $\mathbf {x}_1^{\prime }=\mathbf {m}_{i+1}^{\prime }\mathbf {m}_{i+2}^{\prime }\cdots \mathbf {m}_{n}^{\prime }$ . By Lemma 4.8, we may assume that ${\lambda }_i\geqslant \sigma _i(A_i^{+})=\sigma _i(A^{+})$ . Furthermore, by Lemma 4.7, we have

$$ \begin{align*}\mathbf{m}^{(A,{\lambda})}=\mathbf{x}_1 \mathbf{k}_{{\lambda}'} \mathbf{e}^{(A_i^{+})}\mathbf{f}^{(A_i^-)}\mathbf{x}_1', \end{align*} $$

where ${\lambda }^\prime ={\lambda }-\textrm {co}(A_i^{+})+\textrm {ro}(A_i^+)$ . By Lemma 2.1,

$$ \begin{align*}\mathbf{e}^{(A_i^{+})}\mathbf{f}^{(A_i^-)}=\mathbf{f}^{(A_i^-)}\mathbf{e}^{(A_i^{+})}+f, \end{align*} $$

where f is a -linear combination of $\mathbf {x}_j^{\mathbf {e}}\mathbf {h}_j \mathbf {x}^{\mathbf {f}}_j$ with and $\textrm {deg}(\mathbf {x}_j^{\mathbf {e}})+\textrm {deg} (\mathbf {x}_j^{\mathbf { f}}) < \textrm {deg}(A_i)$ . Here, $\mathbf {x}_j^{\mathbf {e}}$ (resp. $\mathbf {x}_j^{\mathbf {f}}$ ) denotes a monomial in the $\mathbf {e}_i^{(a)}$ (resp. $\mathbf {f}_i^{(a)}$ ). Thus, $\textrm {deg}(\mathbf {x}_1)+\textrm {deg}(\mathbf {x}_j^{\mathbf {e}})+\textrm {deg}(\mathbf {x}^{\mathbf {f}}_j)+\textrm {deg}(\mathbf {x}_1')<\textrm {deg}(A)$ . Since ${\lambda }_i<\sigma _i(A)$ , we have ${\lambda }_i^{\prime }={\lambda }_i-\sigma _i(A_i^+)<\sigma _i(A)-\sigma _i(A_i^+)=\sigma _i(A_i^-)$ . It follows from Lemma 4.7 that $ \mathbf {k}_{{\lambda }'}\mathbf {f}^{(A_i^-)}=0$ . Hence, we have

$$ \begin{align*}\mathbf{m}^{(A,{\lambda})}=\mathbf{x}_1\mathbf{k}_{{\lambda}'}f\mathbf{x}_1'.\end{align*} $$

Furthermore, by Proposition 3.1, we see that each $\mathbf {x}_1\mathbf {x}_j^{\mathbf {e}}$ is a -linear combination of $\mathbf { e}^{(B)}$ with $B\in \Theta ^+(n)_r$ , $\textrm {deg}(B)=\textrm {deg}(\mathbf {x}_1\mathbf {x}_j^{\mathbf {e}})$ and each $\mathbf {x}_j^{\mathbf {f}} \mathbf {x}_1^\prime $ is a -linear combination of $\mathbf {f}^{(C)}$ with $C\in \Theta ^-(n)_r$ , $\textrm {deg}(C)=\textrm { deg}(\mathbf {x}_j^{\mathbf {f}} \mathbf {x}_1^\prime )$ . Therefore, by Lemma 4.7 each $\mathbf {x}_1 \mathbf {k}_{{\lambda }'} \mathbf {x}_j^{\mathbf {e}}\mathbf {h}_j \mathbf {x}^{\mathbf {f}}_j\mathbf {x}_1^\prime $ is a -linear combination of $\mathbf {m}^{(A',\mu )}$ with $\textrm {deg}(A')<\textrm {deg}(A)$ , since $\textrm {deg}(\mathbf {x}_1)+\textrm {deg}(\mathbf {x}_j^{\mathbf {e}})+\textrm {deg}(\mathbf {x}^{\mathbf {f}}_j)+\textrm {deg}(\mathbf {x}_1')<\textrm {deg}(A)$ . Consequently, by induction, we have . The proof is completed.

By Lemma 3.5, we have Therefore, the map given in (3.7) restricts to a surjective algebra homomorphism

(4.2)

By (3.8), we have

$$ \begin{align*} \zeta_{d,r}(K_{\lambda})=[\operatorname{diag}({\lambda})]_{\varepsilon}, \end{align*} $$

for ${\lambda }\in \Lambda (n,d)$ . So, we have $\zeta _{d,r} (I_{d,r})=0$ . Hence, the map induces a surjective algebra homomorphism

Theorem 4.10. The map $\zeta _{d,r}^{\prime }$ is an algebra isomorphism. In particular, the kernel of the map is generated by the elements $1-\sum _{\mu \in \Lambda (n,d)} K_{\mu }$ , $K_{i} K_{\lambda }-\varepsilon ^{\lambda _{i}} K_{\lambda }$ and $\big [{K_i;0 \atop t}\big ] K_{\lambda }-\big [{{\lambda }_i \atop t}\big ]_{\varepsilon } K_{\lambda }$ for $1 \leqslant i \leqslant n$ , $t \in \mathbb {N}$ and $\lambda \in \Lambda (n,d)$ .

Proof. By Proposition 3.7, the set $\zeta _{d,r}^{\prime }(\mathbf {M}_{d,r})$ forms a -basis for . Thus, by Proposition 4.9, we conclude that $\zeta _{d,r}'$ is an algebra isomorphism.

5 The algebra

For $d\in \mathbb N$ , let

where $J_{d,r}$ is the two-sided ideal of generated by the elements $1_{\lambda }$ for $\lambda \notin \Lambda (n,d)$ . For ${\lambda }\in \mathbb Z^{n}$ , let

$$ \begin{align*}\mathfrak{k}_{\lambda}=1_{\lambda}+J_{d,r}.\end{align*} $$

Then, we have $1=\sum _{{\lambda }\in \Lambda (n,d)}\mathfrak {k}_{\lambda }$ . For $1\leqslant i\leqslant n-1$ and $0\leqslant m<lp^{r-1}$ , let

$$ \begin{align*}\mathfrak{e}_i^{(m)}=\sum_{{\lambda}\in\Lambda(n,d)}E_i^{(m)}1_{\lambda}+J_{d,r},\ \mathfrak{f}_i^{(m)}=\sum_{{\lambda}\in\Lambda(n,d)}1_{\lambda} F_i^{(m)}+J_{d,r}.\end{align*} $$

For $A\in \Theta ^\pm (n)_r$ , let. Furthermore for $1\leqslant i\leqslant n$ , $1\leqslant j\leqslant n-1$ , $c\in\mathbb{Z}$ and $t\in\mathbb{N}$ let

$$ \begin{align*}\mathfrak{k}_i=\sum_{\lambda\in\Lambda(n,d)}K_i1_\lambda+J_{d,r},\ \bigg[{\mathfrak{k}_i;c\atop t}\bigg]=\sum_{\lambda\in\Lambda(n,d)}\bigg[{K_i;c\atop t}\bigg]1_\lambda+J_{d,r},\ \bigg[{\widetilde{\mathfrak{k}}_j;c\atop t}\bigg]=\sum_{\lambda\in\Lambda(n,d)}\bigg[{\widetilde K_j;c\atop t}\bigg]1_\lambda+J_{d,r}.\end{align*} $$
$$ \begin{align*}\mathfrak{e}^{(A^+)}=\sum_{{\lambda}\in\Lambda(n,d)}E^{(A^+)} 1_{\lambda}+J_{d,r},\ \mathfrak{f}^{(A^-)}=\sum_{{\lambda}\in\Lambda(n,d)}1_{\lambda}F^{(A^-)} +J_{d,r}.\end{align*} $$

We will prove in Theorem 5.5 that the algebra is isomorphic to the infinitesimal q-Schur algebra .

By [Reference Beilinson, Lusztig and MacPherson3, Lem. 3.10 and Prop. 4.2], we have the following result.

Lemma 5.1. There is an unique algebra antiautomorphism $\dot \tau _d$ on such that $\dot \tau _d(\mathfrak {e}_i^{(m)})=\mathfrak {f}_i^{(m)}$ , $\dot \tau _d(\mathfrak {f}_i^{(m)})=\mathfrak {e}_i^{(m)}$ and $\dot \tau _d(\mathfrak {k}_{\lambda })=\mathfrak {k}_{\lambda }$ for $1\leqslant i\leqslant n-1$ , $0\leqslant m<lp^{r-1}$ and ${\lambda }\in \Lambda (n,d)$ .

Clearly we have the following result.

Lemma 5.2. Let $1 \leqslant i \leqslant n, 1\leqslant j\leqslant n-1$ , $c\in \mathbb Z$ , $t\in \mathbb N$ and $\lambda \in \mathbb {Z}^{n}$ . The following formulas hold in

$$ \begin{align*}\mathfrak{k}_{i}\mathfrak{k}_{\lambda}=\varepsilon^{\lambda_{i}}\mathfrak{k}_{\lambda},\ \bigg[{\mathfrak{k}_i;c\atop t}\bigg]\mathfrak{k}_{\lambda}=\bigg[{{\lambda}_i+c \atop t}\bigg]_{\varepsilon}\mathfrak{k}_{\lambda},\ \bigg[{\widetilde{\mathfrak{k}}_j;c \atop t}\bigg]\mathfrak{k}_{\lambda}=\bigg[{{\lambda}_j-{\lambda}_{j+1}+c \atop t}\bigg]_{\varepsilon} \mathfrak{k}_{\lambda}.\end{align*} $$

Recall from (3.1) that $\Theta ^\pm (n)_r=\{A\in \Theta ^\pm (n) \mid 0 \leqslant a_{ij} < lp^{r-1}, \forall i \neq j\} $ , $\Theta ^+(n)_r=\{A\in \Theta ^+(n) \mid 0 \leqslant a_{ij} < lp^{r-1}, \forall i < j \}$ and $\Theta ^-(n)_r=\{A\in \Theta ^-(n) \mid 0 \leqslant a_{ij} < lp^{r-1}, \forall i> j \}$ .

Lemma 5.3. Let $\lambda \in \Lambda (n,d)$ . The following results hold in . (1) If $A \in \Theta ^+(n)_r$ and $\lambda _{i}<\sigma _{i}(A)$ for some i, then $\mathfrak {e}^{(A)}\mathfrak {k}_{\lambda } =0$ . (2) If $A \in \Theta ^-(n)_r$ and $\lambda _{i}<\sigma _{i}(A)$ for some i, then $\mathfrak {k}_{\lambda }\mathfrak {f}^{(A)}=0$ .

Proof. Assume $A\in \Theta ^+(n)_r$ and ${\lambda }_i<\sigma _i(A)$ for some i. For $\mu \in \mathbb Z^{n}, 1 \leqslant j \leqslant n-1$ , we have $\mathfrak {e}_j\mathfrak {k}_\mu =\mathfrak {k}_{\mu +\alpha _j} \mathfrak {e}_j$ . This implies that

$$ \begin{align*}\mathfrak{m}_i(A)\mathfrak{m}_{i-1}(A)\cdots \mathfrak{m}_2(A)\mathfrak{k}_{\lambda}=\mathfrak{k}_{{\lambda}+\nu}\mathfrak{m}_i(A)\mathfrak{m}_{i-1}(A)\cdots \mathfrak{m}_2(A),\end{align*} $$

where $\mathfrak {m}_{j} =\mathfrak {e}_{j-1}^{(a_{j-1, j})}(\mathfrak {e}_{j-2}^{(a_{j-2, j})} \mathfrak {e}_{j-1}^{(a_{j-2, j})}) \cdots (\mathfrak {e}_{1}^{(a_{1, j})} \mathfrak {e}_{2}^{(a_{1, j})} \cdots \mathfrak {e}_{j-1}^{(a_{1, j})})$ and

$$ \begin{align*}\nu=\sum_{2\leqslant j\leqslant i}\bigg(\sum_{1\leqslant s\leqslant j-1}a_{s,j}\boldsymbol{e}_s-(\sum_{1\leqslant s\leqslant j-1}a_{s,j})\boldsymbol{e}_j\bigg).\end{align*} $$

Thus, we have $ {\mathfrak {e}^{(A)}\mathfrak {k}_{\lambda }}= {\mathfrak {m}_n \mathfrak {m}_{n-1} \cdots \mathfrak {m}_{i+1} \mathfrak {k}_{{\lambda }+\nu } \mathfrak {m}_i \mathfrak {m}_{i-1} \cdots \mathfrak {m}_2 }.$ Since ${\lambda }_i<\sigma _i(A)$ , we have ${\lambda }+\nu \not \in \Lambda (n,d)$ . It follows that $\mathfrak {k}_{{\lambda }+\nu }=0$ . Therefore, we have $\mathfrak {e}^{(A)}\mathfrak {k}_{\lambda }=0$ . Applying $\dot \tau _d$ to the identity in (1) gives that in (2).

Proposition 5.4. Let ${\mathfrak M}_{d,r}=\{\mathfrak {e}^{(A^+)}\mathfrak {k}_{\lambda }\mathfrak {f}^{(A^-)} \mid A \in \Theta ^\pm (n)_r,\, \lambda \in \Lambda (n,d),\, \lambda \geqslant {\boldsymbol \sigma }(A) \}$ . Then, the algebra is spanned as a -module by the elements in ${\mathfrak M}_{d,r}$ .

Proof. By Proposition 3.3, we have

Thus, it is enough to prove that if ${\lambda } \in \Lambda (n,d)$ and $ {\lambda }_i <\sigma _i(A) $ for some i, . We apply induction on $\textrm {deg}(A)$ . If $\textrm {deg}(A)=1$ , then by Lemma 5.3 we have $\mathfrak {e}^{(A^+)}\mathfrak {k}_{\lambda }\mathfrak {f}^{(A^-)}=0$ . Now suppose $\textrm {deg}(A)>1$ . For $2\leqslant j\leqslant n$ let

$$ \begin{align*} \begin{aligned} \mathfrak{m}_{j}&=\mathfrak{e}_{j-1}^{(a_{j-1, j})}(\mathfrak{e}_{j-2}^{(a_{j-2, j})} \mathfrak{e}_{j-1}^{(a_{j-2, j})}) \cdots(\mathfrak{e}_{1}^{(a_{1, j})} \mathfrak{e}_{2}^{(a_{1, j})} \cdots \mathfrak{e}_{j-1}^{(a_{1, j})}) \\ \mathfrak{m}_j'&=(\mathfrak{f}_{j-1}^{(a_{j, 1})} \cdots \mathfrak{f}_{2}^{(a_{j, 1})} \mathfrak{f}_{1}^{(a_{j, 1})}) \cdots(\mathfrak{f}_{j-1}^{(a_{j, j-2})} \mathfrak{f}_{j-2}^{(a_{j, j-2})}) \mathfrak{f}_{j-1}^{(a_{j, j-1})}. \end{aligned} \end{align*} $$

Then, we have

$$ \begin{align*}\mathfrak{e}^{(A^+)}\mathfrak{k}_{\lambda}\mathfrak{f}^{(A^-)} =X_1(X_2\mathfrak{k}_{\lambda})Y_1 Y_2=X_1(\mathfrak{k}_{{\lambda}'}X_2)Y_1 Y_2,\end{align*} $$

where $X_1=\mathfrak {m}_n\mathfrak {m}_{n-1}\cdots \mathfrak {m}_{i+1}$ , $X_2=\mathfrak {m}_i\mathfrak {m}_{i-1}\cdots \mathfrak {m}_2$ , $Y_1=\mathfrak {m}_2^{\prime }\mathfrak {m}_3^{\prime }\cdots \mathfrak {m}_i^{\prime }$ , $Y_2=\mathfrak {m}_{i+1}^{\prime }\mathfrak {m}_{i+2}^{\prime }\cdots \mathfrak {m}_{n}^{\prime }$ and

$$ \begin{align*}{\lambda}'={\lambda}+\sum_{2\leqslant j\leqslant i}\left(\sum_{1\leqslant s\leqslant j-1}a_{s,j}\boldsymbol{e}_s-\left(\sum_{1\leqslant s\leqslant j-1}a_{s,j}\right)\boldsymbol{e}_j\right).\end{align*} $$

By Lemma 2.1 and 5.2, we have $\mathfrak {k}_{{\lambda }'}X_2Y_1=\mathfrak {k}_{{\lambda }'}Y_1X_2+\mathfrak {k}_{{\lambda }'}f_1f_2$ where $f_1$ is a -linear combination of monomials $f_{1,k}$ in the $\mathfrak {e}_s^{(a)}$ , $f_{2}$ is a -linear combination of monomials $f_{2,k}$ in the $\mathfrak {f}_s^{(a)}$ , and $\textrm {deg}(f_{1,k})+\textrm {deg}(f_{2,k})<\textrm {deg}(X_2)+\textrm {deg}(Y_1)$ . Since ${\lambda }_i<\sigma _i(A)$ , we have ${\lambda }_i^{\prime }<\sigma _i(A^-)$ . Hence by Lemma 5.3, we have $\mathfrak {k}_{{\lambda }'}Y_1=0$ . This implies that

$$ \begin{align*}\mathfrak{e}^{(A^+)}\mathfrak{k}_{\lambda}\mathfrak{f}^{(A^-)}=X_1\mathfrak{k}_{{\lambda}'}f_1f_2Y_2 =\mathfrak{k}_{{\lambda}"}X_1f_1f_2Y_2,\end{align*} $$

where

$$ \begin{align*}{\lambda}"={\lambda}+\sum_{2\leqslant j\leqslant n}\left(\sum_{1\leqslant s\leqslant j-1}a_{s,j}\boldsymbol{e}_s-\left(\sum_{1\leqslant s\leqslant j-1}a_{s,j}\right)\boldsymbol{e}_j\right).\end{align*} $$

By Proposition 3.1, we have and . Thus,

By induction, we have for $B\in \Theta ^\pm (n)_r$ with $\textrm {deg}(B)<\textrm {deg}(A)$ . Therefore, .

By Lemma 3.6, we have Therefore, the map given in (3.10) restricts to a surjective algebra homomorphism

(5.1)

Since $\dot {\zeta }_{d,r} (J_{d,r})=0$ , the map induces a surjective algebra homomorphism

A presentation of was given in [Reference Fu16, Th. 3.9] in the case where $r=1$ , is a field and $l'$ is odd. We now generalize this result to the general case.

Theorem 5.5. The map is an algebra isomorphism. In particular, the kernel of the map is generated by the elements $1_{\lambda }$ for $\lambda \notin \Lambda (n,d)$ .

Proof. By Proposition 3.7, the set $\dot {\zeta }_{d,r}'{({\mathfrak M}_{d,r})}$ forms a -basis for . Therefore, by Proposition 5.4, we conclude that $\dot {\zeta }_{d,r}'$ is an algebra isomorphism.

6 The classical case

Let ${\mathcal U}(\mathfrak {gl}_n)$ be the $\mathbb Q$ -algebra defined by the generators

$$ \begin{align*}\bar E_i,\ \bar F_i\quad(1\leqslant i\leqslant n-1),\ H_j \quad(1\leqslant j\leqslant n),\end{align*} $$

and the relations

  1. (a) $H_iH_j=H_jH_i;$

  2. (b) $H_{i}\bar E_j-\bar E_jH_i=(\delta _{i,j}-\delta _{i,j+1}) \bar E_j;$

  3. (c) $H_{i}\bar F_j-\bar F_jH_i=(-\delta _{i,j}+\delta _{i,j+1}) \bar F_j;$

  4. (d) $ \bar E_i\bar E_j=\bar E_j\bar E_i,\ \bar F_i\bar F_j=\bar F_j\bar F_i\ when\ |i-j|>1;$

  5. (e) $\bar E_i\bar F_j-\bar F_j\bar E_i=\delta _{i,j}H_i;$

  6. (f) $ \bar E_i^2\bar E_j-2\bar E_i\bar E_j\bar E_i+\bar E_j\bar E_i^2=0\ when\ |i-j|=1;$

  7. (g) $ \bar F_i^2\bar F_j-2\bar F_i\bar F_j\bar F_i+\bar F_j\bar F_i^2=0\ when\ |i-j|=1.$

Then, ${\mathcal U}(\mathfrak {gl}_n)$ is the universal enveloping algebra of $\mathfrak {gl}_n$ . Let ${\mathcal U}_{\mathbb Z}(\mathfrak {gl}_n)$ be the $\mathbb Z$ -subalgebra of ${\mathcal U}(\mathfrak {gl}_n)$ generated by $\bar E_i^{(m)}$ , $\bar F_i^{(m)}$ , and $\big ({H_j\atop t}\big )$ for $1\leqslant i\leqslant n-1$ , $1\leqslant j\leqslant n$ and $m,t\in \mathbb N$ , where

$$ \begin{align*}\bar E_i^{(m)}=\frac{\bar E_i^m}{m!},\, \bar F_i^{(m)}=\frac{\bar F_i^m}{m!},\, \left({H_j\atop t}\right)=\frac{H_j(H_{j}-1)\cdots (H_{j}-t+1)}{t!}.\end{align*} $$

Let ${U_{\mathbb Z}(\mathfrak {gl}_n)}={U_{\mathcal Z}(\mathfrak {gl}_n)}\otimes _{\mathcal Z}\mathbb Z$ , where $\mathbb Z$ is viewed as ${\mathcal Z}$ -modules by specializing v to $1$ . Let ${\bar U_{\mathbb Z}(\mathfrak {gl}_n)}={U_{\mathbb Z}(\mathfrak {gl}_n)}/\langle K_i-1\mid 1\leqslant i\leqslant n\rangle $ . We shall denote the images of $E_i^{(m)}$ , $F_i^{(m)}$ , etc. in ${\bar U_{\mathbb Z}(\mathfrak {gl}_n)}$ by the same letters. By [Reference Lusztig22, 6.7(c)], there is an algebra isomorphism

(6.1) $$ \begin{align} \theta:{\bar U_{\mathbb Z}(\mathfrak{gl}_n)}\rightarrow{\mathcal U}_{\mathbb Z}(\mathfrak{gl}_n), \end{align} $$

such that $\theta (E_i^{(m)})=\bar E_i^{(m)}$ , $\theta (F_i^{(m)})=\bar F_i^{(m)}$ , $\theta (\big [{K_j;0\atop t}\big ])=\big ({H_j\atop t}\big )$ for $1\leqslant i\leqslant n-1$ , $1\leqslant j\leqslant n$ , $m,t\in \mathbb N$ . We will identify ${\bar U_{\mathbb Z}(\mathfrak {gl}_n)}$ with ${\mathcal U}_{\mathbb Z}(\mathfrak {gl}_n)$ .

Let ${\mathcal S}_{\mathbb Z}(n,d)={\mathcal S}_{\mathcal Z}(n,d)\otimes _{\mathcal Z}\mathbb Z$ where $\mathbb Z$ is viewed as ${\mathcal Z}$ -modules by specializing v to $1$ . The map $\zeta _{d}$ given in (3.6) induces, upon tensoring with $\mathbb Z$ , a surjective algebra homomorphism

$$ \begin{align*}\xi_{d}:{U_{\mathbb Z}(\mathfrak{gl}_n)}\rightarrow{\mathcal S}_{\mathbb Z}(n,d).\end{align*} $$

Since $\xi _{d}(K_i)=1$ , the map $\xi _{d}$ induces a surjective algebra homomorphism

$$ \begin{align*}\xi_{d}:{\mathcal U}_{\mathbb Z}(\mathfrak{gl}_n)={\bar U_{\mathbb Z}(\mathfrak{gl}_n)}\rightarrow{\mathcal S}_{\mathbb Z}(n,d).\end{align*} $$

In the remainder of this section, we assume that $l'=l=1$ . Let

We shall denote the images of $\bar E_{i}^{(m)}$ , $\bar F_{i}^{(m)}$ , etc. in by the same letters. For $A\in {\Theta (n,d)}$ , let $[A]_1$ be the image of $[A]$ in . The map $\xi _{d}$ induces, upon tensoring with , a surjective algebra homomorphism

Let be the infinitesimal Schur algebra introduced in [Reference Doty, Nakano and Peters11]. By [Reference Doty, Nakano and Peters11, (5.3.4)], the set $\{[A]_1\mid A\in {\Theta (n,d)},\,a_{i,j}<p^r,\,\forall i,j\}$ forms a -basis for . Hence, we have

Let be the -subalgebra of generated by the elements $\bar E_i^{(m)}$ , $\bar F_i^{(m)}$ , $\big ({H_j\atop t}\big )$ for $1\leqslant i\leqslant n-1$ , $1\leqslant j\leqslant n$ , $t\in \mathbb N$ and $0\leqslant m<p^{r}$ . Then, by (6.1), we have

Therefore, by Lemma 3.5, we have . Hence, by restricting the map $\xi _{d}$ to , we obtain a surjective algebra homomorphism

By Theorem 4.10, we obtain the following result.

Theorem 6.1. The kernel of the map is generated by the elements $1-\sum _{\mu \in \Lambda (n,d)} H_{\mu }$ and $\big ({H_i \atop t}\big ) H_{\lambda }-\big ({{\lambda }_i \atop t}\big ) H_{\lambda }$ for $1 \leqslant i \leqslant n$ , $t \in \mathbb {N}$ and $\lambda \in \Lambda (n,d)$ , where $H_{\lambda }=\prod _{1\leqslant i\leqslant n}\big ({H_i\atop {\lambda }_i}\big ).$

Let

$$ \begin{align*}\dot{\mathcal U}(\mathfrak{gl}_n):=\bigoplus_{{\lambda},\mu\in\mathbb Z^{n}}{}_{\lambda}{\mathcal U}(\mathfrak{gl}_n)_\mu,\end{align*} $$

where

$$ \begin{align*} {}_{\lambda}{\mathcal U}(\mathfrak{gl}_n)_\mu={\mathcal U}(\mathfrak{gl}_n)/\left(\sum_{{\mathbf{j}}\in\mathbb Z^{n}}\big(H^{\mathbf{j}}-{\lambda}^{{\mathbf{j}}}\big) {\mathcal U}(\mathfrak{gl}_n)+\sum_{{\mathbf{j}}\in\mathbb Z^{n}}{\mathcal U}(\mathfrak{gl}_n)\big(H^{\mathbf{j}}-\mu^{{\mathbf{j}}})\right), \end{align*} $$

$H^{\mathbf {j}}=\prod _{1\leqslant i\leqslant n} H_i^{j_i}$ and ${\lambda }^{{\mathbf {j}}}=\prod _{1\leqslant i\leqslant n}{\lambda }_i^{j_i}$ . Let $\bar \pi _{{\lambda },\mu }:{\mathcal U}(\mathfrak {gl}_n)\rightarrow {}_{\lambda }{\mathcal U}(\mathfrak {gl}_n)_\mu $ be the canonical projection. Let $\bar 1_{\lambda }=\bar \pi _{{\lambda },{\lambda }}(1)$ . As in the case of $\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$ , there is a natural associative $\mathbb Q$ -algebra structure on $\dot {\mathcal U}(\mathfrak {gl}_n)$ inherited from that of ${\mathcal U}(\mathfrak {gl}_n)$ , and $\dot {\mathcal U}(\mathfrak {gl}_n)$ is naturally a ${\mathcal U}(\mathfrak {gl}_n)$ -bimodule. Let $\dot {\mathcal U}_{\mathbb Z}(\mathfrak {gl}_n)$ be the $\mathbb Z$ -subalgebra of $\dot {\mathcal U}(\mathfrak {gl}_n)$ generated by the elements $\bar E_i^{(m)}\bar 1_{\lambda }$ and $\bar 1_{\lambda }\bar F_i^{(m)}$ for $1\leqslant i\leqslant n-1$ , ${\lambda }\in \mathbb Z^{n}$ and $m\in \mathbb N$ .

Let ${\dot U_{\mathbb Z}(\mathfrak {gl}_n)}=\dot {{U}}_{\mathcal Z}(\mathfrak {gl}_n)\otimes _{\mathcal Z}\mathbb Z$ , where $\mathbb Z$ is viewed as a ${\mathcal Z}$ -module by specializing v to $1$ . By (6.1), we have

(6.2) $$ \begin{align} {\dot U_{\mathbb Z}(\mathfrak{gl}_n)}\cong\dot{\mathcal U}_{\mathbb Z}(\mathfrak{gl}_n). \end{align} $$

We will identify ${\dot U_{\mathbb Z}(\mathfrak {gl}_n)}$ with $\dot {\mathcal U}_{\mathbb Z}(\mathfrak {gl}_n)$ . The map $\dot {\zeta }_{d}$ given in (3.9) induces, upon tensoring with $\mathbb Z$ , a surjective algebra homomorphism

$$ \begin{align*}\dot\xi_{d}:\dot{\mathcal U}_{\mathbb Z}(\mathfrak{gl}_n)\rightarrow{\mathcal S}_{\mathbb Z}(n,d).\end{align*} $$

Let . We shall denote the images of $\bar E_{i}^{(m)}\bar 1_{\lambda }$ , $\bar 1_{\lambda }\bar F_{i}^{(m)}$ in by the same letters. The map $\dot \xi _{d}$ induces, upon tensoring with , a surjective algebra homomorphism

Let be the -subalgebra of generated by the elements $\bar E_i^{(m)}\bar 1_{\lambda }$ , $\bar 1_{\lambda }\bar F_i^{(m)}$ for $1\leqslant i\leqslant n-1$ , ${\lambda }\in \mathbb Z^{n}$ and $0\leqslant m<p^{r}$ . Then, by (6.2), we have

By Lemma 3.6, we have . Hence, by restricting the map $\dot {\xi }_{d}$ to , we obtain a surjective algebra homomorphism

By Theorem 5.5, we obtain the following result.

Theorem 6.2. The kernel of the map is generated by the elements $\bar 1_{\lambda }$ for ${\lambda }\not \in \Lambda (n,d)$ .

7 Borel subalgebras of the infinitesimal q-Schur algebra

In this section, we investigate Borel subalgebras of the infinitesimal q-Schur algebra . In what follows, we focus entirely on the quantum case as the corresponding results for the classical cases are essentially the same.

Let and . These algebras are called Borel subalgebras of . Furthermore, let (resp. ) be the -subalgebra of generated by the elements $E_{i}^{(m)}1_{\lambda }$ (resp. $1_{\lambda } F_{i}^{(m)}$ ) for $1\leqslant i\leqslant n-1$ , ${\lambda }\in \mathbb Z^{n}$ and $0\leqslant m<lp^{r-1}$ .

Let (resp. ) be the -subalgebra of generated by $\mathtt {e}_i^{(m)}$ (resp. $\mathtt {f}_i^{(m)}$ ) and $\mathtt {k}_\lambda $ for $1 \leqslant i \leqslant n-1$ , $0\leqslant m<lp^{r-1}$ and $\lambda \in \Lambda (n,d)$ . These algebras are called Borel subalgebras of .

Let (resp. ) be the -subalgebra of generated by $\mathtt {e}_i^{(m)}$ (resp. $\mathtt {f}_i^{(m)}$ ) for $1\leqslant i\leqslant n-1$ and $0\leqslant m<lp^{r-1}$ .

Lemma 7.1. Each of the following set forms a -basis of :

  1. (1) ${\mathscr M}_{d,r}^+:=\{\mathtt {e}^{(A)} \mid A \in \Theta ^+(n)_r,\,\sigma (A)\leqslant d\}$ ;

  2. (2) ${\mathscr P}_{d,r}^+:=\{A(\mathbf {0},d)\mid A\in \Theta ^+(n)_r,\,\sigma (A)\leqslant d\}$ .

A similar result holds for .

Proof. By [Reference Doty and Giaquinto8, Prop. 8.2], we have $1=\sum _{{\lambda }\in \Lambda (n,d)}\mathtt {k}_{\lambda }$ . Hence, by [Reference Du and Parshall15, Lem. 4.10], we have

(7.1) $$ \begin{align} {\mathtt e}^{(A)}=\sum_{{\lambda}\in\Lambda(n,d) }{\mathtt e}^{(A)}\mathtt{k}_{\lambda}=\sum_{{\lambda}\in\Lambda(n,d)\atop{\lambda}\geqslant{\boldsymbol\sigma}(A)}{\mathtt e}^{(A)}\mathtt{k}_{\lambda}, \end{align} $$

for $A\in \Theta ^+(n)_r$ . Furthermore, we have

(7.2) $$ \begin{align} A(\mathbf{0},d)=\sum_{{\lambda}\in\Lambda(n,d)}A(\mathbf{0},d)[\operatorname{diag}({\lambda})]_{\varepsilon}=\sum_{{\lambda}\in\Lambda(n,d)\atop{\lambda}\geqslant{\boldsymbol\sigma}(A)} A(\mathbf{0},d)[\operatorname{diag}({\lambda})]_{\varepsilon}, \end{align} $$

for $A\in \Theta ^+(n)_r$ , since $1=\sum _{{\lambda }\in \Lambda (n,d)}[\operatorname {diag}({\lambda })]_{\varepsilon }$ . Therefore, we have

$$ \begin{align*}{\mathtt e}^{(A)}=A(\mathbf{0},d)=0,\end{align*} $$

for $A\in \Theta ^+(n)_r$ with $\sigma (A)>d$ . Hence, by Proposition 3.1 and 3.2, we conclude that . Furthermore, by Proposition 3.7, the sets ${\mathscr M}_{d,r}^+$ and ${\mathscr P}_{d,r}^+$ are both linearly independent. Our assertion follows.

Lemma 7.2. Each of the following set forms a -basis of :

  1. (1) ${\mathscr M}_{d,r}^{\geqslant 0}:=\{{\mathtt e}^{(A)}\mathtt {k}_\lambda \mid A \in \Theta ^+(n)_r,\,{\lambda }\in \Lambda (n,d),\, \lambda \geqslant {\boldsymbol \sigma }(A)\}$ ;

  2. (2) ${\mathscr L}_{d,r}^{\geqslant 0}:= \{[A+\operatorname {diag}({\lambda })]_{\varepsilon } \mid A \in \Theta ^+(n)_r,\, {\lambda }\in \Lambda (n,d-\sigma (A)) \}$ .

A similar result holds for .

Proof. From Lemma 7.1, (7.1) and (7.2), it follows that . Therefore, the result follows from Proposition 3.7.

Let be the quotient of by $I_{d,r}^{\geqslant 0}$ , where $I_{d,r}^{\geqslant 0}$ is the two-sided ideal of generated by the elements $1-\sum _{\mu \in \Lambda (n,d)} K_{\mu }, K_{i} K_{\lambda }-\varepsilon ^{\lambda _{i}} K_{\lambda }$ and $\big [{K_i;0 \atop t}\big ] K_{\lambda }-\big [{{\lambda }_i \atop t}\big ]_{\varepsilon } K_{\lambda }$ for $1 \leqslant i \leqslant n$ , $t \in \mathbb {N}$ and $\lambda \in \Lambda (n,d)$ .

By restricting the map $\zeta _{d,r}$ given in (4.2) to , we obtain a surjective algebra homomorphism . Since $\zeta _{d,r}(I_{d,r}^{\geqslant 0})=0$ , the map $\zeta _{d,r}$ induces an epimorphism

Theorem 7.3. The map is an algebra isomorphism. In particular, the kernel of the map is $I_{d,r}^{\geqslant 0}$ . A similar result holds for .

Proof. Using an argument similar to the proof of Proposition 4.9, we can show that the algebra is spanned as a -module by the elements $E^{(A)} K_{\lambda }+I_{d,r}^{\geqslant 0}$ for $A \in \Theta ^+(n)_r$ , $\lambda \in \Lambda (n,d)$ and $\lambda \geqslant {\boldsymbol \sigma }(A)$ . Furthermore, by Lemma 7.2, the set

$$ \begin{align*}\{\zeta_{d,r}(E^{(A)} K_{\lambda}+I_{d,r}^{\geqslant 0})\mid A \in \Theta^+(n)_r,\, \lambda \in \Lambda(n,d),\, \lambda \geqslant {\boldsymbol\sigma}(A)\},\end{align*} $$

forms a -basis for . Hence, $\zeta _{d,r}' $ is an algebra isomorphism.

Let be the quotient of by $J_{d,r}^{\geqslant 0}$ , where $J_{d,r}^{\geqslant 0}$ is the two-sided ideal of generated by the elements $1_{\lambda }$ for $\lambda \not \in \Lambda (n,d)$ .

By restricting the map $\dot {\zeta }_{d,r}$ given in (5.1) to , we obtain a surjective algebra homomorphism . Since $\dot {\zeta }_{d,r}(J_{d,r}^{\geqslant 0})=0$ , the map $\dot {\zeta }_{d,r}$ induces an epimorphism

Theorem 7.4. The map is an algebra isomorphism. In particular, the kernel of the map is $J_{d,r}^{\geqslant 0}$ . A similar result holds for .

Proof. Using an argument similar to the proof of Proposition 5.4, we can show that the algebra is spanned as a -module by the elements $E^{(A)}1_{\lambda }+J_{d,r}^{\geqslant 0}$ for $A\in \Theta ^+(n)_r$ , ${\lambda } \in \Lambda (n,d)$ and ${\lambda } \geqslant {\boldsymbol \sigma }(A)$ . Furthermore, by Lemma 7.2, the set

$$ \begin{align*}\{\dot{\zeta}_{d,r}'(E^{(A)}1_{\lambda}+J_{d,r}^{\geqslant 0})\mid A\in \Theta^+(n)_r,\,\lambda \in \Lambda(n,d),\,\lambda \geqslant {\boldsymbol\sigma}(A)\},\end{align*} $$

forms a -basis of . Therefore, $\dot {\zeta }_{d,r}'$ is an algebra isomorphism.

8 Irreducible -modules

In this section, we assume that is a field, $p>0$ and $l'=l$ is odd. Let $X=\mathbb Z^{n}$ and $X^+=\{{\lambda }\in X\mid {\lambda }_1\geqslant {\lambda }_{2}\geqslant \cdots \geqslant {\lambda }_n\}$ . For ${\lambda }\in X^+$ , let $L({\lambda })$ be the simple integrable -module of highest weight ${\lambda }$ . Let $\text {Ind}^{U_2}_{U_1}(-)= H^0(U_2/U_1,-)$ be the induction functor for quantized enveloping algebras defined in [Reference Andersen, Polo and Wen1], [Reference Andersen, Polo and Wen2].

For ${\lambda }\in X$ , let

Let $P_r=\{{\lambda }\in \mathbb N^{n}\mid 0\leqslant {\lambda }_i-{\lambda }_{i+1}<lp^{r-1}\text { for }1\leqslant i\leqslant n \}$ , where ${\lambda }_{n+1}=0$ . The following result was given in [Reference Drupieski12, Ths. 3.4.1 & 3.4.3].

Theorem 8.1. $(1)$ The set $\{\widehat L_r({\lambda })\mid {\lambda }\in X\}$ form a complete set of pairwise nonisomorphic irreducible integrable -modules.

$(2)$ For ${\lambda },\mu \in X$ , we have $\widehat L_r({\lambda }+lp^{r-1}\mu )\cong \widehat L_r({\lambda })\otimes lp^{r-1}\mu $ .

$(3)$ For ${\lambda }\in P_r$ , we have .

If M is a -module and ${\lambda }\in X$ let

$$ \begin{align*}M_{\lambda}=\{w\in M\mid K_iw=\varepsilon^{{\lambda}_i}w,\,\left[{K_i;0\atop t}\right]w=\left[{{\lambda}_i\atop t}\right]_{\varepsilon} w \text{ for }1\leqslant i\leqslant n,\,t\in\mathbb N\}.\end{align*} $$

Let ${\Gamma }_r=P_r+lp^{r-1}\mathbb N^{n}$ and ${\Gamma }_r^d=\big \{{\lambda }\in {\Gamma }_r\big |\sum _{i=1}^n{\lambda }_i=d\big \}.$ For ${\lambda },\mu \in \mathbb Z^{n}$ with $\sum _{1\leqslant i\leqslant n}{\lambda }_i=\sum _{1\leqslant i\leqslant n}\mu _i$ we write ${\lambda }\trianglelefteq \mu $ if $\sum _{1\leqslant s\leqslant i}{\lambda }_s\leqslant \sum _{1\leqslant s\leqslant i}\mu _s$ for $1\leqslant i\leqslant n$ .

Lemma 8.2. For ${\lambda }\in {\Gamma }_r^d$ we have $\widehat L_r({\lambda })=\oplus _{\mu \in \Lambda (n,d)}\widehat L_r({\lambda })_\mu $ .

Proof. We write ${\lambda }=\alpha +lp^{r-1}\beta $ with $\alpha \in P_r$ and $\beta \in \mathbb N^{n}$ . By Theorem 8.1, we have $\widehat L_r({\lambda })\cong L(\alpha )\otimes lp^{r-1}\beta .$ Hence, it suffices to show that $L(\alpha )=\oplus _{\mu \in \Lambda (n,d')}L(\alpha )_\mu $ , where $d'=\sum _{1\leqslant i\leqslant n}\alpha _i$ . If $L(\alpha )_\mu \not =0$ for some $\mu \in \mathbb Z^{n}$ with $\sum _{1\leqslant i\leqslant n}\mu _i=d'$ . We claim that $\mu \in \mathbb N^{n}$ . Otherwise, there exists some element w in the symmetric group $\mathfrak {S}_n$ such that $\gamma =(\mu _{w(1)},\ldots ,\mu _{w(n)})$ and $\gamma _n<0$ . Since $L(\alpha )_\mu \not =0$ , we have $L(\alpha )_{\gamma }\not =0$ and hence ${\gamma }\unlhd \alpha $ . This implies that $\sum _{1\leqslant i\leqslant n-1}\gamma _i\leqslant \sum _{1\leqslant i\leqslant n-1}\alpha _i\leqslant d'$ . Hence, since ${\gamma }_n<0$ , we have $\sum _{1\leqslant i\leqslant n}\gamma _i<d'$ . This is a contradiction. The assertion follows.

The irreducible modules for infinitesimal q-Schur algebras were classified in [Reference Cox4, Sec. 5.1]. We now use Theorem 4.10 to give a classification of irreducible -modules.

Theorem 8.3. The set $\{\widehat L_r({\lambda })\mid {\lambda }\in {\Gamma }_r^d\}$ forms a completed set of pairwise nonisomorphic irreducible -modules.

Proof. Let ${\lambda }\in {\Gamma }_r^d$ . By Lemma 8.2, we have $\widehat L_r({\lambda })=\oplus _{\mu \in \Lambda (n,d)}\widehat L_r({\lambda })_\mu $ . Let $w_\mu $ be a nonzero vector in $\widehat L_r({\lambda })_\mu $ for some $\mu \in \Lambda (n,d)$ . Since $\mu \in \Lambda (n,d)$ , we have $K_\alpha w_\mu =\big [{\mu \atop \alpha }\big ]_{\varepsilon } w_\mu =\delta _{\alpha ,\mu }w_\mu $ for $\alpha \in \Lambda (n,d)$ . It follows that

$$ \begin{align*} \begin{aligned} \sum_{\beta\in\Lambda(n,d)}K_\beta w_\mu&=\sum_{\beta\in\Lambda(n,d)}\delta_{\beta,\mu} w_\mu=w_\mu, \\ (K_i-\varepsilon^{\alpha_i})K_\alpha w_\mu&=\delta_{\alpha,\mu}K_iw_\mu-\varepsilon^{\alpha_i}\delta_{\alpha,\mu}w_\mu=0,\\ \bigg(\bigg[{K_i;0\atop t}\bigg] -\bigg[{\alpha_i\atop t}\bigg]\bigg)K_\alpha w_\mu&= \delta_{\alpha,\mu}\bigg[{K_i;0\atop t}\bigg] w_\mu-\bigg[{\alpha_i\atop t}\bigg]\delta_{\alpha,\mu} w_\mu=0, \end{aligned} \end{align*} $$

for $\alpha \in \Lambda (n,d)$ , $1\leqslant i\leqslant n$ and $t\in \mathbb N$ . Thus, by Theorem 4.10, we conclude that $\widehat L_r({\lambda })$ can be regarded as a -module.

On the other hand, let L be an irreducible -module. By Theorem 8.1, we conclude that $L\cong \widehat L_r(\nu +lp^{r-1}\delta )\cong L(\nu )\otimes lp^{r-1}\delta $ for some $\nu \in P_r$ and $\delta \in \mathbb Z^{n}$ . Hence, since L is a -module, we have $(\nu _{w(1)},\nu _{w(2)},\ldots ,\nu _{w(n)})+ lp^{r-1}\delta \in \Lambda (n,d)$ for any w in the symmetric group ${\mathfrak S}_n$ . It follows that $\nu _n+lp^{r-1}\delta _j\geqslant 0$ for $1\leqslant j\leqslant n$ . Furthermore, since $\nu \in P_r$ , we have $0\leqslant \nu _n<lp^{r-1}$ . Therefore, we have $\delta _j\geqslant 0$ for $1\leqslant j\leqslant n$ . Consequently, we have $\nu +lp^{r-1}\delta \in {\Gamma }_r^d$ . The proof is completed.

Acknowledgement

Supported by the National Natural Science Foundation of China (12371032, 12431002).

References

Andersen, H., Polo, P. and Wen, K., Representations of quantum algebras , Invent. Math. 104 (1991), 159.CrossRefGoogle Scholar
Andersen, H., Polo, P. and Wen, K., Injective modules for quantum algebras , Amer. J. Math. 114 (1992), 571604.CrossRefGoogle Scholar
Beilinson, A. A., Lusztig, G. and MacPherson, R., A geometric setting for the quantum deformation of $G{L}_n$ , Duke Math. J. 61 (1990), 655677.CrossRefGoogle Scholar
Cox, A. G., On some applications of infinitesimal methods to quantum groups and related algebras, Ph.D. thesis, University of London, 1997.Google Scholar
Cox, A. G., On the blocks of the infinitesimal Schur algebras , Q. J. Math. 51 (2000), 3956.CrossRefGoogle Scholar
Dipper, R. and James, G., $q$ -Tensor spaces and $q$ -Weyl modules , Trans. Amer. Math. Soc. 327 (1991), 251282.Google Scholar
Doty, S., Presenting generalized $q$ -Schur algebras , Represent. Theory 7 (2003), 196213.CrossRefGoogle Scholar
Doty, S. and Giaquinto, A., Presenting Schur algebras , Int. Math. Res. Not. IMRN 36 (2002), 19071944.CrossRefGoogle Scholar
Doty, S., Giaquinto, A. and Sullivan, J., Presenting generalized Schur algebras in types $B,C,D$ , Adv. Math. 206 (2006), 434454.CrossRefGoogle Scholar
Doty, S., Giaquinto, A. and Sullivan, J., On the defining relations for generalized $q$ -Schur algebras , Adv. Math. 221 (2009), 955982.CrossRefGoogle Scholar
Doty, S. R., Nakano, D. K. and Peters, K.M., On infinitesimal Schur algebras , Proc. Lond. Math. Soc. s3-72 (1996), 588612.CrossRefGoogle Scholar
Drupieski, C. M., Representations and cohomology for Frobenius–Lusztig kernels , J. Pure Appl. Algebra 215 (2011), 14731491.CrossRefGoogle Scholar
Du, J., A note on the quantized Weyl reciprocity at roots of unity , Algebra Colloq. 2 (1995), 363372.Google Scholar
Du, J. and Fu, Q., Quantum ${\mathfrak{gl}}_{\infty }$ , infinite $q$ -Schur algebras and their representations , J. Algebra 322 (2009), 15161547.CrossRefGoogle Scholar
Du, J. and Parshall, B., Monomial bases for $q$ -Schur algebras , Trans. Amer. Math. Soc. 355 (2003), 15931620.CrossRefGoogle Scholar
Fu, Q., A comparison of infinitesimal and little $q$ -Schur algebras, Comm. Algebra 33 (2005), 26632682.CrossRefGoogle Scholar
Fu, Q., Canonical bases for modified quantum ${\mathfrak{gl}}_n$ and $q$ -Schur algebras, J. Algebra 406 (2014), 308320.CrossRefGoogle Scholar
Fu, Q., BLM realization for Frobenius–Lusztig Kernels of type $A$ , Math. Res. Lett. 23 (2016), 13291350.CrossRefGoogle Scholar
Fu, Q. and Gao, W., Presenting integral $q$ -Schur algebras , Internat. J. Math. 30 (2019), 1950002, 14 pp.CrossRefGoogle Scholar
Jimbo, M., A $q$ -analogue of $U\left(\mathfrak{gl}\left(N+1\right)\right)$ , Hecke algebras, and the Yang-Baxter equation , Lett. Math. Phys. 11 (1986), 247252.CrossRefGoogle Scholar
Lusztig, G., Modular representations and quantum groups , Contemp. Math. 82 (1989) 5977.CrossRefGoogle Scholar
Lusztig, G., Finite dimensional Hopf algebras arising from quantized universal enveloping algebras , J. Amer. Math. Soc. 3 (1990), 257296.Google Scholar
Lusztig, G., Introduction to Quantum Groups, Progr. Math., 110, Birkhäuser/Springer, 1993.Google Scholar