Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-02-11T01:27:27.600Z Has data issue: false hasContentIssue false

ENERGY CONCENTRATION PROPERTIES OF A p-GINZBURG–LANDAU MODEL

Published online by Cambridge University Press:  25 August 2021

YUTIAN LEI*
Affiliation:
Jiangsu Key Laboratory for NSLSCS School of Mathematical Sciences Nanjing Normal University Nanjing, 210023, China leiyutian@njnu.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

This paper is concerned with the p-Ginzburg–Landau (p-GL) type model with $p\neq 2$ . First, we obtain global energy estimates and energy concentration properties by the singularity analysis. Next, we give a decay rate of $1-|u_\varepsilon |$ in the domain away from the singularities when $\varepsilon \to 0$ , where $u_\varepsilon $ is a minimizer of p-GL functional with $p \in (1,2)$ . Finally, we obtain a Liouville theorem for the finite energy solutions of the p-GL equation on $\mathbb {R}^2$ .

Type
Article
Copyright
© (2021) The Authors. The publishing rights in this article are licenced to Foundation Nagoya Mathematical Journal under an exclusive license

1 Introduction

Let $G \subset \mathbb {R}^2$ be a bounded and simply connected domain with smooth boundary $\partial G$ , and g be a smooth map from $\partial G$ to $S^1$ satisfying $d:=\deg (g,\partial G) \neq 0$ . Without loss of generality, we assume $d>0$ . Bethuel et al. [Reference Bethuel, Brezis and Helein3] and Struwe [Reference Struwe21] well studied the asymptotic behavior of the Ginzburg–Landau functional

$$ \begin{align*}E(u)=\frac{1}{2}\int_G|\nabla u|^2 +\frac{1}{4\varepsilon^2}\int_G(1-|u|^2)^2 \end{align*} $$

as $\varepsilon \to 0^+$ , and established the $C^k$ -convergence relation between the minimizer and some harmonic map $u_*$ on G. Namely, if $u_\varepsilon $ is the minimizer of $E(u)$ in $H_g^1(G,\mathbb {R}^2)$ , then there exists a subsequence $u_{\varepsilon _k}$ such that when $k \to \infty $ ,

$$ \begin{align*}u_{\varepsilon_k} \to u_*, \quad in \ C_{loc}^l(G \setminus \{a_j\}_{j=1}^d) \end{align*} $$

for any $l \geq 1$ . Here, $a_1,a_2,\ldots ,a_d$ are the singularities of $u_*$ in G. In particular, [Reference Bethuel, Brezis and Helein3, Theorem VII.2] shows the following property of the energy concentration

(1.1) $$ \begin{align} \lim_{\varepsilon_k \to 0} \frac{(1-|u_{\varepsilon_k}|^2)^2}{4\varepsilon_k^2}=\frac{\pi}{2} \sum_{j=1}^d\delta_{a_j},\quad \mbox{in the weak star topology of}\quad C(\overline{G}). \end{align} $$

These results come into play when studying the location of the vortices in phase transition problems occurring in superconductivity and superfluids. In addition, these results are also helpful to understand the regularity of harmonic maps and the distribution of the singularities.

In addition, 19 open problems were posed in [Reference Bethuel, Brezis and Helein3]. Comte and Mironescu gave positive answers to the 7th problem (cf. [Reference Comte and Mironescu8], [Reference Comte and Mironescu9], and [Reference Mironescu20]) on the global analysis of the Ginzburg–Landau energy. In particular, there exists $C>0$ such that as $\varepsilon \to 0$ ,

(1.2) $$ \begin{align} \int_G(1-|u_\varepsilon|^2)^\alpha |\nabla u_\varepsilon|^2 \leq C\alpha^{-1}, \quad \forall \alpha>0, \end{align} $$
(1.3) $$ \begin{align} \int_G|\det(\nabla u_\varepsilon)| \leq C. \end{align} $$

In this paper, we are concerned with the asymptotic behavior of the minimizer $u_{\varepsilon }$ of the p-Ginzburg-Landau-type functional

$$ \begin{align*}E_\varepsilon(u,G)= \frac{1}{p}\int_G|\nabla u|^p +\frac{1}{4\varepsilon^p}\int_G(1-|u|^2)^2 \quad (p>1 \ \mbox{and} \ p\neq 2) \end{align*} $$

in the space $W=\{v \in W^{1,p}(G,\mathbb {R}^2) \cap L^4(G,\mathbb {R}^2); v|_{\partial G}=g\}$ .

Functional $E_\varepsilon (u,G)$ can be used to study the partial regularity of p-harmonic maps and the location of the singularities when $p \in (1,2)$ and p approaches the dimension 2 (cf. [Reference Hardt and Lin14], [Reference Wang24]). Different from the case $p \in (1,2)$ , $W_g^{1,p}(G, S^1)=\emptyset $ when $p>2$ and $d \neq 0$ . Therefore, there does not exist p-harmonic map from G to $S^1$ . Thus, functional $E_\varepsilon (u,G)$ is naturally used by the idea of penalization which is analogous to researching harmonic maps in [Reference Bethuel, Brezis and Helein3]. In fact, the same idea had been used in studying flow of p-harmonic maps (cf. [Reference Chen, Hong and Hungerbuhler6]).

In this paper, we investigate the global properties of functional $E_\varepsilon (u,G)$ . In addition, the singularity properties of the functional is also interesting. When $p=2$ , the results (1.1)–(1.3) describe the singularity and the global properties. We expect to generalize them to the case of $p \neq 2$ .

By the direct methods, we know the existence of the minimizer $u_\varepsilon $ of $E_\varepsilon (u,B)$ in the space W. Clearly, the minimizer is a weak solution to the following system

(1.4) $$ \begin{align} -div(|\nabla u|^{p-2}\nabla u)=\frac{1}{\varepsilon^p}u(1-|u|^2), \quad in \quad G. \end{align} $$

By the regularity theory (cf. [Reference Tolksdorf22]), $u_\varepsilon \in C^{\alpha }(\overline {G}) \cap C_{loc}^{1,\alpha }(G)$ for each $\varepsilon $ . In addition, by [Reference Hong15, analogous proof of Theorem 2.2], we also have

(1.5) $$ \begin{align} |u_\varepsilon| \leq 1 \quad in \ \overline{G}. \end{align} $$

There may be several minimizers of $E_\varepsilon (u,G)$ . One of them, denoted by $\tilde {u}_{\varepsilon }$ , can be obtained as the limit of a subsequence $u_{\varepsilon }^{\eta _k}$ of the minimizers $u_{\varepsilon }^{\eta }$ of the regularized functional (if we follow Uhlenbeck’s idea in [Reference Uhlenbeck23])

$$ \begin{align*}E_{\varepsilon}^{\eta}(u,G):= \frac{1}{p}\displaystyle\int_G(|\nabla u|^2+\eta)^{\frac{p}{2}} +\frac{1}{4\varepsilon^{p}}\displaystyle\int_{G}(1-|u|^2)^2 \ \ (\eta>0, \ \varepsilon>0) \end{align*} $$

in W (see also [Reference Giaquinta and Modica13] and [Reference Hong15]). Namely, there exists a subsequence $\eta _k$ of $\eta $ such that

(1.6) $$ \begin{align} \lim_{\eta_k \to 0}u_\varepsilon^{\eta_k}=\tilde{u}_\varepsilon, \quad in \quad W^{1,p}(G), \end{align} $$

where $\tilde {u}_\varepsilon $ is also a minimizer of $E_\varepsilon (u,G)$ in W. Here, $\tilde {u}_\varepsilon $ is called the regularized minimizer.

When $p>2$ , [Reference Lei17, Theorem 6.3] shows a convergence result of the minimizer $u_\varepsilon $ of $E_\varepsilon (u,G)$ in W. Namely, there exists a subsequence $u_{\varepsilon _k}$ of $u_\varepsilon $ , such that when $k \to \infty $ ,

(1.7) $$ \begin{align} \lim_{k \to \infty}u_{\varepsilon_k} = u_p, \quad in \ C_{loc}^{1,\alpha}(G\setminus \{a_j\}_{j=1}^N), \quad \forall \alpha \in (0,1), \end{align} $$

where $u_p$ is a p-harmonic map on $G \setminus \{a_1,a_2,\cdots ,a_N\}$ . In addition, [Reference Lei18, Theorem 1.1] shows that

(1.8) $$ \begin{align} \lim_{\varepsilon_k \to 0} \frac{(1-|\tilde{u}_{\varepsilon_k}|^2)^2}{4\varepsilon_k^2}= \sum_{j=1}^N m_j\delta_{a_j},\quad \mbox{in the weak star topology of}\quad C(\overline{G}), \end{align} $$

where $m_j>0$ for $j=1,2,\ldots ,N$ .

The following theorem presents results similar to (1.2) and (1.3) when $p> 2$ , which will be proved in Section 3.

Theorem 1.1. Assume $p>2$ , $u_\varepsilon $ is a minimizer of $E_\varepsilon (u,G)$ in W. Then we can find a subsequence $\varepsilon _k$ of $\varepsilon $ , and $P_j\geq 0$ which is independent of $\varepsilon _k$ ( $j=1,2,\ldots ,N$ ), such that

(1.9) $$ \begin{align} \lim_{\varepsilon_k \to 0} \varepsilon_k^{p-2} |\det(\nabla u_{\varepsilon_k})|^{p/2} = \sum_{j=1}^N P_j\delta_{a_j},\ \mbox{weakly* in} \ C(\overline{G}), \end{align} $$

where $\delta _{a_j}$ is the Dirac mass at $a_j$ . In addition, for any $\alpha \geq 2-\frac {4}{p}$ , there exists $L_j> 0$ which is independent of $\varepsilon _k$ ( $j=1,2,\ldots ,N$ ), such that

(1.10) $$ \begin{align} \lim_{\varepsilon_k \to 0}(1-|u_{\varepsilon_k}|^2)^{\alpha}|\nabla u_{\varepsilon_k}|^2 = \sum_{j=1}^N L_j\delta_{a_j},\ \mbox{weakly* in} \ C(\overline{G}). \end{align} $$

When $p \in (1,2)$ , [Reference Lei16, Theorem 1.3] implies a convergence result of the regularized minimizer. Namely, $\tilde {u}_\varepsilon $ is a regularized minimizer. When $p \in (2-t,2)$ for some $t \in (0,1/2)$ , there is a subsequence $\tilde {u}_k$ of $\tilde {u}_\varepsilon $ such that

(1.11) $$ \begin{align} \lim_{k \to \infty}\tilde{u}_k = u_p,\quad in \quad C_{loc}^{1,\alpha}(G\setminus \{a_j\}_{j=1}^N),\quad \forall \alpha \in (0,1), \end{align} $$

where $u_p$ is a p-harmonic map on G and $a_1,a_2,\ldots ,a_N \in \overline {G}$ are singularities of $u_p$ .

The following theorem shows a result similar to (1.1)–(1.3) in the case of $p \in (1,2)$ , which will be proved in Section 5.

Theorem 1.2. Assume that $p \in (1,2)$ approaches the dimension $2$ , and ${u}_\varepsilon $ is a minimizer in W. Then we can find a subsequence $\varepsilon _k$ of $\varepsilon $ , and $Q_j \geq 0$ which is independent of $\varepsilon $ ( $j=1,2,\ldots ,N$ ), such that

(1.12) $$ \begin{align} \lim_{\varepsilon_k \to 0} |\det(\nabla {u}_{\varepsilon_k})|^{p/2} = \sum_{j=1}^N Q_j\delta_{a_j},\ \mbox{weakly* in} \ C(\overline{G}). \end{align} $$

Moreover, if $\tilde {u}_\varepsilon $ is a regularized minimizer, then we can find $K_j>0$ which is independent of $\varepsilon $ ( $j=1,2,\ldots ,N$ ), such that

(1.13) $$ \begin{align} \lim_{\varepsilon_k \to 0} \frac{(1-|\tilde{u}_{\varepsilon_k}|^2)^2}{4\varepsilon_k^2}= \sum_{j=1}^N K_j \delta_{a_j},\ \mbox{weakly* in} \ C(\overline{G}). \end{align} $$

In addition, for any $\alpha \geq 2-p$ , there exist $M_j \geq 0$ which are independent of $\varepsilon $ ( $j=1,2,\ldots ,N$ ), such that

(1.14) $$ \begin{align} \lim_{\varepsilon_k \to 0}(1-|\tilde{u}_{\varepsilon_k}|^2)^{\alpha}|\nabla \tilde{u}_{\varepsilon_k}|^2 = \sum_{j=1}^N M_j\delta_{a_j}, \ \mbox{weakly* in} \ C(\overline{G}). \end{align} $$

Here, $M_j>0$ when $a_j \in G$ , and $M_j=0$ when $a_j \in \partial G$ .

Remark 1.1. When $p \neq 2$ , if $u_\varepsilon $ has radial structure, that is, $G=B_1(0)$ and $u_\varepsilon (x) \in \{u \in W; u(x)=f(r)(\cos d\theta , \sin d\theta ), r=|x|, x=(\cos \theta , \sin \theta )$ }, then $N=1$ . According to [Reference Lei and Xu19, Theorems 1.1 and 1.2], $P_1$ in Theorem 1.1 and $Q_1$ in Theorem 1.2 are positive. For a general minimizer $u_\varepsilon $ (i.e., $u_\varepsilon $ without the radial structure), it seems difficult to determine the values of $P_j$ and $Q_j$ even if $p=2$ (cf. [Reference Comte and Mironescu9]).

Remark 1.2. (i) Equations (1.8)–(1.10) and (1.12)–(1.14) generalize (1.1)–(1.3) in the cases of $p>2$ and $p \in (1,2)$ , respectively. Different from the case of $p=2$ , the conformal invariant of the functional with $p \neq 2$ is lost. So the results does not look concise. Namely, we need balance the energy functional by some proper weights to ensure the new energy integrals are globally bounded.

(ii) When $p>2$ , (1.8) and (1.9) show the concentration properties of $\varepsilon ^{p-2}E_\varepsilon (u_\varepsilon ,G)$ . For the regularized minimizer $\tilde {u}_{\varepsilon }$ , [Reference Lei18, Theorem 1.1] shows that the first and the second terms of $\varepsilon ^{p-2}E_\varepsilon (u_\varepsilon ,G)$ have the same convergence orders, and $\varepsilon _k^{p-2}E_\varepsilon (\tilde {u}_{\varepsilon _k},G) \to \frac {p}{p-2} \Sigma _{j=1}^N m_j\delta _{a_j}$ when $k \to \infty $ , where $m_j$ is the positive coefficients in (1.8).

(iii) When $p \in (1,2)$ , (1.13) shows the concentration property of the second term of $\varepsilon ^{p-2}E_\varepsilon (\tilde {u}_\varepsilon ,G)$ . Moreover, when $p \in ((\sqrt {17}-1)/2,2)$ , the first term of $\varepsilon ^{p-2}E_\varepsilon (\tilde {u}_{\varepsilon },G)$ is blow-up if $\tilde {u}_{\varepsilon }$ is radial (cf. [Reference Lei and Xu19, (1.20)]). So the convergence orders of the first and the second terms of $\varepsilon ^{p-2}E_\varepsilon (\tilde {u}_{\varepsilon },G)$ are different.

To prove (1.12), we need the decay result of the gradient of $|u_\varepsilon |-1$ in arbitrary compact subset of $G\setminus (\cup _j\{a_j\})$ . For the regularized minimizer $\tilde {u}_\varepsilon $ , it is clear in view of (1.11). For the general minimizer $u_\varepsilon $ it is not easy to be obtained.

In Section 4, we will prove the following decay result, which does not only come into play to deduce (1.12), but also has its own meaning of independence.

Theorem 1.3. Let $p \in (1,2)$ . Assume ${u}_\varepsilon $ is a minimizer in W. Then for any compact subset $K \subset G \setminus \{a_j\}_{j=1}^N$ , there holds

(1.15) $$ \begin{align} \int_K [|\nabla (1-|u_\varepsilon|)|^p+\frac{1}{\varepsilon^p} (1-|u_\varepsilon|)^2] \to 0, \quad when \ \varepsilon \to 0. \end{align} $$

Finally, we consider the finite energy solutions of

(1.16) $$ \begin{align} -div(|\nabla u|^{p-2}\nabla u)=u(1-|u|^2), \quad in \quad \mathbb{R}^2. \end{align} $$

When $p=2$ , Brezis et al. [Reference Brezis, Merle and Riviere5] gave a Liouville theorem by an idea of Cazenave. Namely, if $\nabla u \in L^2(\mathbb {R}^2)$ , then either $u(x) \equiv 0$ , or $u(x) \equiv C$ with $|C| =1$ . When $p \neq 2$ , we have the following result which will be proved in Section 6.

Theorem 1.4. Let u be a classical solution of (1.16) with $p>1$ and $p \neq 2$ . If

(1.17) $$ \begin{align} \nabla u \in L^p(\mathbb{R}^2), \end{align} $$

then

(1.18) $$ \begin{align} u(x) \equiv C, \end{align} $$

where C is a constant vector satisfying $|C| \in \{0,1\}$ .

Remark 1.3. The Liouville theorem of the critical points of p-Ginzburg–Landau energy on the Riemannian manifold can be seen in [Reference Chong, Cheng, Dong and Zhang7]. In addition, the p-Ginzburg–Laudan functional on $\mathbb {R}^2$ was well studied in [Reference Almog, Berlyand, Golovaty and Shafrir1] and [Reference Almog, Berlyand, Golovaty and Shafrir2].

2 Preliminaries

Besides (1.7), (1.8), and (1.11), we recall several results of the case $p \neq 2$ .

Assume $u_{\varepsilon }$ is a minimizer of $E_{\varepsilon }(u,G)$ in W. Denote the disc with x as center and r as radius by $B(x,r)$ or $B_r(x)$ . Let $\lambda , \mu $ be two positive constants which are independent of $\varepsilon $ . If

$$ \begin{align*}\int_{G\cap B(x^{\varepsilon}, 2\lambda \varepsilon)}(1-|u_{\varepsilon}|^2)^2 \leq \mu\varepsilon^2, \end{align*} $$

then $B(x^{\varepsilon },\lambda \varepsilon )$ is called a good disc. Otherwise $B(x^{\varepsilon },\lambda \varepsilon )$ is called a bad disc. When $p>2$ , [Reference Lei17, Remark 2.7] shows that the zeros of $u_{\varepsilon }$ are included in finite nonintersecting bad discs $B(x_i^{\varepsilon },h\varepsilon )$ ( $i=1,2,...,N_1$ ), where $N_1$ and $h>0$ are independent of $\varepsilon $ . As $\varepsilon \to 0$ , there exists a subsequence $x_i^{\varepsilon _k}$ of the center $x_i^{\varepsilon }$ of bad discs such that $x_i^{\varepsilon _k} \to a_i \in \overline {G} (i=1,2,...,N_1).$ Since there may be at least two subsequences that converge to the same point, we denote the limit points by $a_1,a_2,...,a_N (N \leq N_1)$ . Write $\Lambda _j:=\{i; x_i^{\varepsilon _k} \to a_j$ when $k \to \infty \}$ for each j. We can choose $\sigma>0$ suitably small such that $B_\sigma (a_j) \subset G$ when $a_j \in G$ , and $B_\sigma (a_j) \cap B_\sigma (a_m) = \emptyset $ for $j \neq m$ . When $p \in (1,2)$ , [Reference Lei16, Section 3] also presents the same conclusions above. Clearly, these results still hold for the regularized minimizers.

2.1 Case of $p>2$

We now introduce several results in [Reference Lei17] and [Reference Lei18] which will be used later.

Proposition 2.1. [Reference Lei17, Proposition 2.1]

Let $u_{\varepsilon }$ be a minimizer of $E_{\varepsilon }(u,G)$ in W. Then, there exists a constant $C>0$ which is independent of $\varepsilon \in (0,1)$ , such that $E_{\varepsilon }(u_{\varepsilon },G) \leq C\varepsilon ^{2-p}$ .

Proposition 2.2. [Reference Lei17, Proposition 2.2]

There exists a constant $C_0>0$ which is independent of $\varepsilon \in (0,1)$ , such that for any $x,y \in \overline {G}$ ,

$$ \begin{align*}|u_{\varepsilon}(x)-u_{\varepsilon}(y)| \leq C_0\varepsilon^{(2-p)/p}|x-y|^{(p-2)/p}. \end{align*} $$

Proposition 2.3. [Reference Lei17, Theorem 2.6]

All the zeros of $u_{\varepsilon }$ are contained in finite, disjointed bad discs $\{B(x_j^{\varepsilon },h\varepsilon );j=1,2,\ldots ,N_1\}$ . In addition,

$$ \begin{align*}|u_{\varepsilon}(x)|\geq \frac{1}{2}, \quad \forall x \in \overline{G}\setminus \cup_{j=1}^{N_1}B(x_j^{\varepsilon},h\varepsilon). \end{align*} $$

Proposition 2.4. [Reference Lei18, Proposition 2.4]

Write $d_i:= \deg (u_\varepsilon , \partial B(x_i^{\varepsilon },h\varepsilon ))$ . Then for each i, there exists a subsequence $\varepsilon _k$ of $\varepsilon $ such that $d_i$ is independent of $\varepsilon _k$ as long as k is sufficiently large.

Proposition 2.5. [Reference Lei17, Theorem 3.1]

Let $u_\varepsilon $ be a minimizer of $E_{\varepsilon }(u,G)$ in W. Then for any compact subset K of $G\setminus \{a_1,a_2,...,a_N\}$ , there exists a constant $C>0$ which does not depend on $\varepsilon $ , such that $E_{\varepsilon }(u_{\varepsilon },K)\leq C$ .

2.2 Case of $p \in (1,2)$

In [Reference Lei16], the following free energy functional was studied

$$ \begin{align*}E_{\varepsilon,\varrho}(u)= \frac{1}{2}\int_{B_1}|\nabla u|^2 +\frac{1}{4\varepsilon^2}\int_{B_1\setminus B_{\varrho}}(1-|u|^2)^2 +\frac{1}{2\varepsilon^2}\int_{B_{\varrho}}|u|^2, \end{align*} $$

where $B_r=\{x \in \mathbb {R}^2;|x|<r\}$ , $\varepsilon $ and $\varrho $ are small positive parameters. It is associated with the model of superconductivity with normal impurity inclusion such as superconducting-normal junctions. There are two major differences between $E_{\varepsilon ,\varrho }(u)$ and $E_\varepsilon (u,G)$ . The former models an heterogenous superconductor and the latter models the homogenous case. In addition, the domain considered in [Reference Lei16] is the unit disk.

In fact, the domain considered in [Reference Lei16] can be replaced by the more general G and the purpose of using $B_1$ there is for convenience (see also [Reference Ding, Liu and Yu10]). In addition, if $\varrho =0$ , then $E_{\varepsilon ,\varrho }(u)$ becomes $E_\varepsilon (u,G)$ , and we can see the results from the corresponding conclusions of Case I (i.e., $\varrho =O(\varepsilon )$ ) in [Reference Lei16], as long as we replace $B_1$ by G and p approaches the dimension $2$ .

First, by [Reference Lei16, (1–6) in Theorem 1.2], we have

Proposition 2.6. Let $p\in(1,2),\; u_\varepsilon $ be a minimizer of $E_\varepsilon (u,G)$ in W. Then there exists a constant $C>0$ which is independent of $\varepsilon $ , such that $E_\varepsilon (u_\varepsilon ,G)\leq C.$

Next, by [Reference Lei16, Theorem 3.1 and Proposition 2.2], we have

Proposition 2.7. Assume that $p\in(1,2),\;u_{\varepsilon }\in W$ satisfies the (1.4) in the weak sense. Then there is a constant $\rho _0>0$ , such that for $\rho \in (0,\rho _0)$ ,

(2.1) $$ \begin{align} |u_\varepsilon(x)|\geq \frac{1}{2},\quad as \quad x\in G \setminus G^{2\rho\varepsilon}. \end{align} $$

Here, $G^{\rho \varepsilon }:=\{x \in G; dist(x,\partial G)> \rho \varepsilon \}$ . In addition, for any $\rho>0$ , there exists a positive constant $C_1$ which is independent of $\varepsilon $ , such that

(2.2) $$ \begin{align} \|\nabla u_{\varepsilon}(x)\|_{L^{\infty} (B(x,\rho\varepsilon))} \leq C_1\varepsilon^{-1},\quad as \quad x \in G^{\rho\varepsilon}. \end{align} $$

By [Reference Lei16, (3-1) in Proposition 3.2], we have

Proposition 2.8. Let $p\in(1,2),\;u_\varepsilon $ be a minimizer of $E_\varepsilon (u,G)$ in W. Then, there exists a constant $C>0$ which is independent of $\varepsilon \in (0,\varepsilon _0)$ with $\varepsilon _0$ sufficiently small, such that,

$$ \begin{align*}\frac{1}{\varepsilon^2} \int_{G}(1-|u_\varepsilon|^2)^2 \leq C. \end{align*} $$

By [Reference Lei16, (3-10)], we have

Proposition 2.9. Let $p\in(1,2),\;u_\varepsilon $ be a minimizer of $E_\varepsilon (u,G)$ in W. For any given $\sigma>0$ , and $0<\varepsilon \ll \sigma $ , there holds

$$ \begin{align*}|u_{\varepsilon}(x)|\geq \frac{1}{2}, \quad \forall x \in \overline{G}\setminus (\cup_{j=1}^{Card J}B(a_j,\sigma)). \end{align*} $$

The next proposition shows the reversed Hölder inequality, which is crucial in the proofs of (1.14) and (1.15). We now use the same ideas in [Reference Giaquinta11, Chapter 5] to prove this reversed Hölder inequality.

Proposition 2.10. Assume $p \in [3/2,2)$ , $u_{\varepsilon }$ is a minimizer of $E_{\varepsilon }(u,G)$ in W. Then there exists a constant $R_0 \in (0,1/2)$ which is independent of $\varepsilon $ , such that for any $B_R \subset G (2R<R_0)$ , we have

$$ \begin{align*}\left(\int_{B_R}|\nabla u_{\varepsilon}|^{\tilde{q}}\right)^{1/\tilde{q}} \leq C\left(\int_{B_{2R}}(|\nabla u_{\varepsilon}|^2+1) ^{p/2}\right)^{1/p}, \quad \forall \tilde{q} \in [p,p(1+t)), \end{align*} $$

where $C>0$ depends on $R_0,p,\tilde {q}$ , and $t \in (0,1/2)$ only depends on $R_0$ .

Proof . Step 1. Let $Q \subset \mathbb {R}^2$ be a square and $m \in [3/2,2)$ . Suppose

(2.3) $$ \begin{align} \frac{1}{|Q_R|}\int_{Q_R(x_0)}g^m \leq b \left( \frac{1}{|Q_{2R}|} \int_{Q_{2R}(x_0)}g \right)^m \end{align} $$

for each $x_0 \in Q$ and each $0<R<\frac {1}{3}\min \{dist(x_0,\partial Q), R_0\}$ , where $b>1$ and $R_0>0$ are absolute constants. By the same argument of [Reference Giaquinta11, proof of Theorem 1.2], we claim that $g \in L_{loc}^q(Q)$ for $q \in [m,m(1+t))$ and

(2.4) $$ \begin{align} \left(\frac{1}{|Q_R|}\int_{Q_R}g^q \right)^{\frac{1}{q}} \leq C\left(\frac{1}{|Q_{2R}|}\int_{Q_{2R}}g^m\right)^{\frac{1}{m}} \end{align} $$

for $Q_{2R} \subset Q$ , $0<R<R_0$ , where t is a positive constant only depending on b, and $C>0$ depends on $b,m,q$ . In particular, C is blowing up when q approaches $m(1+t)$ .

In fact, when we check [Reference Giaquinta and Modica12, Proposition 5.1], (2.3) implies $\theta =0$ and $f(x) \equiv 0$ . Set

$$ \begin{align*}E(h,s)=\{x \in Q; h(x)>s\}, \quad \alpha_k=(3^2\cdot 4^k)^{1/m}, \quad G(x)=g(x)\|g\|_{L^m(Q)}^{-1}, \end{align*} $$
$$ \begin{align*}\Phi(x)=\alpha_k^{-1}G(x) \ in \ C_k:=\{x \in Q;2^{-k}<dist(x, \partial Q) \leq 2^{-k+1}\}. \end{align*} $$

As in [Reference Giaquinta and Modica12, proof of (5.4)], by the Calderon–Zygmund subdivision argument and an iteration, we still obtain

(2.5) $$ \begin{align} \int_{E(\Phi,T)}\Phi^m \leq aT^{m-1}\int_{E(\Phi,T)}\Phi \end{align} $$

for $T \geq 1$ . According to the result of [Reference Giaquinta and Modica12] (see line 7 in page 167), a in (2.5) can be chosen as

$$ \begin{align*} a=b\left(\frac{5m}{m-1}\right)^{m-1}(30^2\cdot 5m+2^2). \end{align*} $$

In view of $m \in [3/2,2)$ , a can be bounded by an absolute constant $\tilde {a}$ (which is independent of m). Now, (2.5) with $a=\tilde {a}$ is (1.6) in Chapter 5 of [Reference Giaquinta11], which implies that the conditions of [Reference Giaquinta11, Lemma 1.2 in Chapter 5] are satisfied if we write $h(T)=\int _{E(\Phi ,T)}\Phi $ and $H(T) \equiv 0$ . By applying Lemma 1.2 in Chapter 5 of [Reference Giaquinta11], we can deduce (2.4) for $q \in [m,\frac {\tilde {a}}{\tilde {a}-1}m)$ . Set $\frac {\tilde {a}}{\tilde {a}-1}=1+t$ , then

$$ \begin{align*}t=\frac{1}{\tilde{a}-1}. \end{align*} $$

This implies that t is independent of m. In addition, C in (2.4) depends on $m[\tilde {a}m- (\tilde {a}-1)q]^{-1}$ , which implies that C is blowing up when q approaches $m(1+t)$ .

Step 2. Let $y=x\varepsilon ^{-1}$ in $E_{\varepsilon }(u,G)$ and denote $ v_{\varepsilon }(y)=u_{\varepsilon }(x)$ , $G_{\varepsilon }=\{y=x\varepsilon ^{-1};x \in G\}$ . Then

$$ \begin{align*}\begin{array}{ll} E_{\varepsilon}(u_{\varepsilon},G) &\displaystyle =\varepsilon^{2-p}\left(\frac{1}{p} \int_{G_{\varepsilon}} |\nabla v_{\varepsilon}|^p dy+ \frac{1}{4} \int_{G_{\varepsilon}}(1-|v_{\varepsilon}|^2)^2dy \right)\\[3mm] & :=\varepsilon^{2-p}E(v_{\varepsilon},G_{\varepsilon}). \end{array} \end{align*} $$

It is clear that $v_{\varepsilon }$ is also a minimizer of $E(v,G_{\varepsilon })$ .

Let $m=(p+2)/2$ , then $m \in [3/2,2)$ when $p \in [3/2,2)$ . Clearly, $(A+B)^m \leq (2\max \{A,B\})^m \leq 2^m(A^m+B^m)$ as long as $A,B$ are positive. Checking the proof of Theorem 3.1 in Chapter 5 of [Reference Giaquinta11], we find that $c(m)$ in lines 13–14 of page 160 satisfies $c(m) = 2^m \leq 4$ for $p \in [3/2,2)$ . Therefore, $c_4$ in (3.5) (see line 5 of page 161) is independent of p after an iteration (by Lemma 3.1). Next, the Sobolev–Poincare inequality shows that $c_5$ can be chosen as a suitably large absolute constant in view of $p \in [3/2,2)$ . Thus, we also derive a condition which satisfies (2.3) with $b=c_5$ . Using the reversed Hölder inequality (2.4) with $g=(\varepsilon +|\nabla v_\varepsilon |)^{\frac {2p}{2+p}}$ , we know that there exist constants $t, R_0 \in (0,1/2)$ and $C>0$ , such that for any $B_R \subset B_{R_0/2} \subset G$ and $q \in [m,m(1+t))$ , the inequality

$$ \begin{align*}&\displaystyle \left(\frac{1}{|B_{R/\varepsilon}|} \int_{B_{R/\varepsilon}} |\nabla v_{\varepsilon}|^{\frac{2pq}{2+p}}dy \right)^{1/q}\\&\quad\displaystyle \leq \left(\frac{1}{|B_{R/\varepsilon}|} \int_{B_{R/\varepsilon}} (|\nabla v_{\varepsilon}|+\varepsilon)^{\frac{2pq}{2+p}}dy\right)^{1/q}\\&\quad\displaystyle \leq C\left(\frac{1}{|B_{2R/\varepsilon}|} \int_{B_{2R/\varepsilon}} (|\nabla v_{\varepsilon}|+ \varepsilon)^{p}dy\right)^{\frac{2}{p+2}}\end{align*} $$

holds, where $B_{R/\varepsilon }=\{y=x\varepsilon ^{-1};x \in B_R\}$ . Letting $x=y\varepsilon $ and multiplying by $\varepsilon ^{-\frac {2p}{p+2}}$ , we obtain

$$ \begin{align*}\left(\int_{B_R}|\nabla u_{\varepsilon}|^{\frac{2pq}{2+p}}dx\right)^{\frac{p+2}{2pq}} \leq C\left(\int_{B_{2R}} (|\nabla u_{\varepsilon}|^2+1)^{p}dx\right)^{1/p}. \end{align*} $$

Let $\tilde {q}=\frac {2pq}{p+2}$ . Noticing $q \in [m,m(1+t))$ , we can see $\tilde {q} \in [p,p(1+t))$ . And hence the proposition holds.

Clearly, the results above (Propositions 2.62.10) still hold for the regularized minimizers.

By [Reference Lei16, Proposition 5.3], we have

Proposition 2.11. Assume $p \in (1, 2)$ approaches the dimension $2$ , and $\tilde {u}_\varepsilon $ is a regularized minimizer. Then, for any compact subset $K \subset G \setminus (\cup _{j=1}^N\{a_j\})$ , there exists a positive constant $C=C(K)$ which is independent of $\varepsilon $ , such that

$$ \begin{align*}\|\frac{1}{\varepsilon^p} (1-|\tilde{u}_\varepsilon|^2)\|_{L^{\infty}(K)} \leq C. \end{align*} $$

3 Proof of Theorem 1.1

In this section, we assume $p> 2$ , and $u_\varepsilon $ is the minimizer of $E_\varepsilon (u,G)$ in W.

Proof of (1.10).

Noting $\alpha \geq 2-\frac {4}{p}$ , using (1.5), the Hölder inequality and Proposition 2.1, we deduce that

$$ \begin{align*}&\displaystyle\int_{G} |\nabla u_\varepsilon|^2(1-|u_\varepsilon|^2)^{\alpha}\\&\quad\leq C\displaystyle\int_{G} |\nabla u_\varepsilon|^2(1-|u_\varepsilon|^2)^{2-\frac{4}{p}}\\&\quad\leq C \left(\displaystyle\int_{G} (1-|u_\varepsilon|^2)^2\right)^{1-\frac{2}{p}} \left(\displaystyle\int_{G} |\nabla u_\varepsilon|^p\right)^{\frac{2}{p}}\\&\quad\leq C\varepsilon^{2(1-\frac{2}{p})+\frac{2}{p}(2-p)} = C.\end{align*} $$

Namely, $|\nabla u_\varepsilon |^2(1-|u_\varepsilon |^2)^{\alpha }$ is bounded in $L^1(G)$ . Thus, there exists a Radon measure $\omega _1$ such that

$$ \begin{align*}\lim_{\varepsilon_k \to 0}|\nabla u_{\varepsilon_k}|^2(1-|u_{\varepsilon_k}|^2)^{\alpha} =\omega_1, \quad \mbox{weakly star in} \quad C(\overline{G}). \end{align*} $$

Next, using the Hölder inequality and Proposition 2.5, we see that as $\varepsilon \to 0$ ,

(3.1) $$ \begin{align}\begin{split}&\displaystyle \int_{G\setminus \cup_{j=1}^N B(a_j,\sigma)}|\nabla u_\varepsilon|^2(1-|u_\varepsilon|^2)^{\alpha}\\&\quad \leq \left[\displaystyle\int_{G\setminus \cup_j B(a_j,\sigma)}|\nabla u_\varepsilon|^p\right]^{\frac{2}{p}} \\&\qquad \cdot\left[\displaystyle\int_{G\setminus \cup_jB(a_j,\sigma)} (1-|u_\varepsilon|^2)^{\frac{p\alpha}{p-2}} \right]^{\frac{p-2}{p}} \to 0.\end{split}\end{align} $$

Thus, $supp(\omega _1) \subset \{a_j\}_{j=1}^N$ . Therefore, we can find $L_j\geq 0$ such that

$$ \begin{align*}\omega_1=\sum_{j=1}^N L_j\delta_{a_j}. \end{align*} $$

We claim $L_j>0$ for each j (and hence $supp(\omega _1) = \{a_j\}_{j=1}^N$ ). For convenience, we here drop k from $\varepsilon _k$ .

Noting $B_{h\varepsilon }(x_i)$ contains zeros of $u_\varepsilon $ , by Propositions 2.3 we have

$$ \begin{align*}\frac{1}{2} \leq |u_\varepsilon| \leq \frac{3}{4}, \quad on \ \partial B_{h\varepsilon}(x_i) \end{align*} $$

as long as $h\varepsilon $ is suitably small. For each $x_1 \in \partial B_{h\varepsilon }(x_i)$ , by Proposition 2.2, we get

$$ \begin{align*}\frac{3}{8} \leq |u_\varepsilon(y)| \leq \frac{7}{8}, \quad \forall y \in \overline{B_{\hat{l}\varepsilon}(x_1)} \cap B_{h\varepsilon}(x_i). \end{align*} $$

Here, $\hat {l}:=\min \{(8C_0)^{\frac {p}{2-p}},h\}$ . Therefore,

(3.2) $$ \begin{align} \frac{3}{8} \leq |u_\varepsilon(y)| \leq \frac{7}{8}, \quad \forall y \in B_{h\varepsilon}(x_i) \setminus B_{(h-\hat{l}/2)\varepsilon}(x_i). \end{align} $$

As in [Reference Hong15, Theorem 3.9], by (3.2) we can write

$$ \begin{align*}u_\varepsilon(x)=|u_\varepsilon(x)|\phi(r,\tau), \ r=|x|, \ \tau=\frac{x}{|x|}, \end{align*} $$

and hence

$$ \begin{align*}|\nabla u_\varepsilon|^2 \geq |u_\varepsilon|^2r^{-2}|\nabla_{\tau}\phi(r,\tau)|^2. \end{align*} $$

Thus, by the Hölder inequality, there holds

$$ \begin{align*}&\displaystyle \int_{B_{h\varepsilon}(x_i) \setminus B_{(h-\hat{l}/2)\varepsilon}(x_i)} (1-|u_\varepsilon|^2)^{\alpha}|\nabla u_\varepsilon|^2 \\&\quad\displaystyle \geq \left(1-\frac{7}{8}\right)^{\alpha} \int_{B_{h\varepsilon}(x_i) \setminus B_{(h-\hat{l}/2)\varepsilon}(x_i)} |u_\varepsilon|^2 r^{-2}|\nabla _{\tau}\phi(r,\tau)|^2 \\&\quad\displaystyle \geq \left(\frac{1}{8}\right)^\alpha \left(\frac{3}{8}\right)^2 \int_{(h-\hat{l}/2)\varepsilon}^{h\varepsilon} \left(\int_{S^1}|\nabla_{\tau}\phi|^2ds\right)\frac{dr}{r}\\&\quad\displaystyle \geq \left(\frac{1}{8}\right)^\alpha \left(\frac{3}{8}\right)^2 \int_{(h-\hat{l}/2)\varepsilon}^{h\varepsilon}\frac{1}{2\pi} \left(\int_{S^1}|\nabla_{\tau}\phi|ds\right)^2\frac{dr}{r}.\end{align*} $$

Theorem 8.2 in [Reference Brezis, Coron and Lieb4] shows that

$$ \begin{align*}\int_{S^1}|\nabla_{\tau}\phi|ds \geq 2\pi|d_i|, \end{align*} $$

where $d_i=\deg (u_\varepsilon ,\partial B_{h\varepsilon }(x_i))$ is independent of $\varepsilon $ (see Proposition 2.4). Therefore,

$$ \begin{align*}\int_{B_{h\varepsilon}(x_i) \setminus B_{(h-\hat{l}/2)\varepsilon}(x_i)} (1-|u_\varepsilon|^2)^{\alpha}|\nabla u_\varepsilon|^2 \geq \left(\frac{1}{8}\right)^\alpha \left(\frac{3}{8}\right)^2 (2\pi d_i^2) \cdot \left(\log \frac{h}{h-\hat{l}/2}\right). \end{align*} $$

This implies $L_j>0$ , and hence (1.10) is proved.

Proof of (1.9).

Denote $u_\varepsilon $ by u. Clearly, by the Cauchy inequality,

(3.3) $$ \begin{align} |\det(\nabla u)|=|u_{1x_1}u_{2x_2}-u_{1x_2}u_{2x_1}| \leq \frac{1}{2}|\nabla u|^2. \end{align} $$

By Proposition 2.1, we obtain that for each j,

(3.4) $$ \begin{align} \varepsilon^{p-2}\int_{G\cap B(a_j,\sigma)}|\det(\nabla u)|^{p/2} \leq \frac{\varepsilon^{p-2}}{2}\int_{G}|\nabla u|^p \leq C. \end{align} $$

Using Proposition 2.5, we get

(3.5) $$ \begin{align} \varepsilon^{p-2}\int_{G \setminus \cup_j B(a_j,\sigma)}|\det(\nabla u)|^{p/2} \leq \frac{\varepsilon^{p-2}}{2}\int_{G \setminus \cup_j B(a_j,\sigma)}|\nabla u|^p \leq C\varepsilon^{p-2}. \end{align} $$

Combining (3.4) and (3.5), we see that $\varepsilon ^{p-2}|\det (\nabla u)|^{p/2}$ is bounded in $L^1(G)$ . Thus, there exists a Radon measure $\omega _2$ such that

$$ \begin{align*}\lim_{\varepsilon_k \to 0}\varepsilon_k^{p-2} |\det(\nabla u_{\varepsilon_k})|^{p/2} =\omega_2, \quad \mbox{weakly star in} \quad C(\overline{G}). \end{align*} $$

By virtue of (3.5), $supp(\omega _2) \subset \{a_j\}_{j=1}^N$ . Thus, we can find $P_j\geq 0$ such that

$$ \begin{align*}\omega_2=\sum_{j=1}^N P_j\delta_{a_j}. \end{align*} $$

Equation (1.9) is proved.

4 Convergence rate of $|u_\varepsilon |-1$ when $p \in (1,2)$

In this section, we consider the case of $p \in (1,2)$ . Proposition 2.8 implies that $|{u}_{\varepsilon }|-1$ tends to zero and the decay rate is presented. Here, we will give a decay rate of the gradient of $|{u}_{\varepsilon }|-1$ .

Proof of Theorem 1.3

Proof. Step 1. Let $R>0$ be a small constant such that $B(x,2R) \subset \subset G\setminus \cup _{i=1}^N\{a_i\}$ . Applying (1.5) and Proposition 2.9, we have

(4.1) $$ \begin{align} \frac{1}{2}\leq |{u}_{\varepsilon}|\leq 1 \quad in \ B(x,2R). \end{align} $$

By the integral mean value theorem and Proposition 2.6, there is $r \in [R,2R]$ such that

(4.2) $$ \begin{align} \int_{\partial B(x,r)}|\nabla |{u}_\varepsilon||^pd\xi +\frac{1}{\varepsilon^p} \int_{\partial B(x,r)}(1-|{u}_{\varepsilon}|^2)^2d\xi \leq C \end{align} $$

with $C=C(r)>0$ independent of $\varepsilon $ . Denote $B(x,r)$ by B. If $\rho _1$ is a minimizer of the functional

$$ \begin{align*}E(\rho,B)=\frac{1}{p} \int_B(|\nabla \rho|^2+1)^{p/2} +\frac{1}{2\varepsilon^p} \int_B(1-\rho)^2 \end{align*} $$

in $W_{|{u}_{\varepsilon }|}^{1,p}(B,\mathbb {R}^+\cup \{0\})$ , then it solves

(4.3) $$ \begin{align} -div[(|\nabla\rho|^2+1)^{(p-2)/2}\nabla\rho] =\frac{1}{\varepsilon^p}(1-\rho), \end{align} $$
(4.4) $$ \begin{align} \rho|_{\partial B}=|{u}_{\varepsilon}|, \end{align} $$

By the maximum principle, it follows from (4.1) that

(4.5) $$ \begin{align} \frac{1}{2}\leq \rho_1\leq 1 \quad on \ \overline{B}. \end{align} $$

Applying Proposition 2.6 we see easily that

(4.6) $$ \begin{align} E(\rho_1,B)\leq E(|{u}_{\varepsilon}|,B) \leq C(E_{\varepsilon}({u}_{\varepsilon},B)+1) \leq C. \end{align} $$

Step 2. Multiplying (4.3) with $\rho =\rho _1$ by $(\nu \cdot \nabla \rho _1)$ , we have

(4.7) $$ \begin{align} \begin{array}{ll} -\displaystyle\int_{\partial B}v^{(p-2)/2}|\partial_\nu\rho_1|^2d\xi &+\displaystyle\int_Bv^{(p-2)/2}\nabla \rho_1 \cdot \nabla (\nu \cdot \nabla \rho_1)\\[3mm] &=\displaystyle\frac{1}{\varepsilon^p} \int_B(1-\rho_1)(\nu \cdot \nabla \rho_1), \end{array} \end{align} $$

where $\nu $ denotes the unit outside norm vector on $\partial B$ and $v=|\nabla \rho _1|^2+1$ . Integrating by parts yields

(4.8) $$ \begin{align} \begin{split}& \displaystyle\int_Bv^{(p-2)/2}\nabla \rho_1 \cdot \nabla (\nu \cdot \nabla \rho_1)\\&\quad= \displaystyle\int_Bv^{(p-2)/2}|\nabla \rho_1|^2 +\frac{1}{p}\int_B \nu \cdot \nabla (v^{p/2})\\&\quad= \displaystyle\int_Bv^{(p-2)/2}|\nabla \rho_1|^2 +\frac{1}{p}\int_{\partial B}v^{p/2}d\xi -\frac{1}{p}\int_B v^{p/2} ({\textrm{div}} \nu), \end{split} \end{align} $$

and

$$ \begin{align*}\displaystyle\frac{1}{\varepsilon^p} \int_B(1-\rho_1)(\nu \cdot \nabla \rho_1) = \frac{1}{2\varepsilon^p} \int_B(1-\rho_1)^2({\textrm{div}}\nu) -\frac{1}{2\varepsilon^p} \int_{\partial B}(1-\rho_1)^2d\xi. \end{align*} $$

Substitute this result and (4.8) into (4.7). Noting div $\nu =r^{-1}>0$ , we can use (4.5), (4.6), (4.4), and (4.2) to obtain

(4.9) $$ \begin{align} \int_{\partial B}v^{(p-2)/2}|\partial_\nu\rho_1|^2d\xi \leq C+\frac{1}{p}\int_{\partial B}v^{p/2}d\xi. \end{align} $$

Step 3. By the Jensen inequality $(1+a^2+b^2)^{1/2} \leq 1+|a|+|b|$ and (4.4), there holds

$$ \begin{align*}\int_{\partial B} v^{p/2}d\xi \leq \int_{\partial B}v^{(p-1)/2} [(1+|\partial_\tau |u_\varepsilon||) +|\partial_\nu \rho_1|]d\xi, \end{align*} $$

where $\tau $ denotes the unit tangent vector on $\partial B$ . Using the Hölder inequality and (4.2), we deduce from the result above that

$$ \begin{align*}\int_{\partial B} v^{p/2}d\xi \leq C\left(\int_{\partial B} v^{\frac{p}{2}}d\xi\right)^{\frac{p-1}{p}} +\left(\int_{\partial B}v^{\frac{p-2}{2}}|\partial_\nu \rho_1|^2d\xi\right)^{\frac{1}{2}} \left(\int_{\partial B} v^{\frac{p}{2}}d\xi\right)^{\frac{1}{2}}. \end{align*} $$

Inserting (4.9) into this result and using the Young inequality, we obtain that for any $\delta \in (0,1)$ ,

$$ \begin{align*}\int_{\partial B} v^{p/2}d\xi \leq C(\delta)+\left(\delta+\displaystyle\frac{1}{2p} +\frac{1}{2}\right)\int_{\partial B}v^{p/2}d\xi, \end{align*} $$

Therefore, by choosing $\delta>0$ sufficiently small we get

(4.10) $$ \begin{align} \int_{\partial B}(|\nabla \rho_1|^2+1)^{p/2}d\xi \leq C. \end{align} $$

Multiply (4.3) by $(1-\rho _1)$ . In view of (4.4), applying the Hölder inequality, and using (4.2) and (4.10), we get

(4.11) $$ \begin{align} \begin{split}&\displaystyle\int_B[(|\nabla\rho_1|^2+1)^{(p-2)/2}|\nabla\rho_1|^2 +\frac{1}{\varepsilon^p}(1-\rho_1)^2]\\&\quad\leq \left\vert\displaystyle\int_{\partial B}(1-\rho_1)(|\nabla\rho_1|^2+1)^{(p-2)/2} (\nu\cdot\nabla\rho_1)d\xi\right\vert \leq C\varepsilon. \end{split} \end{align} $$

Step 4. Set $U=\rho _1w$ on B; $U={u}_{\varepsilon }$ on $G\setminus B$ , where $w={u}_{\varepsilon }/|{u}_{\varepsilon }|$ . Then $U \in W$ . Since ${u}_{\varepsilon }$ is a minimizer of $E_{\varepsilon }(u,G)$ , we have

(4.12) $$ \begin{align} E_{\varepsilon}(u_{\varepsilon},G) \leq E_{\varepsilon}(U,G) = E_{\varepsilon}(\rho_1 w,B) +E_{\varepsilon}(u_{\varepsilon},G\setminus B). \end{align} $$

In view of $p \in (1,2)$ , we get

$$ \begin{align*}&\displaystyle\int_B(|\nabla \rho_1|^2 +\rho_1^2|\nabla w|^2)^{p/2} -\int_B(\rho_1^2|\nabla w|^2)^{p/2}\\&\quad=\displaystyle\frac{p}{2}\int_B \int_0^1(s|\nabla \rho_1|^2 +\rho_1^2|\nabla w|^2)^{(p-2)/2} |\nabla \rho_1|^2dsdx\\&\quad\leq \displaystyle\frac{p}{2}\int_B|\nabla \rho_1|^pdx \cdot \int_0^1s^{(p-2)/2}ds =\int_B|\nabla \rho_1|^p.\end{align*} $$

Here, we use the fact $\int _0^1s^{(p-2)/2}ds=2/p$ . Combining this with (4.12) leads to

$$ \begin{align*}E_{\varepsilon}(u_{\varepsilon},B) \leq E_{\varepsilon}(\rho_1 w,B) \leq \frac{1}{p} \int_B(\rho_1^2|\nabla w|^2)^{p/2} +E_\varepsilon(\rho_1,B). \end{align*} $$

Using (4.5) and (4.11), we can see from the result above that

(4.13) $$ \begin{align} E_{\varepsilon}(u_{\varepsilon},B) \leq \frac{1}{p} \int_B |\nabla w|^p+C\varepsilon. \end{align} $$

Step 5. Here, we denote $|u_\varepsilon |$ by $h_\varepsilon $ .

Clearly, $(sa^2+b^2)^{(p-2)/2} \geq (a^2+b^2)^{(p-2)/2}$ when $s \in (0,1)$ and $p \in (1,2)$ . Therefore, according to the mean value theorem, it follows that

$$ \begin{align*}&\displaystyle(|\nabla h_\varepsilon|^2 +h_\varepsilon^2|\nabla w|^2)^{p/2} -(h_\varepsilon|\nabla w|^2)^{p/2}\\[3mm]&\quad=\displaystyle\frac{p}{2}\left(\int_0^1[s(|\nabla h_\varepsilon|^2 +h_\varepsilon^2|\nabla w|^2) +(1-s)(h_\varepsilon^2|\nabla w|^2)]^{\frac{p-2}{2}}ds\right) \cdot |\nabla h_\varepsilon|^2\\[3mm]&\quad\geq \displaystyle\frac{p}{2}|\nabla u_\varepsilon|^{p-2}|\nabla h_\varepsilon|^2. \end{align*} $$

This and (4.13) imply

(4.14) $$ \begin{align}&\displaystyle\frac{1}{2}\int_B|\nabla u_\varepsilon|^{p-2}|\nabla h_\varepsilon|^2 +\frac{1}{p}\int_B(h_\varepsilon^p-1)|\nabla w|^p +\frac{1}{4\varepsilon^p}\int_B(1-h_\varepsilon^2)^2\notag\\[3mm]&\quad\leq E_{\varepsilon}(u_{\varepsilon},B) -\displaystyle\frac{1}{p}\int_B|\nabla w|^p \leq C\varepsilon. \end{align} $$

In view of (4.1), there holds

$$ \begin{align*}\frac{1}{p} \int_B(1-h_\varepsilon^p)|\nabla w|^p \leq \frac{2^p}{p}\int_B(1-h_\varepsilon^2)|\nabla u_\varepsilon|^p. \end{align*} $$

Applying the Hölder inequality and Propositions 2.10 and 2.6, we can obtain

$$ \begin{align*}\frac{1}{p} \int_B(1-h_\varepsilon^p)|\nabla w|^p \leq C\varepsilon^{2t_0/(1+t_0)} \end{align*} $$

with $t_0 \in (0,t)$ is suitably small. Combining this with (4.14), we can see

(4.15) $$ \begin{align} \frac{1}{2}\int_B|\nabla u_\varepsilon|^{p-2}|\nabla h_\varepsilon|^2 +\frac{1}{4\varepsilon^p}\int_B(1-h_\varepsilon^2)^2 \leq C\varepsilon^{2t_0/(1+t_0)}. \end{align} $$

Using the Hölder inequality, by (4.15) and Proposition 2.6, we see that

$$ \begin{align*}\int_B|\nabla h|^p \leq \left(\int_B|\nabla u_\varepsilon|^{p-2}|\nabla h_\varepsilon|^2\right)^{\frac{p}{2}} \left(\int_B|\nabla u_\varepsilon|^p\right)^{\frac{2-p}{2}} \leq C\varepsilon^{pt_0/(1+t_0)}. \end{align*} $$

Combining with (4.15) and by an argument of finite coverings, we can see (1.15).

5 Proof of Theorem 1.2

Proof of (1.12).

By (3.3) and Proposition 2.6, we get

(5.1) $$ \begin{align} \int_{G}|\det(\nabla u_\varepsilon)|^{p/2} \leq \int_G|\nabla u_\varepsilon|^p \leq C. \end{align} $$

Therefore, we can find a Radon measure $\omega _3$ and a subsequence $\varepsilon _k$ of $\varepsilon $ such that

(5.2) $$ \begin{align} \lim_{k \to \infty}|\det(\nabla u_{\varepsilon_k})|^{p/2}=\omega_3, \quad \mbox{weakly star in} \quad C(\overline{G}). \end{align} $$

Proposition 2.9 implies that there exists $\phi _\varepsilon $ such that when $x \in G \setminus \cup _jB_\sigma (a_j)$ ,

$$ \begin{align*}u_\varepsilon(x)=h_\varepsilon(x)(\cos\phi_\varepsilon(x), \sin\phi_\varepsilon(x)), \end{align*} $$

where $h_\varepsilon (x)=|u_\varepsilon (x)|$ . Thus, on $G \setminus \cup _jB_\sigma (a_j)$ ,

$$ \begin{align*}|\det(\nabla u_\varepsilon)|=h_\varepsilon |\partial_\nu h_\varepsilon \partial_{\tau}\phi_\varepsilon -\partial_{\tau}h_\varepsilon \partial_{\nu}\phi_\varepsilon|. \end{align*} $$

Therefore, by the Hölder inequality, there holds

(5.3) $$ \begin{align}\begin{split}&\displaystyle\int_{G \setminus \cup_jB_\sigma(a_j)}|\det(\nabla u_\varepsilon)|^{p/2}\\&\quad \leq \left(\int_{G \setminus \cup_jB_\sigma(a_j)}|\nabla h_\varepsilon|^p\right)^{\frac{1}{2}} \left(\int_{G \setminus \cup_jB_\sigma(a_j)}|h_\varepsilon\nabla \phi_\varepsilon|^p\right)^{\frac{1}{2}}. \end{split} \end{align} $$

In view of Proposition 2.6 and (1.15),

$$ \begin{align*}\int_{G \setminus \cup_jB_\sigma(a_j)}|\det(\nabla u_\varepsilon)|^{p/2} \leq C\left(\int_{G \setminus \cup_jB_\sigma(a_j)}|\nabla h_\varepsilon|^p\right)^{\frac{1}{2}} \to 0 \end{align*} $$

when $\varepsilon \to 0$ . Therefore, $supp(\omega _3) \subset \{a_j\}_{j=1}^N$ . Thus, there exists constants $Q_j \geq 0$ such that

$$ \begin{align*}\omega_3=\sum_{j=1}^N Q_j\delta_{a_j}. \end{align*} $$

Equation (1.12) is proved.

Proof of (1.14).

First we observe that $2-p<pt$ since p is sufficiently close to $2$ , where t is the constant in Proposition 2.10 (which implies that t is independent of p). Thus we can choose $\gamma \in (2-p,pt)$ . By (1.5), the Hölder inequality and Propositions 2.10 and 2.6, we have

(5.4) $$ \begin{align} \int_{G\setminus G^{2\rho\varepsilon}} (1-|\tilde{u}_\varepsilon|^2)^{\alpha} |\nabla \tilde{u}_\varepsilon|^2 \leq \left(\int_{G\setminus G^{2\rho\varepsilon}} |\nabla \tilde{u}_\varepsilon|^{p+\gamma}\right)^{\frac{2}{p+\gamma}} |G\setminus G^{2\rho\varepsilon}|^{1-\frac{2}{p+\gamma}} \to 0 \end{align} $$

when $\varepsilon \to 0$ .

In view of (1.5), the right hand side of (1.4) with $u=\tilde {u}_\varepsilon $ is bounded by $\varepsilon ^{-p}$ . Thus, checking the proof of Proposition 5.1 in [Reference Tolksdorf22], and applying Proposition 2.6 we get

$$ \begin{align*}\|\nabla \tilde{u}_\varepsilon\|_{L^{\infty}(G^{\rho\varepsilon} \cap B_\sigma(a_j))}^p \leq C\sigma^{-2}\varepsilon^{-p} \int_G(1+|\nabla \tilde{u}_\varepsilon|^p) \leq C\varepsilon^{-p}. \end{align*} $$

Therefore, by the Hölder inequality, we obtain that for any $\gamma>0$ ,

(5.5) $$ \begin{align}\begin{split}&\displaystyle\int_{G^{\rho\varepsilon}\cap B(a_j,\sigma)} (1-|\tilde{u}_\varepsilon|^2)^{\alpha} |\nabla \tilde{u}_\varepsilon|^2 \\&\quad\leq C\varepsilon^{p-2}\displaystyle\int_{G^{\rho\varepsilon}\cap B(a_j,\sigma)} (1-|\tilde{u}_\varepsilon|^2)^{\alpha} |\nabla \tilde{u}_\varepsilon|^p \\&\quad\leq C\varepsilon^{p-2} \left(\displaystyle\int_{G^{\rho\varepsilon}\cap B(a_j,\sigma)} |\nabla \tilde{u}_\varepsilon|^{p+\gamma}\right)^{\frac{p}{p+\gamma}}\\&\qquad \cdot\left(\displaystyle\int_{G^{\rho\varepsilon}\cap B(a_j,\sigma)} (1-|\tilde{u}_\varepsilon|^2)^{(p+\gamma)\alpha/\gamma}\right)^{\frac{\gamma}{p+\gamma}}. \end{split}\end{align} $$

We set

$$ \begin{align*}\gamma_0=2-p. \end{align*} $$

Then for any $\alpha \geq 2-p$ ,

(5.6) $$ \begin{align} \frac{(p+\gamma_0)\alpha}{\gamma_0} \geq 2. \end{align} $$

In addition, $\gamma _0 \in (0,pt)$ since p is sufficiently close to $2$ . Here, t is the constant in Proposition 2.10.

According to Proposition 2.10, and by Proposition 2.6, it follows that

$$ \begin{align*}\left(\int_{G^{\rho\varepsilon}\cap B(a_j,\sigma)} |\nabla \tilde{u}_\varepsilon|^{p+\gamma_0}\right)^{\frac{p}{p+\gamma_0}} \leq C\int_G(|\nabla \tilde{u}_\varepsilon|^2+1)^{p/2} \leq C. \end{align*} $$

Inserting this result into (5.5) with $\gamma =\gamma _0$ yields

(5.7) $$ \begin{align}\begin{split}&\displaystyle\int_{G^{\rho\varepsilon}\cap B(a_j,\sigma)} (1-|u_\varepsilon|^2)^{\alpha} |\nabla \tilde{u}_\varepsilon|^2\\&\quad\leq C\varepsilon^{p-2} \displaystyle \left(\int_{G^{\rho\varepsilon}\cap B(a_j,\sigma)} (1-|\tilde{u}_\varepsilon|^2)^{(p+\gamma_0)\alpha/\gamma_0} \right)^{\frac{\gamma_0}{p+\gamma_0}}.\end{split}\end{align} $$

Using (5.6), Proposition 2.8, we can deduce from (5.7) that

(5.8) $$ \begin{align} \int_{G^{\rho\varepsilon}\cap B(a_j,\sigma)} (1-|\tilde{u}_\varepsilon|^2)^{\alpha} |\nabla \tilde{u}_\varepsilon|^2 \leq C\varepsilon^{p-2+\frac{2\gamma_0}{p+\gamma_0}}=C. \end{align} $$

Next, using

$$ \begin{align*}\mathop{\mathrm{sup}}\limits_{G\setminus \cup_jB(a_j,\sigma)}|\nabla \tilde{u}_\varepsilon| \leq C \end{align*} $$

and

$$ \begin{align*}\mathop{\mathrm{sup}}\limits_{G\setminus \cup_jB(a_j,\sigma)}(1-|\tilde{u}_\varepsilon|^2) \to 0 \end{align*} $$

which are implied by (1.11), we derive that when $\varepsilon \to 0$ ,

(5.9) $$ \begin{align}\begin{split}&\displaystyle\int_{G^{\rho\varepsilon}\setminus \cup_jB(a_j,\sigma)}(1-|\tilde{u}_\varepsilon|^2)^{\alpha} |\nabla \tilde{u}_\varepsilon|^2 \\&\quad\leq \displaystyle\left(\mathop{\mathrm{sup}}\limits_{G\setminus \cup_jB(a_j,\sigma)}(1-|\tilde{u}_\varepsilon|^2)^{\alpha}\right) \left(\mathop{\mathrm{sup}}\limits_{G\setminus \cup_jB(a_j,\sigma)}|\nabla \tilde{u}_\varepsilon|^2\right) |G\setminus \cup_jB_\sigma(a_j)|\\&\quad \to 0. \end{split} \end{align} $$

Combining (5.4), (5.8) with (5.9), we obtain that $(1-|\tilde {u}_\varepsilon |^2)^{\alpha } |\nabla \tilde {u}_\varepsilon |^2$ is bounded in $L^1(G)$ , and hence

$$ \begin{align*}\lim_{\varepsilon_k \to 0}(1-|\tilde{u}_{\varepsilon_k}|^2)^{\alpha} |\nabla \tilde{u}_{\varepsilon_k}|^2 =\omega_4, \quad \mbox{weakly star in} \quad C(\overline{G}), \end{align*} $$

where $\omega _4$ is a Radon measure. In addition, (5.9) implies $supp(\omega _4) \subset \{a_j\}_{j=1}^N$ . Thus, there exists constants $M_j \geq 0$ such that

$$ \begin{align*}\omega_4=\sum_{j=1}^N M_j\delta_{a_j}. \end{align*} $$

By (5.4), we see that $M_j=0$ when $a_j \in \partial G$ .

For the other $a_j$ which are contained in G, using (2.2) instead of Proposition 2.2 in the proof of $L_j>0$ , we also get $M_j>0$ . Equation (1.14) is proved.

Proof of (1.13).

By Proposition 2.8, $\frac {(1-|\tilde {u}_\varepsilon |^2)^2}{\varepsilon ^2}$ is bounded in $L^1(G)$ . Thus, there exist a subsequence $\varepsilon _k$ of $\varepsilon $ and a Radon measure $\omega _5$ , such that

$$ \begin{align*}\lim_{k \to 0}\frac{(1-|\tilde{u}_{\varepsilon_k}|^2)^2}{\varepsilon_k^2} =\omega_5, \quad \mbox{weakly star in}\quad C(\overline{G}). \end{align*} $$

In addition, according to Proposition 2.11,

$$ \begin{align*}\frac{1}{\varepsilon_k^2}\int_{G \setminus \cup_j B_\sigma(a_j)} (1-|\tilde{u}_{\varepsilon_k}|^2)^2 \leq C\varepsilon_k^{2(p-1)} \to 0 \end{align*} $$

when $\varepsilon _k \to 0$ . Therefore, we can see that $supp(\omega _5) \subset \{a_j\}_{j=1}^N$ , and hence

$$ \begin{align*}\omega_5=\sum_{j=1}^N K_j\delta_{a_j}, \end{align*} $$

where $K_j \geq 0$ .

We claim $K_j>0$ for each j. In fact, there exists $x_j^\varepsilon $ which is the center of the bad disc tends to $a_j$ when $\varepsilon \to 0$ . Recalling the definition of the bad disc in Section 2, we have

$$ \begin{align*}\frac{1}{\varepsilon^2}\int_{B(x_j^\varepsilon,h\varepsilon)}(1-|\tilde{u}_\varepsilon|^2)^2 \geq \mu>0. \end{align*} $$

for each j. This implies $K_j>0$ (and hence $supp(\omega _5) = \{a_j\}_{j=1}^N$ ). Equation (1.13) is proved.

6 Proof of Theorem 1.4

Step 1. First we claim

(6.1) $$ \begin{align} |u| \leq 1 \quad a.e. \ on \ \mathbb{R}^2. \end{align} $$

For convenience, sometimes we denote $B_R(0)$ by $B_R$ .

From (1.17), it follows that

$$ \begin{align*} 0 & =\lim_{R \to \infty} \int_{B_{2R}\setminus B_R} |\nabla u|^p dx \\ & =\lim_{R \to \infty} \int_R^{2R}\left[r\int_{\partial B_r} |\nabla u|^p d\xi\right] \frac{dr}{r} \\ & \geq \lim_{R \to \infty} \inf_{r \in [R,2R]}\left[r\int_{\partial B_r} |\nabla u|^p d\xi\right] \cdot (\log 2). \end{align*} $$

Therefore, we can find a subsequence $R_k$ of R such that

(6.2) $$ \begin{align} \lim_{R_k \to \infty}R_k\int_{\partial B_{R_k}(0)}|\nabla u|^pd\xi=0. \end{align} $$

When $p \in (1,2)$ , the Sobolev inequality implies $u \in L^{\frac {2p}{2-p}}(\mathbb {R}^2)$ . By the same proof of (6.2), there also holds that

(6.3) $$ \begin{align} \lim_{R_k \to \infty}R_k\int_{\partial B_{R_k}(0)}|u|^{\frac{2p}{2-p}}d\xi=0. \end{align} $$

Here, $R_k$ is also a subsequence of R.

Set $\Phi =u-u\min \{1,|u|\}/|u|$ and $B_+=\{x \in \mathbb {R}^2; |u(x)|>1\}$ , then

$$ \begin{align*}\left\{\!\begin{array}{ll}\nabla \Phi=\nabla u-|u|^{-1}\nabla u+(u\cdot\nabla u)u/|u|^3, \quad &on \ B_+;\\[3mm]\nabla \Phi=0 &on \ \mathbb{R}^2 \setminus B_+. \end{array} \right. \end{align*} $$

Multiplying (1.16) by $\Phi $ and integrating on $B_{R_k}$ and then letting $R_k \to \infty $ , we get

(6.4) $$ \begin{align} \begin{array}{ll} &-\displaystyle\lim_{R_k \to \infty}\int_{\partial B_{R_k}(0)} u|\nabla u|^{p-2}\partial_{\nu}ud\xi\\[3mm] &+\displaystyle\lim_{R_k \to \infty}\int_{\partial B_{R_k}(0)} \frac{u}{|u|}\min\{1,|u|\}|\nabla u|^{p-2}\partial_{\nu}u d\xi\\[3mm] &+\displaystyle\int_{B_+}(1-1/|u|)|\nabla u|^p +\int_{B_+}|\nabla u|^{p-2}(u \cdot \nabla u)^2/|u|^3\\[3mm] &+\displaystyle\int_{B_+}|u|(|u|+1)(|u|-1)^2=0. \end{array} \end{align} $$

When $R_k \to \infty $ , by the Hölder inequality and (6.2) and (6.3), there holds

(6.5) $$ \begin{align} \begin{split}&\displaystyle \int_{\partial B_{R_k}} |u||\nabla u|^{p-1} d\xi\\&\quad\leq \displaystyle R_k^{-\frac{1}{2}} \left(R_k\int_{\partial B_{R_k}}|\nabla u|^pd\xi\right)^{1-\frac{1}{p}} \left(R_k\int_{\partial B_{R_k}}|u|^{\frac{2p}{2-p}}d\xi\right)^{\frac{2-p}{2p}} |\partial B_{R_k}|^{\frac{1}{2}}\\&\quad\to 0, \end{split}\end{align} $$

which implies both the first and the second terms of the left hand side of (6.4) are equal to zero. This shows $|B_+|=0$ and hence (6.1) is proved when $p \in (1.2)$ .

When $p>2$ , set $\Phi :=(|u|-1)_+$ . Then,

$$ \begin{align*}\left\{\!\begin{array}{l}\nabla\Phi=0,\quad on \quad \mathbb{R}^2\setminus B_+;\\[3mm]\nabla\Phi=\frac{u \cdot \nabla u}{|u|},\quad on \quad B_+. \end{array}\right. \end{align*} $$

Obviously, (1.17) implies

(6.6) $$ \begin{align} \|\nabla \Phi\|_{L^p(\mathbb{R}^2)}<\infty. \end{align} $$

Let $\zeta \in C^{\infty }(\mathbb {R}^2,[0,1])$ be a cut-off function satisfying $\zeta (y)=1$ for $|y|\leq 1$ , and $\zeta (y)=0$ for $|y|\geq 2$ . Set $\zeta _t(y)=\zeta (\frac {y}{t})$ . Multiply (1.16) by $\xi $ , where

$$ \begin{align*}\left\{\!\begin{array}{l} \xi=0,\quad on \quad \mathbb{R}^2\setminus B_+;\\[3mm]\xi=\frac{u}{|u|}\zeta_t,\quad on \quad B_+. \end{array}\right. \end{align*} $$

Then,

$$ \begin{align*}\int_{B_+}|\nabla u|^{p-2}\nabla u\nabla(\frac{u}{|u|}\zeta_t) =-\int_{B_+}|u|(1+|u|)\Phi\zeta_t. \end{align*} $$

By calculating the left hand side, we can obtain that

(6.7) $$ \begin{align} \begin{split}&\displaystyle\int_{B_+}|u|^{-1}|\nabla u|^p\zeta_t -\int_{B_+}|u|^{-3}|\nabla u|^{p-2}(u \cdot \nabla u)^2\zeta_t\\&\quad+\displaystyle\int_{B_+}|u|(1+|u|)\Phi\zeta_t +\int_{B_+}|\nabla u|^{p-2}\nabla \Phi\nabla\zeta_t=0. \end{split} \end{align} $$

In view of $|\nabla u|^2 \geq (u \cdot \nabla u)^2/|u|^2$ , the first and the second terms in the left hand side of (6.7) is nonnegative. Therefore, using (1.17) and (6.6), we can deduce that

$$ \begin{align*}&\displaystyle\int_{B_+}|u|(1+|u|)\Phi\zeta_t \leq |\int_{B_+}|\nabla u|^{p-2}\nabla \Phi\nabla\zeta_t|\\&\quad\leq \displaystyle\frac{1}{t}\int_{{B_+}\cap\{y;t\leq|y|\leq2t\}} |\nabla u|^{p-2}|\nabla \Phi| \leq \frac{1}{t}\|\nabla u\|_p^{p-2}\|\nabla\Phi\|_p t^{2/p}.\end{align*} $$

When $t \to \infty $ , the right hand side converges to zero by virtue of $p>2$ . And hence so is the left hand side. This means $|B_+|=0$ or $\Phi =0$ a.e. on $\mathbb {R}^2$ . Thus, (6.1) is proved when $p>2$ .

Step 2. Multiplying (1.16) by u and integrating on $B_R(0)$ yield

(6.8) $$ \begin{align} \int_{B_R(0)}|u|^2(1-|u|^2) =\int_{B_R(0)} |\nabla u|^p - \int_{\partial B_R(0)}u|\nabla u|^{p-2}\partial_{\nu}ud\xi. \end{align} $$

When $p \in (1,2)$ , we use (6.5) and (1.17) to get

(6.9) $$ \begin{align} \int_{\mathbb{R}^2}|u|^2(1-|u|^2) =\int_{\mathbb{R}^2} |\nabla u|^p <\infty. \end{align} $$

When $p>2$ , by (6.1) and (6.2), there holds

$$ \begin{align*}\left\vert\int_{\partial B_{R_k}}u|\nabla u|^{p-2}\partial_{\nu}ud\xi\right\vert \leq CR_k^{\frac{1}{p}-1}\left(R_k\int_{\partial B_{R_k}}|\nabla u|^pd\xi\right)^{1-\frac{1}{p}} |\partial B_{R_k}|^{\frac{1}{p}} \to 0 \end{align*} $$

when $R_k \to \infty $ . From (6.8) with $R=R_k$ , we also deduce (6.9).

Multiply (1.16) by $(x \cdot \nabla u)$ and integrate on $B_R(0)$ . Integrating by parts, we can see the left hand side

$$ \begin{align*}&-\displaystyle\int_{B_R}{\textrm{div}}(|\nabla u|^{p-2}\nabla u)(x \cdot \nabla u)\\&\quad=-R\displaystyle\int_{\partial B_R}|\nabla u|^{p-2}|\partial_{\nu}u|^2d\xi +\int_{B_R}|\nabla u|^p+\frac{1}{p}\int_{B_R} x\cdot \nabla (|\nabla u|^p)\\&\quad=-R\displaystyle\int_{\partial B_R}|\nabla u|^{p-2}|\partial_{\nu}u|^2d\xi +(1-\frac{2}{p})\int_{B_R}|\nabla u|^p+\frac{R}{p}\int_{\partial B_R} |\nabla u|^pd\xi.\end{align*} $$

Therefore,

(6.10) $$ \begin{align} \begin{split}&\displaystyle\left(\frac{2}{p}-1\right)\int_{B_R}|\nabla u|^p +\frac{1}{2}\int_{B_R}(1-|u|^2)^2\\&\quad=\displaystyle\frac{R}{4}\int_{\partial B_R}(1-|u|^2)^2 d\xi -R\int_{\partial B_R}|\nabla u|^{p-2}|\partial_{\nu}u|^2d\xi\\&\qquad +\displaystyle\frac{R}{p}\int_{\partial B_R} |\nabla u|^pd\xi, \end{split} \end{align} $$

and

(6.11) $$ \begin{align} \begin{split}&\displaystyle \left(1-\frac{2}{p}\right)\int_{B_R}|\nabla u|^p +\int_{B_R}(|u|^2-\frac{1}{2}|u|^4)\\&\quad=\displaystyle\frac{R}{2}\int_{\partial B_R}(|u|^2-\frac{1}{2}|u|^4) d\xi +R\int_{\partial B_R}|\nabla u|^{p-2}|\partial_{\nu}u|^2d\xi\\&\qquad -\displaystyle\frac{R}{p}\int_{\partial B_R} |\nabla u|^pd\xi. \end{split} \end{align} $$

Step 3. We claim that there exists $R_0>0$ such that either $|u|<\frac {1}{4}$ or $|u|>T$ on $\mathbb {R}^2 \setminus B_{R_0}$ , where

$$ \begin{align*}T:=\left \{\! \begin{array}{ll} 3/4, \quad & when \ p \in (1,2);\\ \sqrt{p/(3p-4)}, \quad & when \ p>2. \end{array}\right. \end{align*} $$

In fact, the following set is bounded

$$ \begin{align*}S:=\left\{x \in \mathbb{R}^2; \frac{1}{4} \leq |u(x)| \leq T\right\}. \end{align*} $$

Otherwise, there exists a sequence $x_m \to \infty $ (when $m \to \infty $ ) such that $\frac {1}{4} \leq |u(x_m)| \leq T$ . In view of (1.17) and (6.1), by the Tolksdorf theorem (cf. [Reference Tolksdorf22]), we have $|\nabla u(x)| \leq C$ for each $x \in \mathbb {R}^2$ . Therefore, for $\sigma \in (0,1-T)$ , we can find $\delta \in (0,1)$ which is independent of m such that

$$ \begin{align*}\frac{1}{8} \leq |u(x)| \leq T+\sigma, \quad when \ x \in B(x_m,\delta). \end{align*} $$

Therefore,

(6.12) $$ \begin{align} \int_{B(x_m,\delta)}|u|^2(1-|u|^2) \geq \left(\frac{1}{8}\right)^2 (1-(T+\sigma)^2)\pi\delta^2:=M_*. \end{align} $$

Clearly, $M_*$ is independent of m. On the other hand, by (6.9), we can find $R_*>0$ such that

(6.13) $$ \begin{align} \int_{|x|>R_*}|u|^2(1-|u|^2)<M_*. \end{align} $$

Noting $B(x_m,\delta ) \subset \mathbb {R}^2 \setminus B_{R_*}$ for sufficiently large m, (6.13) contradicts with (6.12). This implies S is bounded. Namely, there exists $R_0>0$ such that $S \subset B_{R_0}$ . Since $\mathbb {R}^2 \setminus B_{R_0}$ is connected and u is continuous, then either $|u|<\frac {1}{4}$ or $|u|>T$ on $\mathbb {R}^2 \setminus B_{R_0}$ in view of the definition of S.

Step 4. When $p \in (1,2)$ , we will prove Theorem 1.4.

When $|u|<\frac {1}{4}$ on $\mathbb {R}^2 \setminus B_{R_0}$ , (6.9) and (6.1) lead to

(6.14) $$ \begin{align} u \in L^2(\mathbb{R}^2) \cap L^4(\mathbb{R}^2). \end{align} $$

This implies

$$ \begin{align*}\frac{R_k}{2}\int_{\partial B_{R_k}}(|u|^2-\frac{1}{2}|u|^4) d\xi \to 0 \end{align*} $$

when $R_k \to \infty $ . Inserting this and (6.2) into (6.11) with $R=R_k$ , we get

(6.15) $$ \begin{align} \left(1-\frac{2}{p}\right)\int_{\mathbb{R}^2}|\nabla u|^p +\int_{\mathbb{R}^2}(|u|^2-\frac{1}{2}|u|^4)=0. \end{align} $$

Inserting (6.9) into (6.15) yields

$$ \begin{align*}\left(\frac{3}{2}-\frac{2}{p}\right)\int_{\mathbb{R}^2}|u|^4=\left(2-\frac{2}{p}\right)\int_{\mathbb{R}^2}|u|^2 \geq \left(2-\frac{2}{p}\right)\int_{\mathbb{R}^2}|u|^4. \end{align*} $$

This implies $|u| \equiv 0$ .

When $|u|>3/4$ on $\mathbb {R}^2 \setminus B_{R_0}$ , (6.9) and (6.1) lead to

(6.16) $$ \begin{align} 1-|u|^2 \in L^2(\mathbb{R}^2). \end{align} $$

This implies

$$ \begin{align*}\frac{R_k}{4}\int_{\partial B_{R_k}}(1-|u|^2)^2 d\xi \to 0 \end{align*} $$

when $R_k \to \infty $ . Inserting this and (6.2) into (6.10), we get

(6.17) $$ \begin{align} \left(\frac{2}{p}-1\right)\int_{\mathbb{R}^2}|\nabla u|^p +\frac{1}{2}\int_{\mathbb{R}^2}(1-|u|^2)^2 =0. \end{align} $$

In view of $p \in (1,2)$ , (6.17) implies $|\nabla u|=1-|u|^2=0$ on $\mathbb {R}^2$ . Therefore, $u \equiv C$ with $|C|=1$ .

Step 5. When $p>2$ , we will prove Theorem 1.4.

When $|u|<\frac {1}{4}$ on $\mathbb {R}^2 \setminus B_{R_0}$ , by (6.1) and (6.15) we get $u \equiv 0$ .

When $|u|>T$ on $\mathbb {R}^2 \setminus B_{R_0}$ , (6.17) still holds. Combining with (6.9) leads to

$$ \begin{align*}\left(2-\frac{4}{p}\right)\int_{\mathbb{R}^2}|u|^2(1-|u|^2)=\int_{\mathbb{R}^2}(1-|u|^2)^2. \end{align*} $$

Namely,

$$ \begin{align*}\int_{\mathbb{R}^2}(1-|u|^2)[(3-\frac{4}{p})|u|^2-1]=0. \end{align*} $$

By (6.1) and $|u|>T=\sqrt {p/(3p-4)}$ , we have $|u| \equiv 1$ on $\mathbb {R}^2$ . Inserting this into (6.9) we see that $u \equiv C$ with $|C|=1$ .

Acknowledgements

The author thanks the unknown referees very much for useful suggestions. Those suggestions have greatly improved this article. This research was supported by NNSF (11871278) of China.

References

Almog, Y., Berlyand, L., Golovaty, D., and Shafrir, I., Global minimizers for a $p$ -Ginzburg-Landau-type energy in ${\mathbb{R}}^2$ , J. Funct. Anal. 256 (2009), 22682290.CrossRefGoogle Scholar
Almog, Y., Berlyand, L., Golovaty, D., Shafrir, I., Radially symmetric minimizers for a p-Ginzburg-Landau type energy in ${\mathbb{R}}^2$ , Calc. Var. Partial Differ. Equat. 42 (2011), 517546.Google Scholar
Bethuel, F., Brezis, H., Helein, F., Ginzburg-Landau Vortices, Birkhauser, Boston, 1994.Google Scholar
Brezis, H., Coron, J.-M., and Lieb, E., Harmonic maps with defects , Commun. Math. Phys., 107 (1986), 649705.CrossRefGoogle Scholar
Brezis, H., Merle, F., and Riviere, T., Quantization effects for $-\Delta \mathrm{u}=u\left(1-{\left|u\right|}^2\right)$ in ${\mathbb{R}}^2$ , Arch. Rational Mech. Anal. 126 (1994), 3558.CrossRefGoogle Scholar
Chen, Y., Hong, M., and Hungerbuhler, N., Heat flow of p-harmonic maps with values into spheres , Math. Z. 215 (1994), 2535.CrossRefGoogle Scholar
Chong, T., Cheng, B., Dong, Y., and Zhang, W., Liouville theorems for critical points of the p-Ginzburg-Landau type functional, arXiv.1610.06301.Google Scholar
Comte, M. and Mironescu, P., Some properties of the Ginzburg-Landau minimizers , C. R. Acad. Sci. Paris 320 (1995), 13231326.Google Scholar
Comte, M. and Mironescu, P., The behavior of a Ginzburg-Landau minimizer near its zeros , Calc. Var. Partial Differ. Equat. 4 (1996), 323340.CrossRefGoogle Scholar
Ding, S., Liu, Z., and Yu, W., A variational problem related to the Ginzburg-Landau model of superconductivity with normal impurity inclusion , SIAM J. Math. Anal. 29 (1998), 4868.CrossRefGoogle Scholar
Giaquinta, M., Multiply Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. Math. Stud., 105, Princeton University Press, Princeton, 1983.Google Scholar
Giaquinta, M. and Modica, G., Regularity results for some classes of higher order nonlinear elliptic systems , J. Reine Angew. Math. 311/312 (1979), 145169.Google Scholar
Giaquinta, M. and Modica, G., Remarks on the regularity of the minimizers of certain degenerate functionals , Manus. Math. 57 (1986), 5599.CrossRefGoogle Scholar
Hardt, R. and Lin, F., Singularities for $p$ -energy minimizing unit vector fields on planner domains , Calc. Var. Partial Differ. Equat. 3 (1995), 311341.CrossRefGoogle Scholar
Hong, M., Asymptotic behavior for minimizers of a Ginzburg-Landau type functional in higher dimensions associated with n-harmonic maps , Adv. Differ. Equat. 1 (1996), 611634.Google Scholar
Lei, Y., Asymptotic estimation for a p-Ginzburg-Landau type minimizer in higher dimensions , Pacific J. Math. 226 (2006), 103135.CrossRefGoogle Scholar
Lei, Y., Asymptotic estimations for a p-Ginzburg-Landau type minimizer , Math. Nachr. 280 (2007), 15591576.CrossRefGoogle Scholar
Lei, Y., Singularity analysis of a p-Ginzburg-Landau type minimizer , Bull. Sci. Math. 134 (2010), 97115.CrossRefGoogle Scholar
Lei, Y. and Xu, Y., Global analysis for a p-Ginzburg-Landau energy with radial structure, J. Math, Anal. Appl. 372 (2010), 538548.CrossRefGoogle Scholar
Mironescu, P., Une estimation pour les minimiseurs de l’energie de Ginzburg-Landau , C. R. Acad. Sci. Paris 319 (1994), 941943.Google Scholar
Struwe, M., On the asymptotic behaviour of minimizers of the Ginzburg-Landau model in 2 dimensions , Differ. Integral Equat. 7 (1994), 16131624.Google Scholar
Tolksdorf, P., Everywhere regularity for some quasilinear systems with a lack of ellipticity , Ann. Math. Pura. Appl. 134 (1983), 241266.CrossRefGoogle Scholar
Uhlenbeck, K., Regularity for a class of nonlinear elliptic systems , Acta Math. 138 (1977), 219240.CrossRefGoogle Scholar
Wang, C., Limits of solutions to the generalized Ginzburg-Landau functional , Comm. Partial Differ. Equat. 27 (2002), 877906.Google Scholar