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INVARIANCE OF CERTAIN PLURIGENERA FOR SURFACES IN
MIXED CHARACTERISTICS

ANDREW EGBERT and CHRISTOPHER D. HACON

Abstract. We prove the deformation invariance of Kodaira dimension and of

certain plurigenera and the existence of canonical models for log surfaces which

are smooth over an integral Noetherian scheme S.

§1. Introduction

If f :X → T is a smooth projective morphism of complex quasi-projective varieties, then

by a celebrated theorem of Siu [13], [14], it is known that the plurigenera of the fibers

Pm(Xt) := h0(mKXt) are independent of the point t ∈ T . This result (and its generalizations

to log pairs) is a fundamental fact of great importance in higher dimensional birational

geometry. It plays a fundamental role in the construction of moduli spaces of varieties of

log general type. Unluckily, over an algebraically closed field of characteristic p > 0, this

result does not generalize even to families of surfaces over a curve (or a discrete valuation

ring (DVR)). In [12], it is shown that P1 is not deformation invariant for Enriques surfaces

in characteristic 2. In [11], it is shown that, in fact, the deformation invariance of plurigenera

does not hold for certain elliptic surfaces, and in [15], there are examples of smooth families

of surfaces of general type over any DVR of mixed characteristic for which P1 is nonconstant

(and, in fact, its value can jump by an arbitrarily big amount). On the positive side, in [11],

it is shown that if X → Spec(R) is a smooth family of surfaces over a DVR in positive or

mixed characteristic, then one can run the minimal model program (MMP) for X (over an

extension of R). As a consequence of this, it is observed that κ(XK) = κ(Xk), where k is

the residue field and K is the fraction field of R. It should be noted that the minimal model

program is established for semistable families of surfaces in positive or mixed characteristic

(see [9]), for log canonical surfaces over excellent base schemes (see [19]) and for 3 folds

over a field k of characteristic p> 7 (see [8] and [3]). In this paper (Theorems 3.1 and 3.4),

we generalize the result of Katsura and Ueno to log surfaces (smooth over a DVR) and we

show the deformation invariance of certain plurigenera.

Theorem 1.1. Let (X, B) be a klt pair which is log smooth, projective of dimension

2 over an irreducible integral Noetherian scheme S, then κ(KXs +Bs) is independent of

s ∈ S. If, moreover, KX +B is big over S, then there exists an integer m0 > 0 such that

for any positive integer m ∈m0N, we have

h0(m(KXs +Bs)) = h0(m(KXs′ +Bs′)) ∀s, s′ ∈ S

and the log canonical model for (X, B) over S exists.
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2 A. EGBERT AND C. D. HACON

When S is the spectrum of a DVR, we obtain a more precise result (see Theorems 3.1

and 3.4). The strategy is to reduce the proof of the above theorem to the case when (Xk, Bk)

is terminal and B(KXk +Bk) contains no components of the support of Bk. In this case,

we observe that the steps of a KXk +Bk MMP are also steps of a KXk MMP, and we are

thus able to deduce the result from [11].

Remark 1.2. Many results and techniques in this paper were developed in the first

author’s Ph.D. thesis [4].

§2. Preliminaries

Let X be a normal quasi-projective variety over an algebraically closed field k and

WDiv(X) the group of Weil divisors. If B =
∑
biBi ∈WDivQ(X) is a Q-divisor on X,

then bBc=
∑
bbicBi, where bbic= max{n ∈ Z|n6 bi}. We denote {B}=B − bBc and

|B|= |bBc|+ {B}, where

|bBc|= {D ∈WDiv(X)|D > 0, D − bBc= (f), f ∈K(X)}.

The stable base locus of B is B(D) =
⋂
m∈N Bs(mD). Let (X, B) be a pair so that X is

normal, 0 6B is a Q-divisor and KX +B is Q-Cartier. If ν :X ′→X is a proper birational

morphism, then we write KX′ +BX′ = ν∗(KX +B). We say that (X, B) is Kawamata log

terminal or klt (resp. terminal) if for any proper birational morphism ν :X ′→X, we

have bBX′c6 0 (resp. BX′ 6 ν−1
∗ B + E, where E denotes the reduced exceptional divisor).

We let MB be the b-divisor defined by the sum of the strict transform of B and the

exceptional divisors (over X). We refer the reader to [10] and [2] for the standard definitions

of the minimal model program including extremal rays, flipping and divisorial contractions,

running a minimal model program with scaling, log terminal and weak log canonical models.

Theorem 2.1. Let (X, B) be a two-dimensional projective klt pair over an algebraically

closed field k. Then

NE(X) =NE(X)KX+B>0 +
∑
i∈I

R>0Ci,

where I is countable, (KX +B) · Ci < 0 and Ci is rational. If H is an ample Q-divisor on

X, then the set {i ∈ I|(KX +B +H) · Ci 6 0} is finite.

Proof. See [17, 3.13, 3.15] and [10, 3.7].

Lemma 2.2. Let X be a surface over an algebraically closed field k and (X, B) a

projective klt pair. If R is a KX +B negative extremal ray, then there exists a proper

morphism f :X →X ′ such that f∗OX =OX′ and f contracts a curve C ⊂X if and only if

[C] =R.

Proof. See [17, 3.21] and [10, 3.7].

Theorem 2.3. Let X be a projective surface over an algebraically closed field k. Assume

that (X, B) is klt. Then

(1) The ring R(KX +B) =
⊕

m>0 H
0(m(KX +B)) is finitely generated.

(2) If KX +B is pseudo-effective, then κ(KX +B) > 0 and there exists a minimal model

ν :X →X ′ such that KX′ +B′ = ν∗(KX +B) is semiample. If we write KX +B =

ν∗(KX′ +B′) + F , then F > 0 is ν-exceptional and we have F =Nσ(KX +B).
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INVARIANCE OF CERTAIN PLURIGENERA 3

(3) If H is an ample Q-divisor which is general in N1(X/X ′) and KX +B +H is nef,

then the MMP with scaling of H yields a sequence of rational numbers 1 > λ1 > λ2 >

· · ·> λn > 0 and divisorial contractions X =X0→X1→X2→ · · · →Xn, where Xi =

ProjR(KX +B + λiH) and KXi +Bi + tHi is ample for λi > t > λi+1. If λn = 0, then

X →Xn is a KX +B minimal model and if λn > 0, then Xn→ Z is a KX +B Mori

fiber space.

Proof. (1) and (2) follow immediately from [17]. To see (3), we proceed by induction.

Assume that we have constructed X →X1→ · · · →Xi and assume that KXi +Bi + λiHi

is ample where Bi and Hi denote the pushforwards of B and H. Let λi+1 := inf{t >
0|KXi +Bi + tHi is nef}. It is easy to see that 0 6 λi+1 < λi and KXi +Bi + tHi is ample

for λi > t > λi+1. If λi+1 = 0, then KXi +Bi is nef and we have the required KX +B

minimal model. Otherwise, by Theorem 2.1, there exists a KXi +Bi + λi+1Hi-trivial and

KXi +Bi negative extremal ray Ci. Let νi :Xi→Xi+1 be the corresponding contraction. If

dimXi+1 < 2, then we have the required KX +B Mori fiber space. Otherwise, Xi→Xi+1

is a divisorial contraction. Since H is general in N1(X/X ′), Hi is general in N1(Xi/X
′)

and henceNE(Xi)KXi+Bi+λi+1Hi=0 = [Ci]. It follows thatKXi +Bi + λi+1Hi = ν∗i (KXi+1 +

Bi+1 + λi+1Hi+1), where KXi+1 +Bi+1 + λi+1Hi+1 is ample.

Proposition 2.4. Let X be a projective surface over an algebraically closed field k.

Assume that (X, B) is a klt pair and ν :X ′→X is a proper birational morphism such

that (X ′, B′) is terminal where KX′ +B′ = ν∗(KX +B). Let Θ =B′ −B′ ∧Nσ(KX′ +B′)

and φ′ :X ′→X ′M the minimal model for (X ′,Θ). If φ :X →XM is the minimal model

for (X, B), then the rational map µ :X ′M →XM is a morphism and KX′
M

+ φ′∗Θ =

µ∗(KXM + φ∗B). If κ(KX +B) = 1 and B is big over ProjR(KX +B), then Θ is big over

ProjR(KX′ + Θ).

Proof. Consider the morphism ψ :X ′→XM . Since KX +B = φ∗(KXM + φ∗B) + E

where E > 0 is φ-exceptional, then KX′ +B′ = ψ∗(KXM + φ∗B) + ν∗E where KXM + φ∗B

is nef and ν∗E is effective and ψ exceptional. It follows that Nσ(KX′ +B′) = ν∗E and so

KX′ + Θ = ψ∗(KXM + φ∗B) + E′, where 0 6 E′ 6 ν∗E. In particular, Nσ(KX′ + Θ) = E′

and so the divisors contracted by φ′ are precisely the divisors contained in Supp(E′).

Thus, X ′→XM factors through φ′. We have KX′
M

+ φ′∗Θ = µ∗(KXM + φ∗B) + φ′∗E
′ where

µ∗(φ
′
∗E
′) 6 φ∗E = 0 and hence φ′∗E is µ exceptional. By the negativity lemma, it follows

that φ′∗E
′ = 0.

Note that since H0(m(KX +B))∼=H0(m(KX′ + Θ)) for all m> 0, it follows that Z :=

ProjR(KX +B) = ProjR(KX′ + Θ). We have dim Z = κ(KX +B) = 1. The bigness of B

over Z is equivalent to B ·Xz > 0 for general z ∈ Z. But then

Θ ·X ′z = µ∗φ
′
∗Θ · (XM )z = φ∗B · (XM )z =B ·Xz > 0

and so Θ is big over Z.

Consider now X a smooth projective scheme over an integral Noetherian scheme S and

let f :X → S be the structure morphism. We say that a pair (X, B) is log smooth over

S if X is smooth over S and B is an effective R-divisor whose support is simple normal

crossings over S so that X is étale over AnS and some choice of local coordinates on AnS
pulls back to a parameter system t1, . . . , tn on X and Supp(B) = {t1 . . . tr = 0} for some

0 6 r 6 n. We refer the reader to [16, Section 01V4] for a discussion of smooth morphisms.
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4 A. EGBERT AND C. D. HACON

In particular, each strata of the support of B is smooth over S. We say that a log smooth

pair (X, B =
∑
biBi) is klt iff 0 6 bi < 1 and (X, B =

∑
biBi) is terminal iff 0 6 bi < 1 and

bi + bj < 1 if i 6= j and Bi ∩Bj 6= ∅.
In what follows, R will denote a DVR with residue field k and fraction field K. Let X be

an integral Noetherian scheme over Spec(R) and f :X → Spec(R) the structure morphism,

then we let XK =X ×Spec(R) Spec(K) be the generic fiber and Xk =X ×Spec(R) Spec(k) be

the special fiber. As usual, we say that two Cartier divisors on X are numerically equivalent

L1 ≡R L2 iff (L1 − L2) · C = 0 for any curve C contained in a fiber XK or Xk. Note that it

suffices to check this on the special fiber Xk. We then let

N1(X/R) = ({Cartier divisors L on X}/≡R)⊗Z R,

N1(X/R) = ({curves on Xk}/≡R)⊗Z R.

NE(X/R)⊂N1(X/R) is the closed cone spanned by effective curves. Note that the natural

map N1(X/R)→N1(Xk) is injective and the dual map N1(Xk)→N1(X/R) is surjective

and so is the induced map NE(Xk)→NE(X/R).

Lemma 2.5. Let f :X → Spec(R) be a smooth projective morphism from a smooth

variety to a DVR and L a line bundle on X, then

(1) L is ample if and only if Lk := L|Xk is ample, and

(2) L is nef if and only if Lk := L|Xk is nef.

Proof. Clearly, if L is ample or nef, then so is Lk. It is well known that ampleness is

an open condition and so if Lk is ample, then so is L. Finally, if Lk is nef and H is ample,

then Lk + tHk is ample for any t > 0 so that L+ tH is ample and hence L is nef.

Lemma 2.6. Let f :X → Spec(R) be a flat projective morphism from a variety to a DVR

and (X, B) a log pair. Then (X, B) is log smooth over Spec(R) if and only if (Xk, Bk) is

log smooth.

Proof. See [16, Section 01V4].

Lemma 2.7. Let (X, B) be a log pair which is log smooth over Spec(R), where R is a

DVR. If R⊂ R̃ is an inclusion of DVR’s, then (XR̃, BR̃) is log smooth over Spec(R̃). If

(X, B) is terminal (resp. klt), then so is (XR̃, BR̃).

Proof. Since smoothness is preserved by base change, it follows that (XR̃, BR̃) is log

smooth over Spec(R̃). The pair (X, B) is klt (resp. terminal) if and only if the coefficients of

B are< 1 (resp. the coefficients ofB are< 1 and if two components intersect, then the sum of

the coefficients is< 1). The lemma now follows since if there are two intersecting components

of BR̃, then there are two intersecting components of B (with the same coefficients).

Theorem 2.8. (Katsura–Ueno [11]) Let f :X → Spec(R) be an algebraic space which

is smooth, proper and two-dimensional over Spec(R), where R is a DVR with algebraically

closed residue field k and field of fractions K. If Xk contains a −1 curve e⊂Xk, then

there exists a DVR R̃⊃R with residue field k and fraction field K̃ and a surjective

proper morphism π :XR̃→ Ỹ over Spec(R̃) where Ỹ → Spec(R̃) is smooth, proper, and two-

dimensional, πk contracts the −1 curve e⊂Xk and πK :XK̃ → ỸK̃ is also a contraction of

a −1 curve.
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§3. Main result

In this section, we will prove Theorem 1.1. We begin by showing that a more general

version of this result holds when S = Spec(R) is the spectrum of a DVR and then we will

deduce the general case.

Theorem 3.1. Let (X, B) be a klt pair which is log smooth, projective of dimension 2

over S = Spec(R), where R is a DVR with residue field k and fraction field K. If KX +B is

Q-Cartier, then κ(KXk +Bk) = κ(KXK +BK) and if either κ(KXk +Bk) 6= 1 or κ(KXk +

Bk) = 1 and Bk is big over ProjR(KXk +Bk), then there exists an integer m0 > 0 such

that for any integer m ∈m0N, we have

h0(m(KXk +Bk)) = h0(m(KXK +BK)).

Proof. Consider an inclusion of DVR’s R⊂ R̃. If k̃ and K̃ denote the residue field and the

fraction field of R̃, then h0(m(KXk +Bk)) = h0(m(KXk̃
+Bk̃)) and h0(m(KXK +BK)) =

h0(m(KXK̃
+BK̃)). Note also that if X̃ =X ×Spec(R) Spec(R̃) and B̃ =B ×Spec(R) Spec(R̃),

then (X̃, B̃) is log smooth over R̃ and X̃k̃
∼=Xk ×Spec(k) Spec(k̃). Thus, we are free to replace

X →R by X̃ → R̃. In particular, we may assume that k is algebraically closed.

If h0(m(KXk +Bk)) = 0, then, by semicontinuity, h0(m(KXK +BK)) = 0. Therefore,

the theorem holds trivially in the case κ(KXk +Bk) =−∞. Thus, we may assume that

κ(KXk +Bk) > 0.

Claim 3.2. The theorem holds under the additional assumption that (Xk, Bk) is

terminal and no component of the support of Bk is contained in B(KXk +Bk).

Proof. Since k is algebraically closed, then by the Cone Theorem (Theorem 2.1),

NE(Xk) =NE(Xk)KXk+Bk>0 +
∑
i∈I

R>0Ci,

where I is countable, (KXk +Bk) · Ci < 0 and Ci is rational.

Suppose that one of the above curves Ci is contained in the support of Bk, then since

κ(KXk +Bk) > 0 and (KXk +Bk) · Ci < 0, we have Ci ⊂B(KXk +Bk), which we have

assumed is impossible.

Note then that Ci is not contained in the support of Bk and thus Ci ·Bk > 0 and so

KXk · Ci < 0. It follows that if Ci spans a KXk +Bk-negative extremal ray, then it also

spans a KXk -negative extremal ray and so it can be contracted by a divisorial contraction

of a −1 curve Xk→X ′k. In particular, X ′k is also a smooth surface. Thus, we may assume

that Ci is a −1 curve. By Theorem 2.8 (after extending R), we may assume that there is

a morphism X →X ′ of smooth surfaces over R such that XK →X ′K also contracts a −1

curve.

We now run an MMP by contracting a sequence of KX +B-negative curves as above.

Let ν :X → X̄ be the induced morphism of smooth surfaces over Spec(R). We may assume

that XK → X̄K and Xk→ X̄k are given by a finite sequence of contractions of −1 curves

such that the exceptional locus of Xk→ X̄k contains no components of Bk. Then (X̄k, B̄k)

is terminal and KXk +Bk = ν∗k(KX̄k,
+ B̄k) + Fk, where Bk = ν−1

k,∗B̄k and Bk ∧ Fk = 0. In

particular, B(KXk +Bk) = B(ν∗k(KX̄k
+ B̄k)) + Fk. Suppose that C ⊂ X̄k is contained in

B(KX̄k
+ B̄k) ∩ Supp(B̄k), then ν−1

∗ C ⊂B(KXk +Bk) ∩ Supp(Bk) which is impossible.
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6 A. EGBERT AND C. D. HACON

Therefore, if KX̄k
+ B̄k is not nef, we can continue to contract −1 curves. Since each

contraction reduces the Picard number of the central fiber Xk by one, this procedure must

terminate after finitely many steps. We may therefore assume that KX̄k
+ B̄k is semiample.

In particular, KX̄k
+ B̄k is nef and hence so is KX̄ + B̄ (see Lemma 2.5).

Suppose now that ν(KXk +Bk) = 2. In this case, KX̄k
+ B̄k is nef and big and m0(KX̄k

+

B̄k) is Cartier for some m0 > 0. We may write

km0(KX̄k
+ B̄k) =KX̄k

+ d(m0 − 1)(KX̄k
+ B̄k))e+ (k − 1)m0(KX̄k

+ B̄k)

so that by [18, 2.6] hi(m(KX̄k
+ B̄k)) = 0 for all sufficiently big integers m ∈m0N and all

i > 0. Replacing m0 by an appropriate multiple, this condition holds for all m ∈m0N. By

semicontinuity, we also have hi(m(KX̄K
+ B̄K)) = 0 for all m ∈m0N and i > 0. The result

now follows from cohomology and base change.

Suppose that κ(KXk +Bk) = 0. Then we have KX̄k
+ B̄k ∼Q 0. By Lemma 2.5, it follows

that ±(KX̄K
+ B̄K) is nef and hence that KX̄K

+ B̄K ≡ 0. By [17, 1.2], KX̄K
+ B̄K ∼Q 0.

Thus, there exists an integer m0 > 0 such that m0(KX̄K
+ B̄K)∼ 0 and m0(KX̄k

+ B̄k)∼ 0.

Thus, h0(m(KXK +BK)) = h0(m(KXk +Bk)) for all m> 0 divisible by m0.

Suppose that κ(KXk +Bk) = 1. Since KX̄k
+ B̄k is nef, so is KX̄K

+ B̄K . In particular,

κ(KX̄K
+ B̄K) > 0 and, thus, by semicontinuity, we have κ(KX̄K

+ B̄K) ∈ {0, 1}. Let H

be a sufficiently ample divisor on X̄. Then (KX̄K
+ B̄K) ·HK = (KX̄k

+ B̄k) ·Hk > 0 so

KX̄K
+ B̄K 6≡ 0. Therefore, κ(KX̄K

+ B̄K) = 1.

Finally, suppose that κ(KXk +Bk) = 1 and Bk is big over ProjR(KXk +Bk). Note that

B̄k is also big over ProjR(KX̄k
+ B̄k) and hence B̄k +KX̄k

+ B̄k is big. Thus, we may

write B̄k +KX̄k
+ B̄k ∼Q Āk + Ēk, where Āk is ample and Ēk is effective. For any rational

number 0< ε� 1, the pair (X̄k,∆k = (1− ε)B̄k + εĒk) is Kawamata log terminal and so

the corresponding multiplier ideal sheaf is trivial J (∆k) =OX̄k . If L=N =m(KX̄k
+ B̄k),

then N is nef and not numerically equivalent to zero while

L− (KX̄k
+ ∆k)∼Q (m− 1− ε)(KX̄k

+ B̄k) + εĀk

is ample, and so by [18, 0.3] and [10, 2.70], H i(OX̄k(m(l + 1)(KX̄k
+ B̄k))) = 0 for i > 0

and l� 0. By semicontinuity, H i(OX̄K (m(l + 1)(KX̄K
+ B̄K))) = 0 for i > 0 and l� 0 and

hence h0(OX̄k(m(l + 1)(KX̄k
+ B̄k))) = h0(OX̄K (m(l + 1)(KX̄K

+ B̄K))).

We will now consider the general case. Since (X, B) is log smooth over R, there is a

sequence of blowups along strata of MB say ν :X ′→X such that KX′ +B′ = ν∗(KX +B)

is terminal and, in particular, B′ > 0 and (X ′, B′) is log smooth. Since R(KX′
k

+B′k)
∼=

R(KXk +Bk) is finitely generated, Nσ(KX′
k

+B′k) is a Q-divisor and hence so is

Θk :=B′k − (B′k ∧Nσ(KX′
k

+B′k)).

Note that R(KX′
k

+ Θk)∼=R(KX′
k

+B′k), (X ′k,Θk) is terminal and no component of Θk

is contained in B(KX′
k

+ Θk) [[6, 2.8.3] and [7, 2.4]]. Let Θ be the unique Q-divisor

supported on B′ such that Θ|X′
k

= Θk. We remark that if κ(KXk +Bk) = 1 and Bk is

big over ProjR(KXk +Bk), then by Proposition 2.4, Θk is big over ProjR(KX′
k

+ Θk). By

Claim 3.2, it follows that κ(KX′
K

+ ΘK) = κ(KX′
k

+ Θk) and there exists an integer m0 > 0

such that

h0(m(KX′
K

+ ΘK)) = h0(m(KX′
k

+ Θk)) ∀m ∈m0N.
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By semicontinuity, we then have

h0(m(KXk +Bk)) > h0(m(KXK +BK)) > h0(m(KX′
K

+B′K))

> h0(m(KX′
K

+ ΘK)) = h0(m(KX′
k

+ Θk)) = h0(m(KXk +Bk))

and hence h0(m(KXk +Bk)) = h0(m(KXK +BK)). The equality κ(KXk +Bk) = κ(KXK +

BK) follows similarly.

Corollary 3.3. Let (X, B) be a klt pair which is log smooth, projective of dimension

2 over a DVR R with residue field k of characteristic p > 0 and fraction field K. If KX +

B is Q-Cartier and either κ(KXk +Bk) ∈ {0, 2} or κ(KXk +Bk) = 1 and Bk is big over

ProjR(KXk +Bk), then R(KX +B) is finitely generated.

Proof. By Theorem 2.3, R(KXk +Bk) is finitely generated and hence there is a positive

integer m such that

R(m(KXk +Bk))

is generated in degree 1, that is, by H0(m(KXk +Bk)). By Theorem 3.1, after replacing m

by a multiple, we may assume that m(KX +B) is Cartier and

H0(m(KX +B))→H0(m(KXk +Bk))

is surjective. Therefore, the induced map

SkH0(m(KX +B))→ SkH0(m(KXk +Bk))→H0(mk(KXk +Bk))

is surjective. By Nakayama’s lemma,

SkH0(m(KX +B))→H0(mk(KX +B))

is surjective and so R(m(KX +B)) is finitely generated.

Theorem 3.4. Let (X, B) be a klt pair which is log smooth, projective of dimension 2

over a DVR R with residue field k and fraction field K. If KX +B is Q-Cartier, then (after

possibly extending R) we may run a KX +B MMP over R which is given by a sequence of

divisorial contractions and terminates with a KX +B minimal model X → X̄ over R or a

KX +B Mori fiber space over R.

Proof. After extending R, we may assume that k is algebraically closed. Suppose that

H is ample and let

τ = inf{t> 0|κ(KXk +Bk + tHk) > 0}.

Pick 1� τ ′ − τ > 0, then by Theorem 2.3 and its proof, ProjR(KXk +Bk + τ ′Hk) is the

minimal model of (Xk, Bk + tHk) for τ ′ > t> τ . Let νk :X ′k→Xk be a terminalization of

(Xk, Bk) given by a sequence of blowups along strata of MBk , KX′
k

+B′k = ν∗k(KXk +Bk),

H ′k = ν∗kHk and

Θk =B′k −B′k ∧Nσ(KX′
k

+B′k + τ ′H ′k).

If X ′k→X ′1,k→ · · · →X ′n,k is a MMP for KX′
k

+ Θk + τ ′H ′k, then KX′
n,k

+ Θn,k + τ ′H ′n,k
is semiample and induces a morphism νn,k :X ′n,k→Xn,k := ProjR(KX′

k
+ Θk + τ ′H ′k).

By Proposition 2.4, R(KX′
k

+ Θk + τ ′H ′k)
∼=R(KXk +Bk + τ ′Hk), and so the induced

birational map Xk→Xn,k is in fact the morphism corresponding to the minimal model
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of KXk +Bk + τHk. If τ = 0, then Xk→Xn,k is a KXk +Bk minimal model and if τ > 0,

then Xn,k→ Zk = ProjR(KXk +Bk + τHk) is a KXk +Bk Mori fiber space.

We claim that the exceptional divisors of X ′k→Xn,k are either contained in the support

of MBk or in Nσ(KX′
k

+ Θk + τ ′H ′k). To see this, note that the support of MBk contains

the X ′k→Xk exceptional divisors and so it suffices to show that the exceptional divisors of

Xk→Xn,k are contained in the support of B′k and Nσ(KX′
k

+ Θk + τ ′H ′k). The exceptional

divisors of Xk→Xn,k are given by the support of Nσ(KXk +Bk + τ ′Hk). The strict

transforms of divisors in Nσ(KXk +Bk + τ ′Hk) are divisors in Nσ(KX′
k

+B′k + τ ′H ′k) and

hence in Nσ(KX′
k

+ Θk + τ ′H ′k) plus some divisors supported on B′k. Thus, the claim holds.

By the proof of Theorem 3.1, there is a sequence of divisorial contractions of smooth

varieties X ′→X ′1→ · · · →X ′n extending the MMP X ′k→X ′1,k→ · · · →X ′n,k which induces

contractions of −1 curves on Xi,k and Xi,K . It follows that if Pk is an exceptional prime

divisor of X ′k→Xn,k, then there is a prime divisor P ⊂X ′ such that Pk = P |X′
k
. To

see this, note that either Pk is a component of MBk and hence we may take P as the

corresponding component of MB or Pk is a component of Nσ(KX′
k

+ Θk + τ ′Hk) and hence

the exceptional divisor for some divisorial contraction X ′i,k→X ′i+1,k. We can then pick P

to be the exceptional divisor of X ′i→X ′i+1.

Therefore, all X ′k→Xn,k exceptional divisors extend to divisors on X ′ and hence

N1(X ′)→N1(X ′k/Xn,k) is surjective and so N1(X)→N1(Xk/Xn,k) is also surjective.

We now replace H by a sufficiently ample Q-divisor on X which is general in N1(X).

Since Hk is general in N1(Xk/Xn,k), by Theorem 2.3, running the minimal model program

with scaling of Hk, we obtain a sequence of rational numbers λ1 > λ2 > · · ·> λn = τ and

divisorial contractions Xi,k→Xi+1,k such that Xi,k = Proj(R(KXk +Bk + tHk)) for λi >
t > λi+1 where we let Xk =X0,k and λ0 = 1. By Corollary 3.3, R(KX +B + λiH) is finitely

generated over R. Let X 99KXi = ProjR(R(KX +B + λiH)) be the induced rational map.

We claim that

(1) Xi is normal and Q-factorial, (Xi, Bi) is klt,

(2) (Xi, Bi)k = (Xi,k, Bi,k),

(3) KXi +Bi + tHi is ample for λi > t > λi+1 and

(4) KXi +Bi + λi+1Hi is semiample and induces a divisorial contraction Xi→Xi+1.

We will prove this by induction. Clearly, the statements (1− 3)i=0 hold and (4)i=−1 is

vacuous. We will prove that (1− 3)i and (4)i−1 hold imply that (1− 3)i+1 and (4)i hold.

Since R(KX +B + λi+1H)∼=R(KXi +Bi + λi+1Hi) and KXi,k +Bi,k + λi+1Hi,k is

semiample, by Theorem 3.1, it follows that KXi +Bi + λi+1Hi is semiample (over R) and

hence |m(KXi +Bi + λi+1Hi)| defines a morphism µi :Xi→Xi+1 for m> 0 sufficiently

divisible which extends the morphism µi,k :Xi,k→Xi+1,k. Since µi,k is the divisorial

contraction of a prime divisor Pk which extends to a prime divisor P on Xi, it follows

that Xi→Xi+1 is a divisorial contraction and so (4)i holds.

To show (1)i+1, first observe that since Xi+1,k is normal, so is Xi+1. By what we have seen

above, KXi+1 +Bi+1 + λi+1Hi+1 is Q-Cartier and µ∗i (KXi+1 +Bi+1 + λi+1Hi+1) =KXi +

Bi + λi+1Hi. Since (Xi, Bi + λi+1Hi) is klt, it follows that (Xi+1, Bi+1 + λi+1Hi+1) is klt.

Therefore, to show that (Xi+1, Bi+1) is klt, it suffices to show that Xi+1 is Q-factorial.

Let Di+1 be a divisor on Xi+1, we wish to show that Di+1 is Q-Cartier. We may assume

that the support of Di+1 does not contain Xi+1,k. Let Dk be the pull back of Di+1,k to Xk.

Fix 0< ε� 1. Since N1(X)→N1(Xk/Xn,k) is surjective, we may pick a Q-divisor G on X
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such that Gk ∼Q λi+1Hk + εDk. Since 0< ε� 1, it follows that Gk is ample and Xk→Xi,k

is a sequence of KXk +Bk +Gk negative divisorial contractions. It then follows that G is

ample (over R) and X →Xi is a sequence of KX +B +G negative divisorial contractions.

Note that by assumption, KXi,k +Bi,k +Gi,k = µ∗i,k(KXi+1,k
+Bi+1,k +Gi+1,k). Here,

KXi+1,k
+Bi+1,k +Gi+1,k ∼Q KXi+1,k

+Bi+1,k + λi+1Hi+1,k + εDi+1,k

is ample. Since R(KXk +Bk +Gk)∼=R(KXi+1,k
+Bi+1,k +Gi+1,k), by Theorem 3.1,

H0(m(KXi+1 +Bi+1 +Gi+1))→H0(m(KXi+1,k
+Bi+1,k +Gi+1,k))

is surjective for m> 0 sufficiently divisible. Since KXi+1,k
+Bi+1,k +Gi+1,k is ample

(and, in particular, Q-Cartier), we may assume that for any x ∈Xi+1,k, there exists a

global section si+1,k ∈H0(m(KXi+1,k
+Bi+1,k +Gi+1,k)) which generates the line bun-

dle OXi+1,k
(m(KXi+1,k

+Bi+1,k +Gi+1,k)) locally at x. Let si+1 ∈H0(m(KXi+1 +Bi+1 +

Gi+1)) be a lift of si+1,k so that si+1|Xi+1,k
= si+1,k. It follows that OXi+1(m(KXi+1 +

Bi+1 +Gi+1)) is generated by si+1 locally at x, and hence it is Cartier on a neighborhood

of x ∈X. Thus, KXi+1 +Bi+1 +Gi+1 is Q-Cartier, and hence so is Di+1 = 1
ε (Gi+1 −Hi+1).

This concludes the proof that (1)i+1 holds.

(2)i+1 follows immediately from what we have observed above. To see (3)i+1, note that

KXi+1,k
+Bi+1,k + tHi+1,k is ample for λi+1 6 t < λi+2 and apply Lemma 2.5.

If τ = 0, then after finitely many steps, we have obtained a minimal model of (X, B)

over Spec(R). Otherwise, there is a Mori fiber space Xn,k→ Zk. By Theorem 3.1 and

Corollary 3.3, Xn,k→ Zk extends to a morphism Xn→ Z which is KX +B negative.

Proof of Theorem 1.1. The independence of κ(KXs +Bs) for s ∈ S is an immediate

consequence of Theorem 3.1; however, the statement regarding the log plurigenera

h0(m(KXs +Bs)) is more subtle as the integer m0 given in Theorem 3.1 (with R=Os,S)

may depend on the point s ∈ S. Note, however, that it easily follows that the volumes

vol(KXs +Bs) are independent of s ∈ S.

Assume now that vol(KXs +Bs)> 0. By [1, Theorem 7.7] (see also [5]), the corresponding

canonical models (X lc
s , B

lc
s ) belong to a bounded family and, in particular, there is an

integer m> 0 and finitely many degree-2 polynomials P1, . . . , Pl ∈Q[x] such that for all

s ∈ S, m(KXlc
s

+Blc
s ) is Cartier, R(m(KXlc

s
+Blc

s )) is generated in degree 1 and for every

k > 0,

h0(mk(KXlc
s

+Blc
s )) = χ(mk(KXlc

s
+Blc

s )) = Pj(k)

for some 1 6 j 6 l. Let η ∈ S be the generic point. Since

h0(mk(KXlc
s

+Blc
s )) = h0(mk(KXs +Bs)) = h0(mk(KXη +Bη))

for all k > 0 sufficiently divisible, it follows that we may assume that P1 = P2 = · · ·= Pl and

so h0(mk(KXs +Bs)) is constant for all k > 0. But then, for any k > 0, f∗OX(mk(KX +B))

is locally free and f∗OX(mk(KX +B))→H0(mk(KXs +Bs)) is surjective for any s ∈ S,

where f :X → S is the given morphism. Since SkH0(m(KXs +Bs))→H0(mk(KXs +Bs))

is surjective for any k > 0, it follows from Nakayama’s lemma that

Skf∗OX(m(KX +B))→ f∗OX(mk(KX +B))
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is surjective for every k > 0 and so R(m(KX +B)) is finitely generated over S. The

canonical model of (X, B) over S is then given by

ProjOS

⊕
k>0

f∗OX(mk(KX +B))

 .
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