Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-06T07:19:39.133Z Has data issue: false hasContentIssue false

INVARIANCE OF CERTAIN PLURIGENERA FOR SURFACES IN MIXED CHARACTERISTICS

Published online by Cambridge University Press:  16 January 2020

ANDREW EGBERT
Affiliation:
Department of Mathematics, University of Utah, Salt Lake City, UT84112, USA email AndrewEg2@outlook.com
CHRISTOPHER D. HACON
Affiliation:
Department of Mathematics, University of Utah, Salt Lake City, UT84112, USA email hacon@math.utah.edu
Rights & Permissions [Opens in a new window]

Abstract

We prove the deformation invariance of Kodaira dimension and of certain plurigenera and the existence of canonical models for log surfaces which are smooth over an integral Noetherian scheme $S$.

Type
Article
Copyright
© 2020 Foundation Nagoya Mathematical Journal

1 Introduction

If $f:X\rightarrow T$ is a smooth projective morphism of complex quasi-projective varieties, then by a celebrated theorem of Siu [Reference Siu13], [Reference Siu14], it is known that the plurigenera of the fibers $P_{m}(X_{t}):=h^{0}(mK_{X_{t}})$ are independent of the point $t\in T$. This result (and its generalizations to log pairs) is a fundamental fact of great importance in higher dimensional birational geometry. It plays a fundamental role in the construction of moduli spaces of varieties of log general type. Unluckily, over an algebraically closed field of characteristic $p>0$, this result does not generalize even to families of surfaces over a curve (or a discrete valuation ring (DVR)). In [Reference Lang12], it is shown that $P_{1}$ is not deformation invariant for Enriques surfaces in characteristic 2. In [Reference Katsura and Ueno11], it is shown that, in fact, the deformation invariance of plurigenera does not hold for certain elliptic surfaces, and in [Reference Suh15], there are examples of smooth families of surfaces of general type over any DVR of mixed characteristic for which $P_{1}$ is nonconstant (and, in fact, its value can jump by an arbitrarily big amount). On the positive side, in [Reference Katsura and Ueno11], it is shown that if $X\rightarrow \text{Spec}(R)$ is a smooth family of surfaces over a DVR in positive or mixed characteristic, then one can run the minimal model program (MMP) for $X$ (over an extension of $R$). As a consequence of this, it is observed that $\unicode[STIX]{x1D705}(X_{K})=\unicode[STIX]{x1D705}(X_{k})$, where $k$ is the residue field and $K$ is the fraction field of $R$. It should be noted that the minimal model program is established for semistable families of surfaces in positive or mixed characteristic (see [Reference Kawamata9]), for log canonical surfaces over excellent base schemes (see [Reference Tanaka19]) and for 3 folds over a field $k$ of characteristic $p\geqslant 7$ (see [Reference Hacon and Xu8] and [Reference Birkar3]). In this paper (Theorems 3.1 and 3.4), we generalize the result of Katsura and Ueno to log surfaces (smooth over a DVR) and we show the deformation invariance of certain plurigenera.

Theorem 1.1. Let $(X,B)$ be a klt pair which is log smooth, projective of dimension $2$ over an irreducible integral Noetherian scheme $S$, then $\unicode[STIX]{x1D705}(K_{X_{s}}+B_{s})$ is independent of $s\in S$. If, moreover, $K_{X}+B$ is big over $S$, then there exists an integer $m_{0}>0$ such that for any positive integer $m\in m_{0}\mathbb{N}$, we have

$$\begin{eqnarray}h^{0}(m(K_{X_{s}}+B_{s}))=h^{0}(m(K_{X_{s^{\prime }}}+B_{s^{\prime }}))\quad \forall s,s^{\prime }\in S\end{eqnarray}$$

and the log canonical model for $(X,B)$ over $S$ exists.

When $S$ is the spectrum of a DVR, we obtain a more precise result (see Theorems 3.1 and 3.4). The strategy is to reduce the proof of the above theorem to the case when $(X_{k},B_{k})$ is terminal and $\mathbf{B}(K_{X_{k}}+B_{k})$ contains no components of the support of $B_{k}$. In this case, we observe that the steps of a $K_{X_{k}}+B_{k}$ MMP are also steps of a $K_{X_{k}}$ MMP, and we are thus able to deduce the result from [Reference Katsura and Ueno11].

Remark 1.2. Many results and techniques in this paper were developed in the first author’s Ph.D. thesis [Reference Egbert4].

2 Preliminaries

Let $X$ be a normal quasi-projective variety over an algebraically closed field $k$ and $\text{WDiv}(X)$ the group of Weil divisors. If $B=\sum b_{i}B_{i}\in \text{WDiv}_{\mathbb{Q}}(X)$ is a $\mathbb{Q}$-divisor on $X$, then $\lfloor B\rfloor =\sum \lfloor b_{i}\rfloor B_{i}$, where $\lfloor b_{i}\rfloor =\text{max}\{n\in \mathbb{Z}|n\leqslant b_{i}\}$. We denote $\{B\}=B-\lfloor B\rfloor$ and $|B|=|\lfloor B\rfloor |+\{B\}$, where

$$\begin{eqnarray}|\lfloor B\rfloor |=\{D\in \text{WDiv}(X)|D\geqslant 0,~D-\lfloor B\rfloor =(f),~f\in K(X)\}.\end{eqnarray}$$

The stable base locus of $B$ is $\mathbf{B}(D)=\bigcap _{m\in \mathbb{N}}\text{Bs}(mD)$. Let $(X,B)$ be a pair so that $X$ is normal, $0\leqslant B$ is a $\mathbb{Q}$-divisor and $K_{X}+B$ is $\mathbb{Q}$-Cartier. If $\unicode[STIX]{x1D708}:X^{\prime }\rightarrow X$ is a proper birational morphism, then we write $K_{X^{\prime }}+B_{X^{\prime }}=\unicode[STIX]{x1D708}^{\ast }(K_{X}+B)$. We say that $(X,B)$ is Kawamata log terminal or klt (resp. terminal) if for any proper birational morphism $\unicode[STIX]{x1D708}:X^{\prime }\rightarrow X$, we have $\lfloor B_{X^{\prime }}\rfloor \leqslant 0$ (resp. $B_{X^{\prime }}\leqslant \unicode[STIX]{x1D708}_{\ast }^{-1}B+E$, where $E$ denotes the reduced exceptional divisor). We let $\mathbf{M}_{B}$ be the $b$-divisor defined by the sum of the strict transform of $B$ and the exceptional divisors (over $X$). We refer the reader to [Reference Kollár and Mori10] and [Reference Birkar, Cascini, Hacon and McKernan2] for the standard definitions of the minimal model program including extremal rays, flipping and divisorial contractions, running a minimal model program with scaling, log terminal and weak log canonical models.

Theorem 2.1. Let $(X,B)$ be a two-dimensional projective klt pair over an algebraically closed field $k$. Then

$$\begin{eqnarray}\overline{NE}(X)=\overline{NE}(X)_{K_{X}+B\geqslant 0}+\mathop{\sum }_{i\in I}\mathbb{R}_{{\geqslant}0}C_{i},\end{eqnarray}$$

where $I$ is countable, $(K_{X}+B)\cdot C_{i}<0$ and $C_{i}$ is rational. If $H$ is an ample $\mathbb{Q}$-divisor on $X$, then the set $\{i\in I|(K_{X}+B+H)\cdot C_{i}\leqslant 0\}$ is finite.

Proof. See [Reference Tanaka17, 3.13, 3.15] and [Reference Kollár and Mori10, 3.7]. ◻

Lemma 2.2. Let $X$ be a surface over an algebraically closed field $k$ and $(X,B)$ a projective klt pair. If $R$ is a $K_{X}+B$ negative extremal ray, then there exists a proper morphism $f:X\rightarrow X^{\prime }$ such that $f_{\ast }{\mathcal{O}}_{X}={\mathcal{O}}_{X^{\prime }}$ and $f$ contracts a curve $C\subset X$ if and only if $[C]=R$.

Proof. See [Reference Tanaka17, 3.21] and [Reference Kollár and Mori10, 3.7]. ◻

Theorem 2.3. Let $X$ be a projective surface over an algebraically closed field $k$. Assume that $(X,B)$ is klt. Then

  1. (1) The ring $R(K_{X}+B)=\bigoplus _{m\geqslant 0}H^{0}(m(K_{X}+B))$ is finitely generated.

  2. (2) If $K_{X}+B$ is pseudo-effective, then $\unicode[STIX]{x1D705}(K_{X}+B)\geqslant 0$ and there exists a minimal model $\unicode[STIX]{x1D708}:X\rightarrow X^{\prime }$ such that $K_{X^{\prime }}+B^{\prime }=\unicode[STIX]{x1D708}_{\ast }(K_{X}+B)$ is semiample. If we write $K_{X}+B=\unicode[STIX]{x1D708}^{\ast }(K_{X^{\prime }}+B^{\prime })+F$, then $F\geqslant 0$ is $\unicode[STIX]{x1D708}$-exceptional and we have $F=N_{\unicode[STIX]{x1D70E}}(K_{X}+B)$.

  3. (3) If $H$ is an ample $\mathbb{Q}$-divisor which is general in $N^{1}(X/X^{\prime })$ and $K_{X}+B+H$ is nef, then the MMP with scaling of $H$ yields a sequence of rational numbers $1\geqslant \unicode[STIX]{x1D706}_{1}>\unicode[STIX]{x1D706}_{2}>\cdots >\unicode[STIX]{x1D706}_{n}\geqslant 0$ and divisorial contractions $X=X_{0}\rightarrow X_{1}\rightarrow X_{2}\rightarrow \cdots \rightarrow X_{n}$, where $X_{i}=\operatorname{Proj}R(K_{X}+B+\unicode[STIX]{x1D706}_{i}H)$ and $K_{X_{i}}+B_{i}+tH_{i}$ is ample for $\unicode[STIX]{x1D706}_{i}\geqslant t>\unicode[STIX]{x1D706}_{i+1}$. If $\unicode[STIX]{x1D706}_{n}=0$, then $X\rightarrow X_{n}$ is a $K_{X}+B$ minimal model and if $\unicode[STIX]{x1D706}_{n}>0$, then $X_{n}\rightarrow Z$ is a $K_{X}+B$ Mori fiber space.

Proof. (1) and (2) follow immediately from [Reference Tanaka17]. To see (3), we proceed by induction. Assume that we have constructed $X\rightarrow X_{1}\rightarrow \cdots \rightarrow X_{i}$ and assume that $K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i}H_{i}$ is ample where $B_{i}$ and $H_{i}$ denote the pushforwards of $B$ and $H$. Let $\unicode[STIX]{x1D706}_{i+1}:=\text{inf}\{t>0|K_{X_{i}}+B_{i}+tH_{i}~\text{is nef}\}$. It is easy to see that $0\leqslant \unicode[STIX]{x1D706}_{i+1}<\unicode[STIX]{x1D706}_{i}$ and $K_{X_{i}}+B_{i}+tH_{i}$ is ample for $\unicode[STIX]{x1D706}_{i}\geqslant t>\unicode[STIX]{x1D706}_{i+1}$. If $\unicode[STIX]{x1D706}_{i+1}=0$, then $K_{X_{i}}+B_{i}$ is nef and we have the required $K_{X}+B$ minimal model. Otherwise, by Theorem 2.1, there exists a $K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i}$-trivial and $K_{X_{i}}+B_{i}$ negative extremal ray $C_{i}$. Let $\unicode[STIX]{x1D708}_{i}:X_{i}\rightarrow X_{i+1}$ be the corresponding contraction. If $\dim X_{i+1}<2$, then we have the required $K_{X}+B$ Mori fiber space. Otherwise, $X_{i}\rightarrow X_{i+1}$ is a divisorial contraction. Since $H$ is general in $N^{1}(X/X^{\prime })$, $H_{i}$ is general in $N^{1}(X_{i}/X^{\prime })$ and hence $NE(X_{i})_{K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i}=0}=[C_{i}]$. It follows that $K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i}=\unicode[STIX]{x1D708}_{i}^{\ast }(K_{X_{i+1}}+B_{i+1}+\unicode[STIX]{x1D706}_{i+1}H_{i+1})$, where $K_{X_{i+1}}+B_{i+1}+\unicode[STIX]{x1D706}_{i+1}H_{i+1}$ is ample.◻

Proposition 2.4. Let $X$ be a projective surface over an algebraically closed field $k$. Assume that $(X,B)$ is a klt pair and $\unicode[STIX]{x1D708}:X^{\prime }\rightarrow X$ is a proper birational morphism such that $(X^{\prime },B^{\prime })$ is terminal where $K_{X^{\prime }}+B^{\prime }=\unicode[STIX]{x1D708}^{\ast }(K_{X}+B)$. Let $\unicode[STIX]{x1D6E9}=B^{\prime }-B^{\prime }\wedge N_{\unicode[STIX]{x1D70E}}(K_{X^{\prime }}+B^{\prime })$ and $\unicode[STIX]{x1D719}^{\prime }:X^{\prime }\rightarrow X_{M}^{\prime }$ the minimal model for $(X^{\prime },\unicode[STIX]{x1D6E9})$. If $\unicode[STIX]{x1D719}:X\rightarrow X_{M}$ is the minimal model for $(X,B)$, then the rational map $\unicode[STIX]{x1D707}:X_{M}^{\prime }\rightarrow X_{M}$ is a morphism and $K_{X_{M}^{\prime }}+\unicode[STIX]{x1D719}_{\ast }^{\prime }\unicode[STIX]{x1D6E9}=\unicode[STIX]{x1D707}^{\ast }(K_{X_{M}}+\unicode[STIX]{x1D719}_{\ast }B)$. If $\unicode[STIX]{x1D705}(K_{X}+B)=1$ and $B$ is big over $\operatorname{Proj}R(K_{X}+B)$, then $\unicode[STIX]{x1D6E9}$ is big over $\operatorname{Proj}R(K_{X^{\prime }}+\unicode[STIX]{x1D6E9})$.

Proof. Consider the morphism $\unicode[STIX]{x1D713}:X^{\prime }\rightarrow X_{M}$. Since $K_{X}+B=\unicode[STIX]{x1D719}^{\ast }(K_{X_{M}}+\unicode[STIX]{x1D719}_{\ast }B)+E$ where $E\geqslant 0$ is $\unicode[STIX]{x1D719}$-exceptional, then $K_{X^{\prime }}+B^{\prime }=\unicode[STIX]{x1D713}^{\ast }(K_{X_{M}}+\unicode[STIX]{x1D719}_{\ast }B)+\unicode[STIX]{x1D708}^{\ast }E$ where $K_{X_{M}}+\unicode[STIX]{x1D719}_{\ast }B$ is nef and $\unicode[STIX]{x1D708}^{\ast }E$ is effective and $\unicode[STIX]{x1D713}$ exceptional. It follows that $N_{\unicode[STIX]{x1D70E}}(K_{X^{\prime }}+B^{\prime })=\unicode[STIX]{x1D708}^{\ast }E$ and so $K_{X^{\prime }}+\unicode[STIX]{x1D6E9}=\unicode[STIX]{x1D713}^{\ast }(K_{X_{M}}+\unicode[STIX]{x1D719}_{\ast }B)+E^{\prime }$, where $0\leqslant E^{\prime }\leqslant \unicode[STIX]{x1D708}^{\ast }E$. In particular, $N_{\unicode[STIX]{x1D70E}}(K_{X^{\prime }}+\unicode[STIX]{x1D6E9})=E^{\prime }$ and so the divisors contracted by $\unicode[STIX]{x1D719}^{\prime }$ are precisely the divisors contained in $\text{Supp}(E^{\prime })$. Thus, $X^{\prime }\rightarrow X_{M}$ factors through $\unicode[STIX]{x1D719}^{\prime }$. We have $K_{X_{M}^{\prime }}+\unicode[STIX]{x1D719}_{\ast }^{\prime }\unicode[STIX]{x1D6E9}=\unicode[STIX]{x1D707}^{\ast }(K_{X_{M}}+\unicode[STIX]{x1D719}_{\ast }B)+\unicode[STIX]{x1D719}_{\ast }^{\prime }E^{\prime }$ where $\unicode[STIX]{x1D707}_{\ast }(\unicode[STIX]{x1D719}_{\ast }^{\prime }E^{\prime })\leqslant \unicode[STIX]{x1D719}_{\ast }E=0$ and hence $\unicode[STIX]{x1D719}_{\ast }^{\prime }E$ is $\unicode[STIX]{x1D707}$ exceptional. By the negativity lemma, it follows that $\unicode[STIX]{x1D719}_{\ast }^{\prime }E^{\prime }=0$.

Note that since $H^{0}(m(K_{X}+B))\cong H^{0}(m(K_{X^{\prime }}+\unicode[STIX]{x1D6E9}))$ for all $m\geqslant 0$, it follows that $Z:=\operatorname{Proj}R(K_{X}+B)=\operatorname{Proj}R(K_{X^{\prime }}+\unicode[STIX]{x1D6E9})$. We have $\dim Z=\unicode[STIX]{x1D705}(K_{X}+B)=1$. The bigness of $B$ over $Z$ is equivalent to $B\cdot X_{z}>0$ for general $z\in Z$. But then

$$\begin{eqnarray}\unicode[STIX]{x1D6E9}\cdot X_{z}^{\prime }=\unicode[STIX]{x1D707}_{\ast }\unicode[STIX]{x1D719}_{\ast }^{\prime }\unicode[STIX]{x1D6E9}\cdot (X_{M})_{z}=\unicode[STIX]{x1D719}_{\ast }B\cdot (X_{M})_{z}=B\cdot X_{z}>0\end{eqnarray}$$

and so $\unicode[STIX]{x1D6E9}$ is big over $Z$.◻

Consider now $X$ a smooth projective scheme over an integral Noetherian scheme $S$ and let $f:X\rightarrow S$ be the structure morphism. We say that a pair $(X,B)$ is log smooth over $S$ if $X$ is smooth over $S$ and $B$ is an effective $\mathbb{R}$-divisor whose support is simple normal crossings over $S$ so that $X$ is étale over $\mathbb{A}_{S}^{n}$ and some choice of local coordinates on $\mathbb{A}_{S}^{n}$ pulls back to a parameter system $t_{1},\ldots ,t_{n}$ on $X$ and $\text{Supp}(B)=\{t_{1}\ldots t_{r}=0\}$ for some $0\leqslant r\leqslant n$. We refer the reader to [16, Section 01V4] for a discussion of smooth morphisms. In particular, each strata of the support of $B$ is smooth over $S$. We say that a log smooth pair $(X,B=\sum b_{i}B_{i})$ is klt iff $0\leqslant b_{i}<1$ and $(X,B=\sum b_{i}B_{i})$ is terminal iff $0\leqslant b_{i}<1$ and $b_{i}+b_{j}<1$ if $i\neq j$ and $B_{i}\cap B_{j}\neq \emptyset$.

In what follows, $R$ will denote a DVR with residue field $k$ and fraction field $K$. Let $X$ be an integral Noetherian scheme over $\text{Spec}(R)$ and $f:X\rightarrow \text{Spec}(R)$ the structure morphism, then we let $X_{K}=X\times _{\text{Spec}(R)}\text{Spec}(K)$ be the generic fiber and $X_{k}=X\times _{\text{Spec}(R)}\text{Spec}(k)$ be the special fiber. As usual, we say that two Cartier divisors on $X$ are numerically equivalent $L_{1}\equiv _{R}L_{2}$ iff $(L_{1}-L_{2})\cdot C=0$ for any curve $C$ contained in a fiber $X_{K}$ or $X_{k}$. Note that it suffices to check this on the special fiber $X_{k}$. We then let

$$\begin{eqnarray}\displaystyle & N^{1}(X/R)=(\{\text{Cartier divisors }L\text{ on }X\}/\equiv _{R})\otimes _{\mathbb{Z}}\mathbb{R}, & \displaystyle \nonumber\\ \displaystyle & N_{1}(X/R)=(\{\text{curves on }X_{k}\}/\equiv _{R})\otimes _{\mathbb{Z}}\mathbb{R}. & \displaystyle \nonumber\end{eqnarray}$$

$NE(X/R)\subset N_{1}(X/R)$ is the closed cone spanned by effective curves. Note that the natural map $N_{1}(X/R)\rightarrow N^{1}(X_{k})$ is injective and the dual map $N_{1}(X_{k})\rightarrow N_{1}(X/R)$ is surjective and so is the induced map $NE(X_{k})\rightarrow NE(X/R)$.

Lemma 2.5. Let $f:X\rightarrow \text{Spec}(R)$ be a smooth projective morphism from a smooth variety to a DVR and $L$ a line bundle on $X$, then

  1. (1) $L$ is ample if and only if $L_{k}:=L|_{X_{k}}$ is ample, and

  2. (2) $L$ is nef if and only if $L_{k}:=L|_{X_{k}}$ is nef.

Proof. Clearly, if $L$ is ample or nef, then so is $L_{k}$. It is well known that ampleness is an open condition and so if $L_{k}$ is ample, then so is $L$. Finally, if $L_{k}$ is nef and $H$ is ample, then $L_{k}+tH_{k}$ is ample for any $t>0$ so that $L+tH$ is ample and hence $L$ is nef.◻

Lemma 2.6. Let $f:X\rightarrow \text{Spec}(R)$ be a flat projective morphism from a variety to a DVR and $(X,B)$ a log pair. Then $(X,B)$ is log smooth over $\text{Spec}(R)$ if and only if $(X_{k},B_{k})$ is log smooth.

Proof. See [16, Section 01V4]. ◻

Lemma 2.7. Let $(X,B)$ be a log pair which is log smooth over $\text{Spec}(R)$, where $R$ is a DVR. If $R\subset \tilde{R}$ is an inclusion of DVR’s, then $(X_{\tilde{R}},B_{\tilde{R}})$ is log smooth over $\text{Spec}(\tilde{R})$. If $(X,B)$ is terminal (resp. klt), then so is $(X_{\tilde{R}},B_{\tilde{R}})$.

Proof. Since smoothness is preserved by base change, it follows that $(X_{\tilde{R}},B_{\tilde{R}})$ is log smooth over $\text{Spec}(\tilde{R})$. The pair $(X,B)$ is klt (resp. terminal) if and only if the coefficients of $B$ are ${<}1$ (resp. the coefficients of $B$ are ${<}1$ and if two components intersect, then the sum of the coefficients is ${<}1$). The lemma now follows since if there are two intersecting components of $B_{\tilde{R}}$, then there are two intersecting components of $B$ (with the same coefficients).◻

Theorem 2.8. (Katsura–Ueno [Reference Katsura and Ueno11])

Let $f:X\rightarrow \text{Spec}(R)$ be an algebraic space which is smooth, proper and two-dimensional over $\text{Spec}(R)$, where $R$ is a DVR with algebraically closed residue field $k$ and field of fractions $K$. If $X_{k}$ contains a $-1$ curve $e\subset X_{k}$, then there exists a DVR $\tilde{R}\supset R$ with residue field $k$ and fraction field $\tilde{K}$ and a surjective proper morphism $\unicode[STIX]{x1D70B}:X_{\tilde{R}}\rightarrow {\tilde{Y}}$ over $\text{Spec}(\tilde{R})$ where ${\tilde{Y}}\rightarrow \text{Spec}(\tilde{R})$ is smooth, proper, and two-dimensional, $\unicode[STIX]{x1D70B}_{k}$ contracts the $-1$ curve $e\subset X_{k}$ and $\unicode[STIX]{x1D70B}_{K}:X_{\tilde{K}}\rightarrow {\tilde{Y}}_{\tilde{K}}$ is also a contraction of a $-1$ curve.

3 Main result

In this section, we will prove Theorem 1.1. We begin by showing that a more general version of this result holds when $S=\text{Spec}(R)$ is the spectrum of a DVR and then we will deduce the general case.

Theorem 3.1. Let $(X,B)$ be a klt pair which is log smooth, projective of dimension $2$ over $S=\text{Spec}(R)$, where $R$ is a DVR with residue field $k$ and fraction field $K$. If $K_{X}+B$ is $\mathbb{Q}$-Cartier, then $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=\unicode[STIX]{x1D705}(K_{X_{K}}+B_{K})$ and if either $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})\neq 1$ or $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=1$ and $B_{k}$ is big over $\operatorname{Proj}R(K_{X_{k}}+B_{k})$, then there exists an integer $m_{0}>0$ such that for any integer $m\in m_{0}\mathbb{N}$, we have

$$\begin{eqnarray}h^{0}(m(K_{X_{k}}+B_{k}))=h^{0}(m(K_{X_{K}}+B_{K})).\end{eqnarray}$$

Proof. Consider an inclusion of DVR’s $R\subset \tilde{R}$. If $\tilde{k}$ and $\tilde{K}$ denote the residue field and the fraction field of $\tilde{R}$, then $h^{0}(m(K_{X_{k}}+B_{k}))=h^{0}(m(K_{X_{\tilde{k}}}+B_{\tilde{k}}))$ and $h^{0}(m(K_{X_{K}}+B_{K}))=h^{0}(m(K_{X_{\tilde{K}}}+B_{\tilde{K}}))$. Note also that if $\tilde{X}=X\times _{\text{Spec}(R)}\text{Spec}(\tilde{R})$ and $\tilde{B}=B\times _{\text{Spec}(R)}\text{Spec}(\tilde{R})$, then $(\tilde{X},\tilde{B})$ is log smooth over $\tilde{R}$ and $\tilde{X}_{\tilde{k}}\cong X_{k}\times _{\text{Spec}(k)}\text{Spec}(\tilde{k})$. Thus, we are free to replace $X\rightarrow R$ by $\tilde{X}\rightarrow \tilde{R}$. In particular, we may assume that $k$ is algebraically closed.

If $h^{0}(m(K_{X_{k}}+B_{k}))=0$, then, by semicontinuity, $h^{0}(m(K_{X_{K}}+B_{K}))=0$. Therefore, the theorem holds trivially in the case $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=-\infty$. Thus, we may assume that $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})\geqslant 0$.

Claim 3.2. The theorem holds under the additional assumption that $(X_{k},B_{k})$ is terminal and no component of the support of $B_{k}$ is contained in $\mathbf{B}(K_{X_{k}}+B_{k})$.

Proof. Since $k$ is algebraically closed, then by the Cone Theorem (Theorem 2.1),

$$\begin{eqnarray}\overline{NE}(X_{k})=\overline{NE}(X_{k})_{K_{X_{k}}+B_{k}\geqslant 0}+\mathop{\sum }_{i\in I}\mathbb{R}_{{\geqslant}0}C_{i},\end{eqnarray}$$

where $I$ is countable, $(K_{X_{k}}+B_{k})\cdot C_{i}<0$ and $C_{i}$ is rational.

Suppose that one of the above curves $C_{i}$ is contained in the support of $B_{k}$, then since $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})\geqslant 0$ and $(K_{X_{k}}+B_{k})\cdot C_{i}<0$, we have $C_{i}\subset \mathbf{B}(K_{X_{k}}+B_{k})$, which we have assumed is impossible.

Note then that $C_{i}$ is not contained in the support of $B_{k}$ and thus $C_{i}\cdot B_{k}\geqslant 0$ and so $K_{X_{k}}\cdot C_{i}<0$. It follows that if $C_{i}$ spans a $K_{X_{k}}+B_{k}$-negative extremal ray, then it also spans a $K_{X_{k}}$-negative extremal ray and so it can be contracted by a divisorial contraction of a $-1$ curve $X_{k}\rightarrow X_{k}^{\prime }$. In particular, $X_{k}^{\prime }$ is also a smooth surface. Thus, we may assume that $C_{i}$ is a $-1$ curve. By Theorem 2.8 (after extending $R$), we may assume that there is a morphism $X\rightarrow X^{\prime }$ of smooth surfaces over $R$ such that $X_{K}\rightarrow X_{K}^{\prime }$ also contracts a $-1$ curve.

We now run an MMP by contracting a sequence of $K_{X}+B$-negative curves as above. Let $\unicode[STIX]{x1D708}:X\rightarrow \bar{X}$ be the induced morphism of smooth surfaces over $\text{Spec}(R)$. We may assume that $X_{K}\rightarrow \bar{X}_{K}$ and $X_{k}\rightarrow \bar{X}_{k}$ are given by a finite sequence of contractions of $-1$ curves such that the exceptional locus of $X_{k}\rightarrow \bar{X}_{k}$ contains no components of $B_{k}$. Then $(\bar{X}_{k},\bar{B}_{k})$ is terminal and $K_{X_{k}}+B_{k}=\unicode[STIX]{x1D708}_{k}^{\ast }(K_{\bar{X}_{k},}+\bar{B}_{k})+F_{k}$, where $B_{k}=\unicode[STIX]{x1D708}_{k,\ast }^{-1}\bar{B}_{k}$ and $B_{k}\wedge F_{k}=0$. In particular, $\mathbf{B}(K_{X_{k}}+B_{k})=\mathbf{B}(\unicode[STIX]{x1D708}_{k}^{\ast }(K_{\bar{X}_{k}}+\bar{B}_{k}))+F_{k}$. Suppose that $C\subset \bar{X}_{k}$ is contained in $\mathbf{B}(K_{\bar{X}_{k}}+\bar{B}_{k})\cap \text{Supp}(\bar{B}_{k})$, then $\unicode[STIX]{x1D708}_{\ast }^{-1}C\subset \mathbf{B}(K_{X_{k}}+B_{k})\cap \text{Supp}(B_{k})$ which is impossible. Therefore, if $K_{\bar{X}_{k}}+\bar{B}_{k}$ is not nef, we can continue to contract $-1$ curves. Since each contraction reduces the Picard number of the central fiber $X_{k}$ by one, this procedure must terminate after finitely many steps. We may therefore assume that $K_{\bar{X}_{k}}+\bar{B}_{k}$ is semiample. In particular, $K_{\bar{X}_{k}}+\bar{B}_{k}$ is nef and hence so is $K_{\bar{X}}+\bar{B}$ (see Lemma 2.5).

Suppose now that $\unicode[STIX]{x1D708}(K_{X_{k}}+B_{k})=2$. In this case, $K_{\bar{X}_{k}}+\bar{B}_{k}$ is nef and big and $m_{0}(K_{\bar{X}_{k}}+\bar{B}_{k})$ is Cartier for some $m_{0}>0$. We may write

$$\begin{eqnarray}km_{0}(K_{\bar{X}_{k}}+\bar{B}_{k})=K_{\bar{X}_{k}}+\lceil (m_{0}-1)(K_{\bar{X}_{k}}+\bar{B}_{k}))\rceil +(k-1)m_{0}(K_{\bar{X}_{k}}+\bar{B}_{k})\end{eqnarray}$$

so that by [Reference Tanaka18, 2.6] $h^{i}(m(K_{\bar{X}_{k}}+\bar{B}_{k}))=0$ for all sufficiently big integers $m\in m_{0}\mathbb{N}$ and all $i>0$. Replacing $m_{0}$ by an appropriate multiple, this condition holds for all $m\in m_{0}\mathbb{N}$. By semicontinuity, we also have $h^{i}(m(K_{\bar{X}_{K}}+\bar{B}_{K}))=0$ for all $m\in m_{0}\mathbb{N}$ and $i>0$. The result now follows from cohomology and base change.

Suppose that $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=0$. Then we have $K_{\bar{X}_{k}}+\bar{B}_{k}{\sim}_{\mathbb{Q}}0$. By Lemma 2.5, it follows that $\pm (K_{\bar{X}_{K}}+\bar{B}_{K})$ is nef and hence that $K_{\bar{X}_{K}}+\bar{B}_{K}\equiv 0$. By [Reference Tanaka17, 1.2], $K_{\bar{X}_{K}}+\bar{B}_{K}{\sim}_{\mathbb{Q}}0$. Thus, there exists an integer $m_{0}>0$ such that $m_{0}(K_{\bar{X}_{K}}+\bar{B}_{K})\sim 0$ and $m_{0}(K_{\bar{X}_{k}}+\bar{B}_{k})\sim 0$. Thus, $h^{0}(m(K_{X_{K}}+B_{K}))=h^{0}(m(K_{X_{k}}+B_{k}))$ for all $m\geqslant 0$ divisible by $m_{0}$.

Suppose that $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=1$. Since $K_{\bar{X}_{k}}+\bar{B}_{k}$ is nef, so is $K_{\bar{X}_{K}}+\bar{B}_{K}$. In particular, $\unicode[STIX]{x1D705}(K_{\bar{X}_{K}}+\bar{B}_{K})\geqslant 0$ and, thus, by semicontinuity, we have $\unicode[STIX]{x1D705}(K_{\bar{X}_{K}}+\bar{B}_{K})\in \{0,1\}$. Let $H$ be a sufficiently ample divisor on $\bar{X}$. Then $(K_{\bar{X}_{K}}+\bar{B}_{K})\cdot H_{K}=(K_{\bar{X}_{k}}+\bar{B}_{k})\cdot H_{k}>0$ so $K_{\bar{X}_{K}}+\bar{B}_{K}\not \equiv 0$. Therefore, $\unicode[STIX]{x1D705}(K_{\bar{X}_{K}}+\bar{B}_{K})=1$.

Finally, suppose that $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=1$ and $B_{k}$ is big over $\operatorname{Proj}R(K_{X_{k}}+B_{k})$. Note that $\bar{B}_{k}$ is also big over $\operatorname{Proj}R(K_{\bar{X}_{k}}+\bar{B}_{k})$ and hence $\bar{B}_{k}+K_{\bar{X}_{k}}+\bar{B}_{k}$ is big. Thus, we may write $\bar{B}_{k}+K_{\bar{X}_{k}}+\bar{B}_{k}{\sim}_{\mathbb{Q}}\bar{A}_{k}+\bar{E}_{k}$, where $\bar{A}_{k}$ is ample and $\bar{E}_{k}$ is effective. For any rational number $0<\unicode[STIX]{x1D716}\ll 1$, the pair $(\bar{X}_{k},\unicode[STIX]{x1D6E5}_{k}=(1-\unicode[STIX]{x1D716})\bar{B}_{k}+\unicode[STIX]{x1D716}\bar{E}_{k})$ is Kawamata log terminal and so the corresponding multiplier ideal sheaf is trivial ${\mathcal{J}}(\unicode[STIX]{x1D6E5}_{k})={\mathcal{O}}_{\bar{X}_{k}}$. If $L=N=m(K_{\bar{X}_{k}}+\bar{B}_{k})$, then $N$ is nef and not numerically equivalent to zero while

$$\begin{eqnarray}L-(K_{\bar{X}_{k}}+\unicode[STIX]{x1D6E5}_{k}){\sim}_{\mathbb{Q}}(m-1-\unicode[STIX]{x1D716})(K_{\bar{X}_{k}}+\bar{B}_{k})+\unicode[STIX]{x1D716}\bar{A}_{k}\end{eqnarray}$$

is ample, and so by [Reference Tanaka18, 0.3] and [Reference Kollár and Mori10, 2.70], $H^{i}({\mathcal{O}}_{\bar{X}_{k}}(m(l+1)(K_{\bar{X}_{k}}+\bar{B}_{k})))=0$ for $i>0$ and $l\gg 0$. By semicontinuity, $H^{i}({\mathcal{O}}_{\bar{X}_{K}}(m(l+1)(K_{\bar{X}_{K}}+\bar{B}_{K})))=0$ for $i>0$ and $l\gg 0$ and hence $h^{0}({\mathcal{O}}_{\bar{X}_{k}}(m(l+1)(K_{\bar{X}_{k}}+\bar{B}_{k})))=h^{0}({\mathcal{O}}_{\bar{X}_{K}}(m(l+1)(K_{\bar{X}_{K}}+\bar{B}_{K})))$.◻

We will now consider the general case. Since $(X,B)$ is log smooth over $R$, there is a sequence of blowups along strata of $\mathbf{M}_{B}$ say $\unicode[STIX]{x1D708}:X^{\prime }\rightarrow X$ such that $K_{X^{\prime }}+B^{\prime }=\unicode[STIX]{x1D708}^{\ast }(K_{X}+B)$ is terminal and, in particular, $B^{\prime }\geqslant 0$ and $(X^{\prime },B^{\prime })$ is log smooth. Since $R(K_{X_{k}^{\prime }}+B_{k}^{\prime })\cong R(K_{X_{k}}+B_{k})$ is finitely generated, $N_{\unicode[STIX]{x1D70E}}(K_{X_{k}^{\prime }}+B_{k}^{\prime })$ is a $\mathbb{Q}$-divisor and hence so is

$$\begin{eqnarray}\unicode[STIX]{x1D6E9}_{k}:=B_{k}^{\prime }-(B_{k}^{\prime }\wedge N_{\unicode[STIX]{x1D70E}}(K_{X_{k}^{\prime }}+B_{k}^{\prime })).\end{eqnarray}$$

Note that $R(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k})\cong R(K_{X_{k}^{\prime }}+B_{k}^{\prime })$, $(X_{k}^{\prime },\unicode[STIX]{x1D6E9}_{k})$ is terminal and no component of $\unicode[STIX]{x1D6E9}_{k}$ is contained in $\mathbf{B}(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k})$ [[Reference Hacon, McKernan and Xu6, 2.8.3] and [Reference Hacon and Xu7, 2.4]]. Let $\unicode[STIX]{x1D6E9}$ be the unique $\mathbb{Q}$-divisor supported on $B^{\prime }$ such that $\unicode[STIX]{x1D6E9}|_{X_{k}^{\prime }}=\unicode[STIX]{x1D6E9}_{k}$. We remark that if $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=1$ and $B_{k}$ is big over $\operatorname{Proj}R(K_{X_{k}}+B_{k})$, then by Proposition 2.4, $\unicode[STIX]{x1D6E9}_{k}$ is big over $\operatorname{Proj}R(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k})$. By Claim 3.2, it follows that $\unicode[STIX]{x1D705}(K_{X_{K}^{\prime }}+\unicode[STIX]{x1D6E9}_{K})=\unicode[STIX]{x1D705}(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k})$ and there exists an integer $m_{0}>0$ such that

$$\begin{eqnarray}h^{0}(m(K_{X_{K}^{\prime }}+\unicode[STIX]{x1D6E9}_{K}))=h^{0}(m(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}))\quad \forall m\in m_{0}\mathbb{N}.\end{eqnarray}$$

By semicontinuity, we then have

$$\begin{eqnarray}\displaystyle h^{0}(m(K_{X_{k}}+B_{k})) & {\geqslant} & \displaystyle h^{0}(m(K_{X_{K}}+B_{K}))\geqslant h^{0}(m(K_{X_{K}^{\prime }}+B_{K}^{\prime }))\nonumber\\ \displaystyle & {\geqslant} & \displaystyle h^{0}(m(K_{X_{K}^{\prime }}+\unicode[STIX]{x1D6E9}_{K}))=h^{0}(m(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}))=h^{0}(m(K_{X_{k}}+B_{k}))\nonumber\end{eqnarray}$$

and hence $h^{0}(m(K_{X_{k}}+B_{k}))=h^{0}(m(K_{X_{K}}+B_{K}))$. The equality $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=\unicode[STIX]{x1D705}(K_{X_{K}}+B_{K})$ follows similarly.◻

Corollary 3.3. Let $(X,B)$ be a klt pair which is log smooth, projective of dimension $2$ over a DVR $R$ with residue field $k$ of characteristic $p>0$ and fraction field $K$. If $K_{X}+B$ is $\mathbb{Q}$-Cartier and either $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})\in \{0,2\}$ or $\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k})=1$ and $B_{k}$ is big over $\operatorname{Proj}R(K_{X_{k}}+B_{k})$, then $R(K_{X}+B)$ is finitely generated.

Proof. By Theorem 2.3, $R(K_{X_{k}}+B_{k})$ is finitely generated and hence there is a positive integer $m$ such that

$$\begin{eqnarray}R(m(K_{X_{k}}+B_{k}))\end{eqnarray}$$

is generated in degree 1, that is, by $H^{0}(m(K_{X_{k}}+B_{k}))$. By Theorem 3.1, after replacing $m$ by a multiple, we may assume that $m(K_{X}+B)$ is Cartier and

$$\begin{eqnarray}H^{0}(m(K_{X}+B))\rightarrow H^{0}(m(K_{X_{k}}+B_{k}))\end{eqnarray}$$

is surjective. Therefore, the induced map

$$\begin{eqnarray}S^{k}H^{0}(m(K_{X}+B))\rightarrow S^{k}H^{0}(m(K_{X_{k}}+B_{k}))\rightarrow H^{0}(mk(K_{X_{k}}+B_{k}))\end{eqnarray}$$

is surjective. By Nakayama’s lemma,

$$\begin{eqnarray}S^{k}H^{0}(m(K_{X}+B))\rightarrow H^{0}(mk(K_{X}+B))\end{eqnarray}$$

is surjective and so $R(m(K_{X}+B))$ is finitely generated.◻

Theorem 3.4. Let $(X,B)$ be a klt pair which is log smooth, projective of dimension $2$ over a DVR $R$ with residue field $k$ and fraction field $K$. If $K_{X}+B$ is $\mathbb{Q}$-Cartier, then (after possibly extending $R$) we may run a $K_{X}+B$ MMP over $R$ which is given by a sequence of divisorial contractions and terminates with a $K_{X}+B$ minimal model $X\rightarrow \bar{X}$ over $R$ or a $K_{X}+B$ Mori fiber space over $R$.

Proof. After extending $R$, we may assume that $k$ is algebraically closed. Suppose that $H$ is ample and let

$$\begin{eqnarray}\unicode[STIX]{x1D70F}=\text{inf}\{t\geqslant 0|\unicode[STIX]{x1D705}(K_{X_{k}}+B_{k}+tH_{k})\geqslant 0\}.\end{eqnarray}$$

Pick $1\gg \unicode[STIX]{x1D70F}^{\prime }-\unicode[STIX]{x1D70F}>0$, then by Theorem 2.3 and its proof, $\text{Proj}R(K_{X_{k}}+B_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k})$ is the minimal model of $(X_{k},B_{k}+tH_{k})$ for $\unicode[STIX]{x1D70F}^{\prime }\geqslant t\geqslant \unicode[STIX]{x1D70F}$. Let $\unicode[STIX]{x1D708}_{k}:X_{k}^{\prime }\rightarrow X_{k}$ be a terminalization of $(X_{k},B_{k})$ given by a sequence of blowups along strata of $\mathbf{M}_{B_{k}}$, $K_{X_{k}^{\prime }}+B_{k}^{\prime }=\unicode[STIX]{x1D708}_{k}^{\ast }(K_{X_{k}}+B_{k})$, $H_{k}^{\prime }=\unicode[STIX]{x1D708}_{k}^{\ast }H_{k}$ and

$$\begin{eqnarray}\unicode[STIX]{x1D6E9}_{k}=B_{k}^{\prime }-B_{k}^{\prime }\wedge N_{\unicode[STIX]{x1D70E}}(K_{X_{k}^{\prime }}+B_{k}^{\prime }+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime }).\end{eqnarray}$$

If $X_{k}^{\prime }\rightarrow X_{1,k}^{\prime }\rightarrow \cdots \rightarrow X_{n,k}^{\prime }$ is a MMP for $K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime }$, then $K_{X_{n,k}^{\prime }}+\unicode[STIX]{x1D6E9}_{n,k}+\unicode[STIX]{x1D70F}^{\prime }H_{n,k}^{\prime }$ is semiample and induces a morphism $\unicode[STIX]{x1D708}_{n,k}:X_{n,k}^{\prime }\rightarrow X_{n,k}:=\text{Proj}R(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime })$. By Proposition 2.4, $R(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime })\cong R(K_{X_{k}}+B_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k})$, and so the induced birational map $X_{k}\rightarrow X_{n,k}$ is in fact the morphism corresponding to the minimal model of $K_{X_{k}}+B_{k}+\unicode[STIX]{x1D70F}H_{k}$. If $\unicode[STIX]{x1D70F}=0$, then $X_{k}\rightarrow X_{n,k}$ is a $K_{X_{k}}+B_{k}$ minimal model and if $\unicode[STIX]{x1D70F}>0$, then $X_{n,k}\rightarrow Z_{k}=\operatorname{Proj}R(K_{X_{k}}+B_{k}+\unicode[STIX]{x1D70F}H_{k})$ is a $K_{X_{k}}+B_{k}$ Mori fiber space.

We claim that the exceptional divisors of $X_{k}^{\prime }\rightarrow X_{n,k}$ are either contained in the support of $\mathbf{M}_{B_{k}}$ or in $N_{\unicode[STIX]{x1D70E}}(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime })$. To see this, note that the support of $\mathbf{M}_{B_{k}}$ contains the $X_{k}^{\prime }\rightarrow X_{k}$ exceptional divisors and so it suffices to show that the exceptional divisors of $X_{k}\rightarrow X_{n,k}$ are contained in the support of $B_{k}^{\prime }$ and $N_{\unicode[STIX]{x1D70E}}(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime })$. The exceptional divisors of $X_{k}\rightarrow X_{n,k}$ are given by the support of $N_{\unicode[STIX]{x1D70E}}(K_{X_{k}}+B_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k})$. The strict transforms of divisors in $N_{\unicode[STIX]{x1D70E}}(K_{X_{k}}+B_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k})$ are divisors in $N_{\unicode[STIX]{x1D70E}}(K_{X_{k}^{\prime }}+B_{k}^{\prime }+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime })$ and hence in $N_{\unicode[STIX]{x1D70E}}(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k}^{\prime })$ plus some divisors supported on $B_{k}^{\prime }$. Thus, the claim holds.

By the proof of Theorem 3.1, there is a sequence of divisorial contractions of smooth varieties $X^{\prime }\rightarrow X_{1}^{\prime }\rightarrow \cdots \rightarrow X_{n}^{\prime }$ extending the MMP $X_{k}^{\prime }\rightarrow X_{1,k}^{\prime }\rightarrow \cdots \rightarrow X_{n,k}^{\prime }$ which induces contractions of $-1$ curves on $X_{i,k}$ and $X_{i,K}$. It follows that if $P_{k}$ is an exceptional prime divisor of $X_{k}^{\prime }\rightarrow X_{n,k}$, then there is a prime divisor $P\subset X^{\prime }$ such that $P_{k}=P|_{X_{k}^{\prime }}$. To see this, note that either $P_{k}$ is a component of $\mathbf{M}_{B_{k}}$ and hence we may take $P$ as the corresponding component of $\mathbf{M}_{B}$ or $P_{k}$ is a component of $N_{\unicode[STIX]{x1D70E}}(K_{X_{k}^{\prime }}+\unicode[STIX]{x1D6E9}_{k}+\unicode[STIX]{x1D70F}^{\prime }H_{k})$ and hence the exceptional divisor for some divisorial contraction $X_{i,k}^{\prime }\rightarrow X_{i+1,k}^{\prime }$. We can then pick $P$ to be the exceptional divisor of $X_{i}^{\prime }\rightarrow X_{i+1}^{\prime }$.

Therefore, all $X_{k}^{\prime }\rightarrow X_{n,k}$ exceptional divisors extend to divisors on $X^{\prime }$ and hence $N^{1}(X^{\prime })\rightarrow N^{1}(X_{k}^{\prime }/X_{n,k})$ is surjective and so $N^{1}(X)\rightarrow N^{1}(X_{k}/X_{n,k})$ is also surjective.

We now replace $H$ by a sufficiently ample $\mathbb{Q}$-divisor on $X$ which is general in $N^{1}(X)$. Since $H_{k}$ is general in $N^{1}(X_{k}/X_{n,k})$, by Theorem 2.3, running the minimal model program with scaling of $H_{k}$, we obtain a sequence of rational numbers $\unicode[STIX]{x1D706}_{1}>\unicode[STIX]{x1D706}_{2}>\cdots >\unicode[STIX]{x1D706}_{n}=\unicode[STIX]{x1D70F}$ and divisorial contractions $X_{i,k}\rightarrow X_{i+1,k}$ such that $X_{i,k}=\operatorname{Proj}(R(K_{X_{k}}+B_{k}+tH_{k}))$ for $\unicode[STIX]{x1D706}_{i}\geqslant t>\unicode[STIX]{x1D706}_{i+1}$ where we let $X_{k}=X_{0,k}$ and $\unicode[STIX]{x1D706}_{0}=1$. By Corollary 3.3, $R(K_{X}+B+\unicode[STIX]{x1D706}_{i}H)$ is finitely generated over $R$. Let $X{\dashrightarrow}X_{i}=\operatorname{Proj}_{R}(R(K_{X}+B+\unicode[STIX]{x1D706}_{i}H))$ be the induced rational map. We claim that

  1. (1) $X_{i}$ is normal and $\mathbb{Q}$-factorial, $(X_{i},B_{i})$ is klt,

  2. (2) $(X_{i},B_{i})_{k}=(X_{i,k},B_{i,k})$,

  3. (3) $K_{X_{i}}+B_{i}+tH_{i}$ is ample for $\unicode[STIX]{x1D706}_{i}\geqslant t>\unicode[STIX]{x1D706}_{i+1}$ and

  4. (4) $K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i}$ is semiample and induces a divisorial contraction $X_{i}\rightarrow X_{i+1}$.

We will prove this by induction. Clearly, the statements $(1-3)_{i=0}$ hold and $(4)_{i=-1}$ is vacuous. We will prove that $(1-3)_{i}$ and $(4)_{i-1}$ hold imply that $(1-3)_{i+1}$ and $(4)_{i}$ hold.

Since $R(K_{X}+B+\unicode[STIX]{x1D706}_{i+1}H)\cong R(K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i})$ and $K_{X_{i,k}}+B_{i,k}+\unicode[STIX]{x1D706}_{i+1}H_{i,k}$ is semiample, by Theorem 3.1, it follows that $K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i}$ is semiample (over $R$) and hence $|m(K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i})|$ defines a morphism $\unicode[STIX]{x1D707}_{i}:X_{i}\rightarrow X_{i+1}$ for $m>0$ sufficiently divisible which extends the morphism $\unicode[STIX]{x1D707}_{i,k}:X_{i,k}\rightarrow X_{i+1,k}$. Since $\unicode[STIX]{x1D707}_{i,k}$ is the divisorial contraction of a prime divisor $P_{k}$ which extends to a prime divisor $P$ on $X_{i}$, it follows that $X_{i}\rightarrow X_{i+1}$ is a divisorial contraction and so $(4)_{i}$ holds.

To show $(1)_{i+1}$, first observe that since $X_{i+1,k}$ is normal, so is $X_{i+1}$. By what we have seen above, $K_{X_{i+1}}+B_{i+1}+\unicode[STIX]{x1D706}_{i+1}H_{i+1}$ is $\mathbb{Q}$-Cartier and $\unicode[STIX]{x1D707}_{i}^{\ast }(K_{X_{i+1}}+B_{i+1}+\unicode[STIX]{x1D706}_{i+1}H_{i+1})=K_{X_{i}}+B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i}$. Since $(X_{i},B_{i}+\unicode[STIX]{x1D706}_{i+1}H_{i})$ is klt, it follows that $(X_{i+1},B_{i+1}+\unicode[STIX]{x1D706}_{i+1}H_{i+1})$ is klt. Therefore, to show that $(X_{i+1},B_{i+1})$ is klt, it suffices to show that $X_{i+1}$ is $\mathbb{Q}$-factorial.

Let $D_{i+1}$ be a divisor on $X_{i+1}$, we wish to show that $D_{i+1}$ is $\mathbb{Q}$-Cartier. We may assume that the support of $D_{i+1}$ does not contain $X_{i+1,k}$. Let $D_{k}$ be the pull back of $D_{i+1,k}$ to $X_{k}$. Fix $0<\unicode[STIX]{x1D716}\ll 1$. Since $N^{1}(X)\rightarrow N^{1}(X_{k}/X_{n,k})$ is surjective, we may pick a $\mathbb{Q}$-divisor $G$ on $X$ such that $G_{k}{\sim}_{\mathbb{Q}}\unicode[STIX]{x1D706}_{i+1}H_{k}+\unicode[STIX]{x1D716}D_{k}$. Since $0<\unicode[STIX]{x1D716}\ll 1$, it follows that $G_{k}$ is ample and $X_{k}\rightarrow X_{i,k}$ is a sequence of $K_{X_{k}}+B_{k}+G_{k}$ negative divisorial contractions. It then follows that $G$ is ample (over $R$) and $X\rightarrow X_{i}$ is a sequence of $K_{X}+B+G$ negative divisorial contractions. Note that by assumption, $K_{X_{i,k}}+B_{i,k}+G_{i,k}=\unicode[STIX]{x1D707}_{i,k}^{\ast }(K_{X_{i+1,k}}+B_{i+1,k}+G_{i+1,k})$. Here,

$$\begin{eqnarray}K_{X_{i+1,k}}+B_{i+1,k}+G_{i+1,k}{\sim}_{\mathbb{Q}}K_{X_{i+1,k}}+B_{i+1,k}+\unicode[STIX]{x1D706}_{i+1}H_{i+1,k}+\unicode[STIX]{x1D716}D_{i+1,k}\end{eqnarray}$$

is ample. Since $R(K_{X_{k}}+B_{k}+G_{k})\cong R(K_{X_{i+1,k}}+B_{i+1,k}+G_{i+1,k})$, by Theorem 3.1,

$$\begin{eqnarray}H^{0}(m(K_{X_{i+1}}+B_{i+1}+G_{i+1}))\rightarrow H^{0}(m(K_{X_{i+1,k}}+B_{i+1,k}+G_{i+1,k}))\end{eqnarray}$$

is surjective for $m>0$ sufficiently divisible. Since $K_{X_{i+1,k}}+B_{i+1,k}+G_{i+1,k}$ is ample (and, in particular, $\mathbb{Q}$-Cartier), we may assume that for any $x\in X_{i+1,k}$, there exists a global section $s_{i+1,k}\in H^{0}(m(K_{X_{i+1,k}}+B_{i+1,k}+G_{i+1,k}))$ which generates the line bundle ${\mathcal{O}}_{X_{i+1,k}}(m(K_{X_{i+1,k}}+B_{i+1,k}+G_{i+1,k}))$ locally at $x$. Let $s_{i+1}\in H^{0}(m(K_{X_{i+1}}+B_{i+1}+G_{i+1}))$ be a lift of $s_{i+1,k}$ so that $s_{i+1}|_{X_{i+1,k}}=s_{i+1,k}$. It follows that ${\mathcal{O}}_{X_{i+1}}(m(K_{X_{i+1}}+B_{i+1}+G_{i+1}))$ is generated by $s_{i+1}$ locally at $x$, and hence it is Cartier on a neighborhood of $x\in X$. Thus, $K_{X_{i+1}}+B_{i+1}+G_{i+1}$ is $\mathbb{Q}$-Cartier, and hence so is $D_{i+1}=\frac{1}{\unicode[STIX]{x1D716}}(G_{i+1}-H_{i+1})$. This concludes the proof that $(1)_{i+1}$ holds.

$(2)_{i+1}$ follows immediately from what we have observed above. To see $(3)_{i+1}$, note that $K_{X_{i+1,k}}+B_{i+1,k}+tH_{i+1,k}$ is ample for $\unicode[STIX]{x1D706}_{i+1}\leqslant t<\unicode[STIX]{x1D706}_{i+2}$ and apply Lemma 2.5.

If $\unicode[STIX]{x1D70F}=0$, then after finitely many steps, we have obtained a minimal model of $(X,B)$ over $\text{Spec}(R)$. Otherwise, there is a Mori fiber space $X_{n,k}\rightarrow Z_{k}$. By Theorem 3.1 and Corollary 3.3, $X_{n,k}\rightarrow Z_{k}$ extends to a morphism $X_{n}\rightarrow Z$ which is $K_{X}+B$ negative.◻

Proof of Theorem 1.1.

The independence of $\unicode[STIX]{x1D705}(K_{X_{s}}+B_{s})$ for $s\in S$ is an immediate consequence of Theorem 3.1; however, the statement regarding the log plurigenera $h^{0}(m(K_{X_{s}}+B_{s}))$ is more subtle as the integer $m_{0}$ given in Theorem 3.1 (with $R={\mathcal{O}}_{s,S}$) may depend on the point $s\in S$. Note, however, that it easily follows that the volumes $\text{vol}(K_{X_{s}}+B_{s})$ are independent of $s\in S$.

Assume now that $\text{vol}(K_{X_{s}}+B_{s})>0$. By [Reference Alexeev1, Theorem 7.7] (see also [Reference Hacon and Kovács5]), the corresponding canonical models $(X_{s}^{lc},B_{s}^{lc})$ belong to a bounded family and, in particular, there is an integer $m>0$ and finitely many degree-2 polynomials $P_{1},\ldots ,P_{l}\in \mathbb{Q}[x]$ such that for all $s\in S$, $m(K_{X_{s}^{lc}}+B_{s}^{lc})$ is Cartier, $R(m(K_{X_{s}^{lc}}+B_{s}^{lc}))$ is generated in degree 1 and for every $k>0$,

$$\begin{eqnarray}h^{0}(mk(K_{X_{s}^{lc}}+B_{s}^{lc}))=\unicode[STIX]{x1D712}(mk(K_{X_{s}^{lc}}+B_{s}^{lc}))=P_{j}(k)\end{eqnarray}$$

for some $1\leqslant j\leqslant l$. Let $\unicode[STIX]{x1D702}\in S$ be the generic point. Since

$$\begin{eqnarray}h^{0}(mk(K_{X_{s}^{lc}}+B_{s}^{lc}))=h^{0}(mk(K_{X_{s}}+B_{s}))=h^{0}(mk(K_{X_{\unicode[STIX]{x1D702}}}+B_{\unicode[STIX]{x1D702}}))\end{eqnarray}$$

for all $k>0$ sufficiently divisible, it follows that we may assume that $P_{1}=P_{2}=\cdots =P_{l}$ and so $h^{0}(mk(K_{X_{s}}+B_{s}))$ is constant for all $k>0$. But then, for any $k>0$, $f_{\ast }{\mathcal{O}}_{X}(mk(K_{X}+B))$ is locally free and $f_{\ast }{\mathcal{O}}_{X}(mk(K_{X}+B))\rightarrow H^{0}(mk(K_{X_{s}}+B_{s}))$ is surjective for any $s\in S$, where $f:X\rightarrow S$ is the given morphism. Since $S^{k}H^{0}(m(K_{X_{s}}+B_{s}))\rightarrow H^{0}(mk(K_{X_{s}}+B_{s}))$ is surjective for any $k>0$, it follows from Nakayama’s lemma that

$$\begin{eqnarray}S^{k}f_{\ast }{\mathcal{O}}_{X}(m(K_{X}+B))\rightarrow f_{\ast }{\mathcal{O}}_{X}(mk(K_{X}+B))\end{eqnarray}$$

is surjective for every $k>0$ and so $R(m(K_{X}+B))$ is finitely generated over $S$. The canonical model of $(X,B)$ over $S$ is then given by

$$\begin{eqnarray}\operatorname{Proj}_{{\mathcal{O}}_{S}}\left(\bigoplus _{k\geqslant 0}f_{\ast }{\mathcal{O}}_{X}(mk(K_{X}+B))\right).\square\end{eqnarray}$$

Footnotes

The second author was partially supported by NSF research grants no: DMS-1300750, DMS-1265285, by a grant from the Simons Foundation; Award Number: 256202 and by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University. The authors are grateful to an anonymous referee for many useful suggestions.

References

Alexeev, V., Boundedness and K 2 for log surfaces, Internat. J. Math. 5(6) (1994), 779810.CrossRefGoogle Scholar
Birkar, C., Cascini, P., Hacon, C. D. and McKernan, J., Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23(2) (2010), 405468.CrossRefGoogle Scholar
Birkar, C., Existence of flips and minimal models for 3-folds in char p, Ann. Sci. Éc. Norm. Supér. (4) 49(1) (2016), 169212.CrossRefGoogle Scholar
Egbert, P. A., Log minimal models for arithmetic threefolds. Ph.D. Thesis, The University of Utah, 2016, 65 pp. ISBN: 978-1369-12426-2, ProQuest LLC.Google Scholar
Hacon, C. D. and Kovács, S., On the boundedness of slc surfaces of general type, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19(1) (2019), 191215.Google Scholar
Hacon, C. D., McKernan, J. and Xu, C., Boundedness of moduli of varieties of general type, J. Eur. Math. Soc. (JEMS) 20(4) (2018), 865901.CrossRefGoogle Scholar
Hacon, C. D. and Xu, C., Existence of log canonical closures, Invent. Math. 192(1) (2013), 161195.10.1007/s00222-012-0409-0CrossRefGoogle Scholar
Hacon, C. D. and Xu, C., On the three dimensional minimal model program in positive characteristic, J. Amer. Math. Soc. 28(3) (2015), 711744.CrossRefGoogle Scholar
Kawamata, Y., Semistable minimal models of threefolds in positive or mixed characteristic, J. Algebraic Geom. 3(3) (1994), 463491.Google Scholar
Kollár, J. and Mori, S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.10.1017/CBO9780511662560CrossRefGoogle Scholar
Katsura, T. and Ueno, K., On elliptic surfaces in characteristic p, Math. Ann. 272(3) (1985), 291330.CrossRefGoogle Scholar
Lang, W., On Enriques surfaces in characteristic p. I, Math. Ann. 265(1) (1983), 4565.CrossRefGoogle Scholar
Siu, Y.-T., Invariance of plurigenera, Invent. Math. 134(3) (1998), 661673.10.1007/s002220050276CrossRefGoogle Scholar
Siu, Y.-T., Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, in Complex Geometry (Göttingen, 2000), Springer, Berlin, 2002, 223277.10.1007/978-3-642-56202-0_15CrossRefGoogle Scholar
Suh, J., Plurigenera of general type surfaces in mixed characteristic, Compos. Math. 144(5) (2008), 12141226.10.1112/S0010437X08003527CrossRefGoogle Scholar
Tanaka, H., Minimal models and abundance for positive characteristic log surfaces, Nagoya Math. J. 216 (2014), 170.10.1215/00277630-2801646CrossRefGoogle Scholar
Tanaka, H., The X-method for klt surfaces in positive characteristic, J. Algebraic Geom. 24(4) (2015), 605628.CrossRefGoogle Scholar
Tanaka, H., Minimal model program for excellent surfaces, Ann. Inst. Fourier (Grenoble) 68(1) (2018), 345376.CrossRefGoogle Scholar