1 Introduction
If $f:X\rightarrow T$ is a smooth projective morphism of complex quasi-projective varieties, then by a celebrated theorem of Siu [Reference Siu13], [Reference Siu14], it is known that the plurigenera of the fibers
$P_{m}(X_{t}):=h^{0}(mK_{X_{t}})$ are independent of the point
$t\in T$. This result (and its generalizations to log pairs) is a fundamental fact of great importance in higher dimensional birational geometry. It plays a fundamental role in the construction of moduli spaces of varieties of log general type. Unluckily, over an algebraically closed field of characteristic
$p>0$, this result does not generalize even to families of surfaces over a curve (or a discrete valuation ring (DVR)). In [Reference Lang12], it is shown that
$P_{1}$ is not deformation invariant for Enriques surfaces in characteristic 2. In [Reference Katsura and Ueno11], it is shown that, in fact, the deformation invariance of plurigenera does not hold for certain elliptic surfaces, and in [Reference Suh15], there are examples of smooth families of surfaces of general type over any DVR of mixed characteristic for which
$P_{1}$ is nonconstant (and, in fact, its value can jump by an arbitrarily big amount). On the positive side, in [Reference Katsura and Ueno11], it is shown that if
$X\rightarrow \text{Spec}(R)$ is a smooth family of surfaces over a DVR in positive or mixed characteristic, then one can run the minimal model program (MMP) for
$X$ (over an extension of
$R$). As a consequence of this, it is observed that
$\unicode[STIX]{x1D705}(X_{K})=\unicode[STIX]{x1D705}(X_{k})$, where
$k$ is the residue field and
$K$ is the fraction field of
$R$. It should be noted that the minimal model program is established for semistable families of surfaces in positive or mixed characteristic (see [Reference Kawamata9]), for log canonical surfaces over excellent base schemes (see [Reference Tanaka19]) and for 3 folds over a field
$k$ of characteristic
$p\geqslant 7$ (see [Reference Hacon and Xu8] and [Reference Birkar3]). In this paper (Theorems 3.1 and 3.4), we generalize the result of Katsura and Ueno to log surfaces (smooth over a DVR) and we show the deformation invariance of certain plurigenera.
Theorem 1.1. Let $(X,B)$ be a klt pair which is log smooth, projective of dimension
$2$ over an irreducible integral Noetherian scheme
$S$, then
$\unicode[STIX]{x1D705}(K_{X_{s}}+B_{s})$ is independent of
$s\in S$. If, moreover,
$K_{X}+B$ is big over
$S$, then there exists an integer
$m_{0}>0$ such that for any positive integer
$m\in m_{0}\mathbb{N}$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU1.png?pub-status=live)
and the log canonical model for $(X,B)$ over
$S$ exists.
When $S$ is the spectrum of a DVR, we obtain a more precise result (see Theorems 3.1 and 3.4). The strategy is to reduce the proof of the above theorem to the case when
$(X_{k},B_{k})$ is terminal and
$\mathbf{B}(K_{X_{k}}+B_{k})$ contains no components of the support of
$B_{k}$. In this case, we observe that the steps of a
$K_{X_{k}}+B_{k}$ MMP are also steps of a
$K_{X_{k}}$ MMP, and we are thus able to deduce the result from [Reference Katsura and Ueno11].
Remark 1.2. Many results and techniques in this paper were developed in the first author’s Ph.D. thesis [Reference Egbert4].
2 Preliminaries
Let $X$ be a normal quasi-projective variety over an algebraically closed field
$k$ and
$\text{WDiv}(X)$ the group of Weil divisors. If
$B=\sum b_{i}B_{i}\in \text{WDiv}_{\mathbb{Q}}(X)$ is a
$\mathbb{Q}$-divisor on
$X$, then
$\lfloor B\rfloor =\sum \lfloor b_{i}\rfloor B_{i}$, where
$\lfloor b_{i}\rfloor =\text{max}\{n\in \mathbb{Z}|n\leqslant b_{i}\}$. We denote
$\{B\}=B-\lfloor B\rfloor$ and
$|B|=|\lfloor B\rfloor |+\{B\}$, where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU2.png?pub-status=live)
The stable base locus of $B$ is
$\mathbf{B}(D)=\bigcap _{m\in \mathbb{N}}\text{Bs}(mD)$. Let
$(X,B)$ be a pair so that
$X$ is normal,
$0\leqslant B$ is a
$\mathbb{Q}$-divisor and
$K_{X}+B$ is
$\mathbb{Q}$-Cartier. If
$\unicode[STIX]{x1D708}:X^{\prime }\rightarrow X$ is a proper birational morphism, then we write
$K_{X^{\prime }}+B_{X^{\prime }}=\unicode[STIX]{x1D708}^{\ast }(K_{X}+B)$. We say that
$(X,B)$ is Kawamata log terminal or klt (resp. terminal) if for any proper birational morphism
$\unicode[STIX]{x1D708}:X^{\prime }\rightarrow X$, we have
$\lfloor B_{X^{\prime }}\rfloor \leqslant 0$ (resp.
$B_{X^{\prime }}\leqslant \unicode[STIX]{x1D708}_{\ast }^{-1}B+E$, where
$E$ denotes the reduced exceptional divisor). We let
$\mathbf{M}_{B}$ be the
$b$-divisor defined by the sum of the strict transform of
$B$ and the exceptional divisors (over
$X$). We refer the reader to [Reference Kollár and Mori10] and [Reference Birkar, Cascini, Hacon and McKernan2] for the standard definitions of the minimal model program including extremal rays, flipping and divisorial contractions, running a minimal model program with scaling, log terminal and weak log canonical models.
Theorem 2.1. Let $(X,B)$ be a two-dimensional projective klt pair over an algebraically closed field
$k$. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU3.png?pub-status=live)
where $I$ is countable,
$(K_{X}+B)\cdot C_{i}<0$ and
$C_{i}$ is rational. If
$H$ is an ample
$\mathbb{Q}$-divisor on
$X$, then the set
$\{i\in I|(K_{X}+B+H)\cdot C_{i}\leqslant 0\}$ is finite.
Proof. See [Reference Tanaka17, 3.13, 3.15] and [Reference Kollár and Mori10, 3.7]. ◻
Lemma 2.2. Let $X$ be a surface over an algebraically closed field
$k$ and
$(X,B)$ a projective klt pair. If
$R$ is a
$K_{X}+B$ negative extremal ray, then there exists a proper morphism
$f:X\rightarrow X^{\prime }$ such that
$f_{\ast }{\mathcal{O}}_{X}={\mathcal{O}}_{X^{\prime }}$ and
$f$ contracts a curve
$C\subset X$ if and only if
$[C]=R$.
Proof. See [Reference Tanaka17, 3.21] and [Reference Kollár and Mori10, 3.7]. ◻
Theorem 2.3. Let $X$ be a projective surface over an algebraically closed field
$k$. Assume that
$(X,B)$ is klt. Then
(1) The ring
$R(K_{X}+B)=\bigoplus _{m\geqslant 0}H^{0}(m(K_{X}+B))$ is finitely generated.
(2) If
$K_{X}+B$ is pseudo-effective, then
$\unicode[STIX]{x1D705}(K_{X}+B)\geqslant 0$ and there exists a minimal model
$\unicode[STIX]{x1D708}:X\rightarrow X^{\prime }$ such that
$K_{X^{\prime }}+B^{\prime }=\unicode[STIX]{x1D708}_{\ast }(K_{X}+B)$ is semiample. If we write
$K_{X}+B=\unicode[STIX]{x1D708}^{\ast }(K_{X^{\prime }}+B^{\prime })+F$, then
$F\geqslant 0$ is
$\unicode[STIX]{x1D708}$-exceptional and we have
$F=N_{\unicode[STIX]{x1D70E}}(K_{X}+B)$.
(3) If
$H$ is an ample
$\mathbb{Q}$-divisor which is general in
$N^{1}(X/X^{\prime })$ and
$K_{X}+B+H$ is nef, then the MMP with scaling of
$H$ yields a sequence of rational numbers
$1\geqslant \unicode[STIX]{x1D706}_{1}>\unicode[STIX]{x1D706}_{2}>\cdots >\unicode[STIX]{x1D706}_{n}\geqslant 0$ and divisorial contractions
$X=X_{0}\rightarrow X_{1}\rightarrow X_{2}\rightarrow \cdots \rightarrow X_{n}$, where
$X_{i}=\operatorname{Proj}R(K_{X}+B+\unicode[STIX]{x1D706}_{i}H)$ and
$K_{X_{i}}+B_{i}+tH_{i}$ is ample for
$\unicode[STIX]{x1D706}_{i}\geqslant t>\unicode[STIX]{x1D706}_{i+1}$. If
$\unicode[STIX]{x1D706}_{n}=0$, then
$X\rightarrow X_{n}$ is a
$K_{X}+B$ minimal model and if
$\unicode[STIX]{x1D706}_{n}>0$, then
$X_{n}\rightarrow Z$ is a
$K_{X}+B$ Mori fiber space.
Proof. (1) and (2) follow immediately from [Reference Tanaka17]. To see (3), we proceed by induction. Assume that we have constructed $X\rightarrow X_{1}\rightarrow \cdots \rightarrow X_{i}$ and assume that
$K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i}H_{i}$ is ample where
$B_{i}$ and
$H_{i}$ denote the pushforwards of
$B$ and
$H$. Let
$\unicode[STIX]{x1D706}_{i+1}:=\text{inf}\{t>0|K_{X_{i}}+B_{i}+tH_{i}~\text{is nef}\}$. It is easy to see that
$0\leqslant \unicode[STIX]{x1D706}_{i+1}<\unicode[STIX]{x1D706}_{i}$ and
$K_{X_{i}}+B_{i}+tH_{i}$ is ample for
$\unicode[STIX]{x1D706}_{i}\geqslant t>\unicode[STIX]{x1D706}_{i+1}$. If
$\unicode[STIX]{x1D706}_{i+1}=0$, then
$K_{X_{i}}+B_{i}$ is nef and we have the required
$K_{X}+B$ minimal model. Otherwise, by Theorem 2.1, there exists a
$K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i}$-trivial and
$K_{X_{i}}+B_{i}$ negative extremal ray
$C_{i}$. Let
$\unicode[STIX]{x1D708}_{i}:X_{i}\rightarrow X_{i+1}$ be the corresponding contraction. If
$\dim X_{i+1}<2$, then we have the required
$K_{X}+B$ Mori fiber space. Otherwise,
$X_{i}\rightarrow X_{i+1}$ is a divisorial contraction. Since
$H$ is general in
$N^{1}(X/X^{\prime })$,
$H_{i}$ is general in
$N^{1}(X_{i}/X^{\prime })$ and hence
$NE(X_{i})_{K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i}=0}=[C_{i}]$. It follows that
$K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i}=\unicode[STIX]{x1D708}_{i}^{\ast }(K_{X_{i+1}}+B_{i+1}+\unicode[STIX]{x1D706}_{i+1}H_{i+1})$, where
$K_{X_{i+1}}+B_{i+1}+\unicode[STIX]{x1D706}_{i+1}H_{i+1}$ is ample.◻
Proposition 2.4. Let $X$ be a projective surface over an algebraically closed field
$k$. Assume that
$(X,B)$ is a klt pair and
$\unicode[STIX]{x1D708}:X^{\prime }\rightarrow X$ is a proper birational morphism such that
$(X^{\prime },B^{\prime })$ is terminal where
$K_{X^{\prime }}+B^{\prime }=\unicode[STIX]{x1D708}^{\ast }(K_{X}+B)$. Let
$\unicode[STIX]{x1D6E9}=B^{\prime }-B^{\prime }\wedge N_{\unicode[STIX]{x1D70E}}(K_{X^{\prime }}+B^{\prime })$ and
$\unicode[STIX]{x1D719}^{\prime }:X^{\prime }\rightarrow X_{M}^{\prime }$ the minimal model for
$(X^{\prime },\unicode[STIX]{x1D6E9})$. If
$\unicode[STIX]{x1D719}:X\rightarrow X_{M}$ is the minimal model for
$(X,B)$, then the rational map
$\unicode[STIX]{x1D707}:X_{M}^{\prime }\rightarrow X_{M}$ is a morphism and
$K_{X_{M}^{\prime }}+\unicode[STIX]{x1D719}_{\ast }^{\prime }\unicode[STIX]{x1D6E9}=\unicode[STIX]{x1D707}^{\ast }(K_{X_{M}}+\unicode[STIX]{x1D719}_{\ast }B)$. If
$\unicode[STIX]{x1D705}(K_{X}+B)=1$ and
$B$ is big over
$\operatorname{Proj}R(K_{X}+B)$, then
$\unicode[STIX]{x1D6E9}$ is big over
$\operatorname{Proj}R(K_{X^{\prime }}+\unicode[STIX]{x1D6E9})$.
Proof. Consider the morphism $\unicode[STIX]{x1D713}:X^{\prime }\rightarrow X_{M}$. Since
$K_{X}+B=\unicode[STIX]{x1D719}^{\ast }(K_{X_{M}}+\unicode[STIX]{x1D719}_{\ast }B)+E$ where
$E\geqslant 0$ is
$\unicode[STIX]{x1D719}$-exceptional, then
$K_{X^{\prime }}+B^{\prime }=\unicode[STIX]{x1D713}^{\ast }(K_{X_{M}}+\unicode[STIX]{x1D719}_{\ast }B)+\unicode[STIX]{x1D708}^{\ast }E$ where
$K_{X_{M}}+\unicode[STIX]{x1D719}_{\ast }B$ is nef and
$\unicode[STIX]{x1D708}^{\ast }E$ is effective and
$\unicode[STIX]{x1D713}$ exceptional. It follows that
$N_{\unicode[STIX]{x1D70E}}(K_{X^{\prime }}+B^{\prime })=\unicode[STIX]{x1D708}^{\ast }E$ and so
$K_{X^{\prime }}+\unicode[STIX]{x1D6E9}=\unicode[STIX]{x1D713}^{\ast }(K_{X_{M}}+\unicode[STIX]{x1D719}_{\ast }B)+E^{\prime }$, where
$0\leqslant E^{\prime }\leqslant \unicode[STIX]{x1D708}^{\ast }E$. In particular,
$N_{\unicode[STIX]{x1D70E}}(K_{X^{\prime }}+\unicode[STIX]{x1D6E9})=E^{\prime }$ and so the divisors contracted by
$\unicode[STIX]{x1D719}^{\prime }$ are precisely the divisors contained in
$\text{Supp}(E^{\prime })$. Thus,
$X^{\prime }\rightarrow X_{M}$ factors through
$\unicode[STIX]{x1D719}^{\prime }$. We have
$K_{X_{M}^{\prime }}+\unicode[STIX]{x1D719}_{\ast }^{\prime }\unicode[STIX]{x1D6E9}=\unicode[STIX]{x1D707}^{\ast }(K_{X_{M}}+\unicode[STIX]{x1D719}_{\ast }B)+\unicode[STIX]{x1D719}_{\ast }^{\prime }E^{\prime }$ where
$\unicode[STIX]{x1D707}_{\ast }(\unicode[STIX]{x1D719}_{\ast }^{\prime }E^{\prime })\leqslant \unicode[STIX]{x1D719}_{\ast }E=0$ and hence
$\unicode[STIX]{x1D719}_{\ast }^{\prime }E$ is
$\unicode[STIX]{x1D707}$ exceptional. By the negativity lemma, it follows that
$\unicode[STIX]{x1D719}_{\ast }^{\prime }E^{\prime }=0$.
Note that since $H^{0}(m(K_{X}+B))\cong H^{0}(m(K_{X^{\prime }}+\unicode[STIX]{x1D6E9}))$ for all
$m\geqslant 0$, it follows that
$Z:=\operatorname{Proj}R(K_{X}+B)=\operatorname{Proj}R(K_{X^{\prime }}+\unicode[STIX]{x1D6E9})$. We have
$\dim Z=\unicode[STIX]{x1D705}(K_{X}+B)=1$. The bigness of
$B$ over
$Z$ is equivalent to
$B\cdot X_{z}>0$ for general
$z\in Z$. But then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU4.png?pub-status=live)
and so $\unicode[STIX]{x1D6E9}$ is big over
$Z$.◻
Consider now $X$ a smooth projective scheme over an integral Noetherian scheme
$S$ and let
$f:X\rightarrow S$ be the structure morphism. We say that a pair
$(X,B)$ is log smooth over
$S$ if
$X$ is smooth over
$S$ and
$B$ is an effective
$\mathbb{R}$-divisor whose support is simple normal crossings over
$S$ so that
$X$ is étale over
$\mathbb{A}_{S}^{n}$ and some choice of local coordinates on
$\mathbb{A}_{S}^{n}$ pulls back to a parameter system
$t_{1},\ldots ,t_{n}$ on
$X$ and
$\text{Supp}(B)=\{t_{1}\ldots t_{r}=0\}$ for some
$0\leqslant r\leqslant n$. We refer the reader to [16, Section 01V4] for a discussion of smooth morphisms. In particular, each strata of the support of
$B$ is smooth over
$S$. We say that a log smooth pair
$(X,B=\sum b_{i}B_{i})$ is klt iff
$0\leqslant b_{i}<1$ and
$(X,B=\sum b_{i}B_{i})$ is terminal iff
$0\leqslant b_{i}<1$ and
$b_{i}+b_{j}<1$ if
$i\neq j$ and
$B_{i}\cap B_{j}\neq \emptyset$.
In what follows, $R$ will denote a DVR with residue field
$k$ and fraction field
$K$. Let
$X$ be an integral Noetherian scheme over
$\text{Spec}(R)$ and
$f:X\rightarrow \text{Spec}(R)$ the structure morphism, then we let
$X_{K}=X\times _{\text{Spec}(R)}\text{Spec}(K)$ be the generic fiber and
$X_{k}=X\times _{\text{Spec}(R)}\text{Spec}(k)$ be the special fiber. As usual, we say that two Cartier divisors on
$X$ are numerically equivalent
$L_{1}\equiv _{R}L_{2}$ iff
$(L_{1}-L_{2})\cdot C=0$ for any curve
$C$ contained in a fiber
$X_{K}$ or
$X_{k}$. Note that it suffices to check this on the special fiber
$X_{k}$. We then let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU5.png?pub-status=live)
$NE(X/R)\subset N_{1}(X/R)$ is the closed cone spanned by effective curves. Note that the natural map
$N_{1}(X/R)\rightarrow N^{1}(X_{k})$ is injective and the dual map
$N_{1}(X_{k})\rightarrow N_{1}(X/R)$ is surjective and so is the induced map
$NE(X_{k})\rightarrow NE(X/R)$.
Lemma 2.5. Let $f:X\rightarrow \text{Spec}(R)$ be a smooth projective morphism from a smooth variety to a DVR and
$L$ a line bundle on
$X$, then
(1)
$L$ is ample if and only if
$L_{k}:=L|_{X_{k}}$ is ample, and
(2)
$L$ is nef if and only if
$L_{k}:=L|_{X_{k}}$ is nef.
Proof. Clearly, if $L$ is ample or nef, then so is
$L_{k}$. It is well known that ampleness is an open condition and so if
$L_{k}$ is ample, then so is
$L$. Finally, if
$L_{k}$ is nef and
$H$ is ample, then
$L_{k}+tH_{k}$ is ample for any
$t>0$ so that
$L+tH$ is ample and hence
$L$ is nef.◻
Lemma 2.6. Let $f:X\rightarrow \text{Spec}(R)$ be a flat projective morphism from a variety to a DVR and
$(X,B)$ a log pair. Then
$(X,B)$ is log smooth over
$\text{Spec}(R)$ if and only if
$(X_{k},B_{k})$ is log smooth.
Proof. See [16, Section 01V4]. ◻
Lemma 2.7. Let $(X,B)$ be a log pair which is log smooth over
$\text{Spec}(R)$, where
$R$ is a DVR. If
$R\subset \tilde{R}$ is an inclusion of DVR’s, then
$(X_{\tilde{R}},B_{\tilde{R}})$ is log smooth over
$\text{Spec}(\tilde{R})$. If
$(X,B)$ is terminal (resp. klt), then so is
$(X_{\tilde{R}},B_{\tilde{R}})$.
Proof. Since smoothness is preserved by base change, it follows that $(X_{\tilde{R}},B_{\tilde{R}})$ is log smooth over
$\text{Spec}(\tilde{R})$. The pair
$(X,B)$ is klt (resp. terminal) if and only if the coefficients of
$B$ are
${<}1$ (resp. the coefficients of
$B$ are
${<}1$ and if two components intersect, then the sum of the coefficients is
${<}1$). The lemma now follows since if there are two intersecting components of
$B_{\tilde{R}}$, then there are two intersecting components of
$B$ (with the same coefficients).◻
Theorem 2.8. (Katsura–Ueno [Reference Katsura and Ueno11])
Let $f:X\rightarrow \text{Spec}(R)$ be an algebraic space which is smooth, proper and two-dimensional over
$\text{Spec}(R)$, where
$R$ is a DVR with algebraically closed residue field
$k$ and field of fractions
$K$. If
$X_{k}$ contains a
$-1$ curve
$e\subset X_{k}$, then there exists a DVR
$\tilde{R}\supset R$ with residue field
$k$ and fraction field
$\tilde{K}$ and a surjective proper morphism
$\unicode[STIX]{x1D70B}:X_{\tilde{R}}\rightarrow {\tilde{Y}}$ over
$\text{Spec}(\tilde{R})$ where
${\tilde{Y}}\rightarrow \text{Spec}(\tilde{R})$ is smooth, proper, and two-dimensional,
$\unicode[STIX]{x1D70B}_{k}$ contracts the
$-1$ curve
$e\subset X_{k}$ and
$\unicode[STIX]{x1D70B}_{K}:X_{\tilde{K}}\rightarrow {\tilde{Y}}_{\tilde{K}}$ is also a contraction of a
$-1$ curve.
3 Main result
In this section, we will prove Theorem 1.1. We begin by showing that a more general version of this result holds when $S=\text{Spec}(R)$ is the spectrum of a DVR and then we will deduce the general case.
Theorem 3.1. Let $(X,B)$ be a klt pair which is log smooth, projective of dimension
$2$ over
$S=\text{Spec}(R)$, where
$R$ is a DVR with residue field
$k$ and fraction field
$K$. If
$K_{X}+B$ is
$\mathbb{Q}$-Cartier, then
$\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=\unicode[STIX]{x1D705}(K_{X_{K}}+B_{K})$ and if either
$\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})\neq 1$ or
$\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=1$ and
$B_{k}$ is big over
$\operatorname{Proj}R(K_{X_{k}}+B_{k})$, then there exists an integer
$m_{0}>0$ such that for any integer
$m\in m_{0}\mathbb{N}$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU6.png?pub-status=live)
Proof. Consider an inclusion of DVR’s $R\subset \tilde{R}$. If
$\tilde{k}$ and
$\tilde{K}$ denote the residue field and the fraction field of
$\tilde{R}$, then
$h^{0}(m(K_{X_{k}}+B_{k}))=h^{0}(m(K_{X_{\tilde{k}}}+B_{\tilde{k}}))$ and
$h^{0}(m(K_{X_{K}}+B_{K}))=h^{0}(m(K_{X_{\tilde{K}}}+B_{\tilde{K}}))$. Note also that if
$\tilde{X}=X\times _{\text{Spec}(R)}\text{Spec}(\tilde{R})$ and
$\tilde{B}=B\times _{\text{Spec}(R)}\text{Spec}(\tilde{R})$, then
$(\tilde{X},\tilde{B})$ is log smooth over
$\tilde{R}$ and
$\tilde{X}_{\tilde{k}}\cong X_{k}\times _{\text{Spec}(k)}\text{Spec}(\tilde{k})$. Thus, we are free to replace
$X\rightarrow R$ by
$\tilde{X}\rightarrow \tilde{R}$. In particular, we may assume that
$k$ is algebraically closed.
If $h^{0}(m(K_{X_{k}}+B_{k}))=0$, then, by semicontinuity,
$h^{0}(m(K_{X_{K}}+B_{K}))=0$. Therefore, the theorem holds trivially in the case
$\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=-\infty$. Thus, we may assume that
$\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})\geqslant 0$.
Claim 3.2. The theorem holds under the additional assumption that $(X_{k},B_{k})$ is terminal and no component of the support of
$B_{k}$ is contained in
$\mathbf{B}(K_{X_{k}}+B_{k})$.
Proof. Since $k$ is algebraically closed, then by the Cone Theorem (Theorem 2.1),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU7.png?pub-status=live)
where $I$ is countable,
$(K_{X_{k}}+B_{k})\cdot C_{i}<0$ and
$C_{i}$ is rational.
Suppose that one of the above curves $C_{i}$ is contained in the support of
$B_{k}$, then since
$\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})\geqslant 0$ and
$(K_{X_{k}}+B_{k})\cdot C_{i}<0$, we have
$C_{i}\subset \mathbf{B}(K_{X_{k}}+B_{k})$, which we have assumed is impossible.
Note then that $C_{i}$ is not contained in the support of
$B_{k}$ and thus
$C_{i}\cdot B_{k}\geqslant 0$ and so
$K_{X_{k}}\cdot C_{i}<0$. It follows that if
$C_{i}$ spans a
$K_{X_{k}}+B_{k}$-negative extremal ray, then it also spans a
$K_{X_{k}}$-negative extremal ray and so it can be contracted by a divisorial contraction of a
$-1$ curve
$X_{k}\rightarrow X_{k}^{\prime }$. In particular,
$X_{k}^{\prime }$ is also a smooth surface. Thus, we may assume that
$C_{i}$ is a
$-1$ curve. By Theorem 2.8 (after extending
$R$), we may assume that there is a morphism
$X\rightarrow X^{\prime }$ of smooth surfaces over
$R$ such that
$X_{K}\rightarrow X_{K}^{\prime }$ also contracts a
$-1$ curve.
We now run an MMP by contracting a sequence of $K_{X}+B$-negative curves as above. Let
$\unicode[STIX]{x1D708}:X\rightarrow \bar{X}$ be the induced morphism of smooth surfaces over
$\text{Spec}(R)$. We may assume that
$X_{K}\rightarrow \bar{X}_{K}$ and
$X_{k}\rightarrow \bar{X}_{k}$ are given by a finite sequence of contractions of
$-1$ curves such that the exceptional locus of
$X_{k}\rightarrow \bar{X}_{k}$ contains no components of
$B_{k}$. Then
$(\bar{X}_{k},\bar{B}_{k})$ is terminal and
$K_{X_{k}}+B_{k}=\unicode[STIX]{x1D708}_{k}^{\ast }(K_{\bar{X}_{k},}+\bar{B}_{k})+F_{k}$, where
$B_{k}=\unicode[STIX]{x1D708}_{k,\ast }^{-1}\bar{B}_{k}$ and
$B_{k}\wedge F_{k}=0$. In particular,
$\mathbf{B}(K_{X_{k}}+B_{k})=\mathbf{B}(\unicode[STIX]{x1D708}_{k}^{\ast }(K_{\bar{X}_{k}}+\bar{B}_{k}))+F_{k}$. Suppose that
$C\subset \bar{X}_{k}$ is contained in
$\mathbf{B}(K_{\bar{X}_{k}}+\bar{B}_{k})\cap \text{Supp}(\bar{B}_{k})$, then
$\unicode[STIX]{x1D708}_{\ast }^{-1}C\subset \mathbf{B}(K_{X_{k}}+B_{k})\cap \text{Supp}(B_{k})$ which is impossible. Therefore, if
$K_{\bar{X}_{k}}+\bar{B}_{k}$ is not nef, we can continue to contract
$-1$ curves. Since each contraction reduces the Picard number of the central fiber
$X_{k}$ by one, this procedure must terminate after finitely many steps. We may therefore assume that
$K_{\bar{X}_{k}}+\bar{B}_{k}$ is semiample. In particular,
$K_{\bar{X}_{k}}+\bar{B}_{k}$ is nef and hence so is
$K_{\bar{X}}+\bar{B}$ (see Lemma 2.5).
Suppose now that $\unicode[STIX]{x1D708}(K_{X_{k}}+B_{k})=2$. In this case,
$K_{\bar{X}_{k}}+\bar{B}_{k}$ is nef and big and
$m_{0}(K_{\bar{X}_{k}}+\bar{B}_{k})$ is Cartier for some
$m_{0}>0$. We may write
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU8.png?pub-status=live)
so that by [Reference Tanaka18, 2.6] $h^{i}(m(K_{\bar{X}_{k}}+\bar{B}_{k}))=0$ for all sufficiently big integers
$m\in m_{0}\mathbb{N}$ and all
$i>0$. Replacing
$m_{0}$ by an appropriate multiple, this condition holds for all
$m\in m_{0}\mathbb{N}$. By semicontinuity, we also have
$h^{i}(m(K_{\bar{X}_{K}}+\bar{B}_{K}))=0$ for all
$m\in m_{0}\mathbb{N}$ and
$i>0$. The result now follows from cohomology and base change.
Suppose that $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=0$. Then we have
$K_{\bar{X}_{k}}+\bar{B}_{k}{\sim}_{\mathbb{Q}}0$. By Lemma 2.5, it follows that
$\pm (K_{\bar{X}_{K}}+\bar{B}_{K})$ is nef and hence that
$K_{\bar{X}_{K}}+\bar{B}_{K}\equiv 0$. By [Reference Tanaka17, 1.2],
$K_{\bar{X}_{K}}+\bar{B}_{K}{\sim}_{\mathbb{Q}}0$. Thus, there exists an integer
$m_{0}>0$ such that
$m_{0}(K_{\bar{X}_{K}}+\bar{B}_{K})\sim 0$ and
$m_{0}(K_{\bar{X}_{k}}+\bar{B}_{k})\sim 0$. Thus,
$h^{0}(m(K_{X_{K}}+B_{K}))=h^{0}(m(K_{X_{k}}+B_{k}))$ for all
$m\geqslant 0$ divisible by
$m_{0}$.
Suppose that $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=1$. Since
$K_{\bar{X}_{k}}+\bar{B}_{k}$ is nef, so is
$K_{\bar{X}_{K}}+\bar{B}_{K}$. In particular,
$\unicode[STIX]{x1D705}(K_{\bar{X}_{K}}+\bar{B}_{K})\geqslant 0$ and, thus, by semicontinuity, we have
$\unicode[STIX]{x1D705}(K_{\bar{X}_{K}}+\bar{B}_{K})\in \{0,1\}$. Let
$H$ be a sufficiently ample divisor on
$\bar{X}$. Then
$(K_{\bar{X}_{K}}+\bar{B}_{K})\cdot H_{K}=(K_{\bar{X}_{k}}+\bar{B}_{k})\cdot H_{k}>0$ so
$K_{\bar{X}_{K}}+\bar{B}_{K}\not \equiv 0$. Therefore,
$\unicode[STIX]{x1D705}(K_{\bar{X}_{K}}+\bar{B}_{K})=1$.
Finally, suppose that $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=1$ and
$B_{k}$ is big over
$\operatorname{Proj}R(K_{X_{k}}+B_{k})$. Note that
$\bar{B}_{k}$ is also big over
$\operatorname{Proj}R(K_{\bar{X}_{k}}+\bar{B}_{k})$ and hence
$\bar{B}_{k}+K_{\bar{X}_{k}}+\bar{B}_{k}$ is big. Thus, we may write
$\bar{B}_{k}+K_{\bar{X}_{k}}+\bar{B}_{k}{\sim}_{\mathbb{Q}}\bar{A}_{k}+\bar{E}_{k}$, where
$\bar{A}_{k}$ is ample and
$\bar{E}_{k}$ is effective. For any rational number
$0<\unicode[STIX]{x1D716}\ll 1$, the pair
$(\bar{X}_{k},\unicode[STIX]{x1D6E5}_{k}=(1-\unicode[STIX]{x1D716})\bar{B}_{k}+\unicode[STIX]{x1D716}\bar{E}_{k})$ is Kawamata log terminal and so the corresponding multiplier ideal sheaf is trivial
${\mathcal{J}}(\unicode[STIX]{x1D6E5}_{k})={\mathcal{O}}_{\bar{X}_{k}}$. If
$L=N=m(K_{\bar{X}_{k}}+\bar{B}_{k})$, then
$N$ is nef and not numerically equivalent to zero while
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU9.png?pub-status=live)
is ample, and so by [Reference Tanaka18, 0.3] and [Reference Kollár and Mori10, 2.70], $H^{i}({\mathcal{O}}_{\bar{X}_{k}}(m(l+1)(K_{\bar{X}_{k}}+\bar{B}_{k})))=0$ for
$i>0$ and
$l\gg 0$. By semicontinuity,
$H^{i}({\mathcal{O}}_{\bar{X}_{K}}(m(l+1)(K_{\bar{X}_{K}}+\bar{B}_{K})))=0$ for
$i>0$ and
$l\gg 0$ and hence
$h^{0}({\mathcal{O}}_{\bar{X}_{k}}(m(l+1)(K_{\bar{X}_{k}}+\bar{B}_{k})))=h^{0}({\mathcal{O}}_{\bar{X}_{K}}(m(l+1)(K_{\bar{X}_{K}}+\bar{B}_{K})))$.◻
We will now consider the general case. Since $(X,B)$ is log smooth over
$R$, there is a sequence of blowups along strata of
$\mathbf{M}_{B}$ say
$\unicode[STIX]{x1D708}:X^{\prime }\rightarrow X$ such that
$K_{X^{\prime }}+B^{\prime }=\unicode[STIX]{x1D708}^{\ast }(K_{X}+B)$ is terminal and, in particular,
$B^{\prime }\geqslant 0$ and
$(X^{\prime },B^{\prime })$ is log smooth. Since
$R(K_{X_{k}^{\prime }}+B_{k}^{\prime })\cong R(K_{X_{k}}+B_{k})$ is finitely generated,
$N_{\unicode[STIX]{x1D70E}}(K_{X_{k}^{\prime }}+B_{k}^{\prime })$ is a
$\mathbb{Q}$-divisor and hence so is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU10.png?pub-status=live)
Note that $R(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k})\cong R(K_{X_{k}^{\prime }}+B_{k}^{\prime })$,
$(X_{k}^{\prime },\unicode[STIX]{x1D6E9}_{k})$ is terminal and no component of
$\unicode[STIX]{x1D6E9}_{k}$ is contained in
$\mathbf{B}(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k})$ [[Reference Hacon, McKernan and Xu6, 2.8.3] and [Reference Hacon and Xu7, 2.4]]. Let
$\unicode[STIX]{x1D6E9}$ be the unique
$\mathbb{Q}$-divisor supported on
$B^{\prime }$ such that
$\unicode[STIX]{x1D6E9}|_{X_{k}^{\prime }}=\unicode[STIX]{x1D6E9}_{k}$. We remark that if
$\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=1$ and
$B_{k}$ is big over
$\operatorname{Proj}R(K_{X_{k}}+B_{k})$, then by Proposition 2.4,
$\unicode[STIX]{x1D6E9}_{k}$ is big over
$\operatorname{Proj}R(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k})$. By Claim 3.2, it follows that
$\unicode[STIX]{x1D705}(K_{X_{K}^{\prime }}+\unicode[STIX]{x1D6E9}_{K})=\unicode[STIX]{x1D705}(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k})$ and there exists an integer
$m_{0}>0$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU11.png?pub-status=live)
By semicontinuity, we then have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU12.png?pub-status=live)
and hence $h^{0}(m(K_{X_{k}}+B_{k}))=h^{0}(m(K_{X_{K}}+B_{K}))$. The equality
$\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=\unicode[STIX]{x1D705}(K_{X_{K}}+B_{K})$ follows similarly.◻
Corollary 3.3. Let $(X,B)$ be a klt pair which is log smooth, projective of dimension
$2$ over a DVR
$R$ with residue field
$k$ of characteristic
$p>0$ and fraction field
$K$. If
$K_{X}+B$ is
$\mathbb{Q}$-Cartier and either
$\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})\in \{0,2\}$ or
$\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=1$ and
$B_{k}$ is big over
$\operatorname{Proj}R(K_{X_{k}}+B_{k})$, then
$R(K_{X}+B)$ is finitely generated.
Proof. By Theorem 2.3, $R(K_{X_{k}}+B_{k})$ is finitely generated and hence there is a positive integer
$m$ such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU13.png?pub-status=live)
is generated in degree 1, that is, by $H^{0}(m(K_{X_{k}}+B_{k}))$. By Theorem 3.1, after replacing
$m$ by a multiple, we may assume that
$m(K_{X}+B)$ is Cartier and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU14.png?pub-status=live)
is surjective. Therefore, the induced map
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU15.png?pub-status=live)
is surjective. By Nakayama’s lemma,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU16.png?pub-status=live)
is surjective and so $R(m(K_{X}+B))$ is finitely generated.◻
Theorem 3.4. Let $(X,B)$ be a klt pair which is log smooth, projective of dimension
$2$ over a DVR
$R$ with residue field
$k$ and fraction field
$K$. If
$K_{X}+B$ is
$\mathbb{Q}$-Cartier, then (after possibly extending
$R$) we may run a
$K_{X}+B$ MMP over
$R$ which is given by a sequence of divisorial contractions and terminates with a
$K_{X}+B$ minimal model
$X\rightarrow \bar{X}$ over
$R$ or a
$K_{X}+B$ Mori fiber space over
$R$.
Proof. After extending $R$, we may assume that
$k$ is algebraically closed. Suppose that
$H$ is ample and let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU17.png?pub-status=live)
Pick $1\gg \unicode[STIX]{x1D70F}^{\prime }-\unicode[STIX]{x1D70F}>0$, then by Theorem 2.3 and its proof,
$\text{Proj}R(K_{X_{k}}+B_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k})$ is the minimal model of
$(X_{k},B_{k}+tH_{k})$ for
$\unicode[STIX]{x1D70F}^{\prime }\geqslant t\geqslant \unicode[STIX]{x1D70F}$. Let
$\unicode[STIX]{x1D708}_{k}:X_{k}^{\prime }\rightarrow X_{k}$ be a terminalization of
$(X_{k},B_{k})$ given by a sequence of blowups along strata of
$\mathbf{M}_{B_{k}}$,
$K_{X_{k}^{\prime }}+B_{k}^{\prime }=\unicode[STIX]{x1D708}_{k}^{\ast }(K_{X_{k}}+B_{k})$,
$H_{k}^{\prime }=\unicode[STIX]{x1D708}_{k}^{\ast }H_{k}$ and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU18.png?pub-status=live)
If $X_{k}^{\prime }\rightarrow X_{1,k}^{\prime }\rightarrow \cdots \rightarrow X_{n,k}^{\prime }$ is a MMP for
$K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime }$, then
$K_{X_{n,k}^{\prime }}+\unicode[STIX]{x1D6E9}_{n,k}+\unicode[STIX]{x1D70F}^{\prime }H_{n,k}^{\prime }$ is semiample and induces a morphism
$\unicode[STIX]{x1D708}_{n,k}:X_{n,k}^{\prime }\rightarrow X_{n,k}:=\text{Proj}R(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime })$. By Proposition 2.4,
$R(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime })\cong R(K_{X_{k}}+B_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k})$, and so the induced birational map
$X_{k}\rightarrow X_{n,k}$ is in fact the morphism corresponding to the minimal model of
$K_{X_{k}}+B_{k}+\unicode[STIX]{x1D70F}H_{k}$. If
$\unicode[STIX]{x1D70F}=0$, then
$X_{k}\rightarrow X_{n,k}$ is a
$K_{X_{k}}+B_{k}$ minimal model and if
$\unicode[STIX]{x1D70F}>0$, then
$X_{n,k}\rightarrow Z_{k}=\operatorname{Proj}R(K_{X_{k}}+B_{k}+\unicode[STIX]{x1D70F}H_{k})$ is a
$K_{X_{k}}+B_{k}$ Mori fiber space.
We claim that the exceptional divisors of $X_{k}^{\prime }\rightarrow X_{n,k}$ are either contained in the support of
$\mathbf{M}_{B_{k}}$ or in
$N_{\unicode[STIX]{x1D70E}}(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime })$. To see this, note that the support of
$\mathbf{M}_{B_{k}}$ contains the
$X_{k}^{\prime }\rightarrow X_{k}$ exceptional divisors and so it suffices to show that the exceptional divisors of
$X_{k}\rightarrow X_{n,k}$ are contained in the support of
$B_{k}^{\prime }$ and
$N_{\unicode[STIX]{x1D70E}}(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime })$. The exceptional divisors of
$X_{k}\rightarrow X_{n,k}$ are given by the support of
$N_{\unicode[STIX]{x1D70E}}(K_{X_{k}}+B_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k})$. The strict transforms of divisors in
$N_{\unicode[STIX]{x1D70E}}(K_{X_{k}}+B_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k})$ are divisors in
$N_{\unicode[STIX]{x1D70E}}(K_{X_{k}^{\prime }}+B_{k}^{\prime }+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime })$ and hence in
$N_{\unicode[STIX]{x1D70E}}(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime })$ plus some divisors supported on
$B_{k}^{\prime }$. Thus, the claim holds.
By the proof of Theorem 3.1, there is a sequence of divisorial contractions of smooth varieties $X^{\prime }\rightarrow X_{1}^{\prime }\rightarrow \cdots \rightarrow X_{n}^{\prime }$ extending the MMP
$X_{k}^{\prime }\rightarrow X_{1,k}^{\prime }\rightarrow \cdots \rightarrow X_{n,k}^{\prime }$ which induces contractions of
$-1$ curves on
$X_{i,k}$ and
$X_{i,K}$. It follows that if
$P_{k}$ is an exceptional prime divisor of
$X_{k}^{\prime }\rightarrow X_{n,k}$, then there is a prime divisor
$P\subset X^{\prime }$ such that
$P_{k}=P|_{X_{k}^{\prime }}$. To see this, note that either
$P_{k}$ is a component of
$\mathbf{M}_{B_{k}}$ and hence we may take
$P$ as the corresponding component of
$\mathbf{M}_{B}$ or
$P_{k}$ is a component of
$N_{\unicode[STIX]{x1D70E}}(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k})$ and hence the exceptional divisor for some divisorial contraction
$X_{i,k}^{\prime }\rightarrow X_{i+1,k}^{\prime }$. We can then pick
$P$ to be the exceptional divisor of
$X_{i}^{\prime }\rightarrow X_{i+1}^{\prime }$.
Therefore, all $X_{k}^{\prime }\rightarrow X_{n,k}$ exceptional divisors extend to divisors on
$X^{\prime }$ and hence
$N^{1}(X^{\prime })\rightarrow N^{1}(X_{k}^{\prime }/X_{n,k})$ is surjective and so
$N^{1}(X)\rightarrow N^{1}(X_{k}/X_{n,k})$ is also surjective.
We now replace $H$ by a sufficiently ample
$\mathbb{Q}$-divisor on
$X$ which is general in
$N^{1}(X)$. Since
$H_{k}$ is general in
$N^{1}(X_{k}/X_{n,k})$, by Theorem 2.3, running the minimal model program with scaling of
$H_{k}$, we obtain a sequence of rational numbers
$\unicode[STIX]{x1D706}_{1}>\unicode[STIX]{x1D706}_{2}>\cdots >\unicode[STIX]{x1D706}_{n}=\unicode[STIX]{x1D70F}$ and divisorial contractions
$X_{i,k}\rightarrow X_{i+1,k}$ such that
$X_{i,k}=\operatorname{Proj}(R(K_{X_{k}}+B_{k}+tH_{k}))$ for
$\unicode[STIX]{x1D706}_{i}\geqslant t>\unicode[STIX]{x1D706}_{i+1}$ where we let
$X_{k}=X_{0,k}$ and
$\unicode[STIX]{x1D706}_{0}=1$. By Corollary 3.3,
$R(K_{X}+B+\unicode[STIX]{x1D706}_{i}H)$ is finitely generated over
$R$. Let
$X{\dashrightarrow}X_{i}=\operatorname{Proj}_{R}(R(K_{X}+B+\unicode[STIX]{x1D706}_{i}H))$ be the induced rational map. We claim that
(1)
$X_{i}$ is normal and
$\mathbb{Q}$-factorial,
$(X_{i},B_{i})$ is klt,
(2)
$(X_{i},B_{i})_{k}=(X_{i,k},B_{i,k})$,
(3)
$K_{X_{i}}+B_{i}+tH_{i}$ is ample for
$\unicode[STIX]{x1D706}_{i}\geqslant t>\unicode[STIX]{x1D706}_{i+1}$ and
(4)
$K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i}$ is semiample and induces a divisorial contraction
$X_{i}\rightarrow X_{i+1}$.
We will prove this by induction. Clearly, the statements $(1-3)_{i=0}$ hold and
$(4)_{i=-1}$ is vacuous. We will prove that
$(1-3)_{i}$ and
$(4)_{i-1}$ hold imply that
$(1-3)_{i+1}$ and
$(4)_{i}$ hold.
Since $R(K_{X}+B+\unicode[STIX]{x1D706}_{i+1}H)\cong R(K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i})$ and
$K_{X_{i,k}}+B_{i,k}+\unicode[STIX]{x1D706}_{i+1}H_{i,k}$ is semiample, by Theorem 3.1, it follows that
$K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i}$ is semiample (over
$R$) and hence
$|m(K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i})|$ defines a morphism
$\unicode[STIX]{x1D707}_{i}:X_{i}\rightarrow X_{i+1}$ for
$m>0$ sufficiently divisible which extends the morphism
$\unicode[STIX]{x1D707}_{i,k}:X_{i,k}\rightarrow X_{i+1,k}$. Since
$\unicode[STIX]{x1D707}_{i,k}$ is the divisorial contraction of a prime divisor
$P_{k}$ which extends to a prime divisor
$P$ on
$X_{i}$, it follows that
$X_{i}\rightarrow X_{i+1}$ is a divisorial contraction and so
$(4)_{i}$ holds.
To show $(1)_{i+1}$, first observe that since
$X_{i+1,k}$ is normal, so is
$X_{i+1}$. By what we have seen above,
$K_{X_{i+1}}+B_{i+1}+\unicode[STIX]{x1D706}_{i+1}H_{i+1}$ is
$\mathbb{Q}$-Cartier and
$\unicode[STIX]{x1D707}_{i}^{\ast }(K_{X_{i+1}}+B_{i+1}+\unicode[STIX]{x1D706}_{i+1}H_{i+1})=K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i}$. Since
$(X_{i},B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i})$ is klt, it follows that
$(X_{i+1},B_{i+1}+\unicode[STIX]{x1D706}_{i+1}H_{i+1})$ is klt. Therefore, to show that
$(X_{i+1},B_{i+1})$ is klt, it suffices to show that
$X_{i+1}$ is
$\mathbb{Q}$-factorial.
Let $D_{i+1}$ be a divisor on
$X_{i+1}$, we wish to show that
$D_{i+1}$ is
$\mathbb{Q}$-Cartier. We may assume that the support of
$D_{i+1}$ does not contain
$X_{i+1,k}$. Let
$D_{k}$ be the pull back of
$D_{i+1,k}$ to
$X_{k}$. Fix
$0<\unicode[STIX]{x1D716}\ll 1$. Since
$N^{1}(X)\rightarrow N^{1}(X_{k}/X_{n,k})$ is surjective, we may pick a
$\mathbb{Q}$-divisor
$G$ on
$X$ such that
$G_{k}{\sim}_{\mathbb{Q}}\unicode[STIX]{x1D706}_{i+1}H_{k}+\unicode[STIX]{x1D716}D_{k}$. Since
$0<\unicode[STIX]{x1D716}\ll 1$, it follows that
$G_{k}$ is ample and
$X_{k}\rightarrow X_{i,k}$ is a sequence of
$K_{X_{k}}+B_{k}+G_{k}$ negative divisorial contractions. It then follows that
$G$ is ample (over
$R$) and
$X\rightarrow X_{i}$ is a sequence of
$K_{X}+B+G$ negative divisorial contractions. Note that by assumption,
$K_{X_{i,k}}+B_{i,k}+G_{i,k}=\unicode[STIX]{x1D707}_{i,k}^{\ast }(K_{X_{i+1,k}}+B_{i+1,k}+G_{i+1,k})$. Here,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU19.png?pub-status=live)
is ample. Since $R(K_{X_{k}}+B_{k}+G_{k})\cong R(K_{X_{i+1,k}}+B_{i+1,k}+G_{i+1,k})$, by Theorem 3.1,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU20.png?pub-status=live)
is surjective for $m>0$ sufficiently divisible. Since
$K_{X_{i+1,k}}+B_{i+1,k}+G_{i+1,k}$ is ample (and, in particular,
$\mathbb{Q}$-Cartier), we may assume that for any
$x\in X_{i+1,k}$, there exists a global section
$s_{i+1,k}\in H^{0}(m(K_{X_{i+1,k}}+B_{i+1,k}+G_{i+1,k}))$ which generates the line bundle
${\mathcal{O}}_{X_{i+1,k}}(m(K_{X_{i+1,k}}+B_{i+1,k}+G_{i+1,k}))$ locally at
$x$. Let
$s_{i+1}\in H^{0}(m(K_{X_{i+1}}+B_{i+1}+G_{i+1}))$ be a lift of
$s_{i+1,k}$ so that
$s_{i+1}|_{X_{i+1,k}}=s_{i+1,k}$. It follows that
${\mathcal{O}}_{X_{i+1}}(m(K_{X_{i+1}}+B_{i+1}+G_{i+1}))$ is generated by
$s_{i+1}$ locally at
$x$, and hence it is Cartier on a neighborhood of
$x\in X$. Thus,
$K_{X_{i+1}}+B_{i+1}+G_{i+1}$ is
$\mathbb{Q}$-Cartier, and hence so is
$D_{i+1}=\frac{1}{\unicode[STIX]{x1D716}}(G_{i+1}-H_{i+1})$. This concludes the proof that
$(1)_{i+1}$ holds.
$(2)_{i+1}$ follows immediately from what we have observed above. To see
$(3)_{i+1}$, note that
$K_{X_{i+1,k}}+B_{i+1,k}+tH_{i+1,k}$ is ample for
$\unicode[STIX]{x1D706}_{i+1}\leqslant t<\unicode[STIX]{x1D706}_{i+2}$ and apply Lemma 2.5.
If $\unicode[STIX]{x1D70F}=0$, then after finitely many steps, we have obtained a minimal model of
$(X,B)$ over
$\text{Spec}(R)$. Otherwise, there is a Mori fiber space
$X_{n,k}\rightarrow Z_{k}$. By Theorem 3.1 and Corollary 3.3,
$X_{n,k}\rightarrow Z_{k}$ extends to a morphism
$X_{n}\rightarrow Z$ which is
$K_{X}+B$ negative.◻
Proof of Theorem 1.1.
The independence of $\unicode[STIX]{x1D705}(K_{X_{s}}+B_{s})$ for
$s\in S$ is an immediate consequence of Theorem 3.1; however, the statement regarding the log plurigenera
$h^{0}(m(K_{X_{s}}+B_{s}))$ is more subtle as the integer
$m_{0}$ given in Theorem 3.1 (with
$R={\mathcal{O}}_{s,S}$) may depend on the point
$s\in S$. Note, however, that it easily follows that the volumes
$\text{vol}(K_{X_{s}}+B_{s})$ are independent of
$s\in S$.
Assume now that $\text{vol}(K_{X_{s}}+B_{s})>0$. By [Reference Alexeev1, Theorem 7.7] (see also [Reference Hacon and Kovács5]), the corresponding canonical models
$(X_{s}^{lc},B_{s}^{lc})$ belong to a bounded family and, in particular, there is an integer
$m>0$ and finitely many degree-2 polynomials
$P_{1},\ldots ,P_{l}\in \mathbb{Q}[x]$ such that for all
$s\in S$,
$m(K_{X_{s}^{lc}}+B_{s}^{lc})$ is Cartier,
$R(m(K_{X_{s}^{lc}}+B_{s}^{lc}))$ is generated in degree 1 and for every
$k>0$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU21.png?pub-status=live)
for some $1\leqslant j\leqslant l$. Let
$\unicode[STIX]{x1D702}\in S$ be the generic point. Since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU22.png?pub-status=live)
for all $k>0$ sufficiently divisible, it follows that we may assume that
$P_{1}=P_{2}=\cdots =P_{l}$ and so
$h^{0}(mk(K_{X_{s}}+B_{s}))$ is constant for all
$k>0$. But then, for any
$k>0$,
$f_{\ast }{\mathcal{O}}_{X}(mk(K_{X}+B))$ is locally free and
$f_{\ast }{\mathcal{O}}_{X}(mk(K_{X}+B))\rightarrow H^{0}(mk(K_{X_{s}}+B_{s}))$ is surjective for any
$s\in S$, where
$f:X\rightarrow S$ is the given morphism. Since
$S^{k}H^{0}(m(K_{X_{s}}+B_{s}))\rightarrow H^{0}(mk(K_{X_{s}}+B_{s}))$ is surjective for any
$k>0$, it follows from Nakayama’s lemma that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU23.png?pub-status=live)
is surjective for every $k>0$ and so
$R(m(K_{X}+B))$ is finitely generated over
$S$. The canonical model of
$(X,B)$ over
$S$ is then given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200902132753653-0521:S002776301900028X:S002776301900028X_eqnU24.png?pub-status=live)