Hostname: page-component-6bf8c574d5-h6jzd Total loading time: 0.001 Render date: 2025-02-23T10:03:31.990Z Has data issue: false hasContentIssue false

A proof-irrelevant model of Martin-Löf's logical framework

Published online by Cambridge University Press:  17 January 2003

DANIEL FRIDLENDER
Affiliation:
FaMAF, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina Email: fridlend@hal.famaf.unc.edu.ar URL: www.cs.famaf.unc.edu.ar/fridlend/
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We extend the proof-irrelevant model defined in Smith (1988) to the whole of Martin-Löf's logical framework. The main difference here is the existence of a type whose objects themselves represent types rather than proof-objects. This means that the model must now be able to distinguish between objects with different degree of relevance: those that denote proofs are irrelevant whereas those that denote types are not. In fact a whole hierarchy of relevance exists.

Another difference is the higher level of detail in the formulation of the formal theory, such as the explicit manipulation of contexts and substitutions. This demands an equally detailed definition of the model, including interpreting contexts and substitutions.

We are thus led to a whole reformulation of the proof-irrelevant model. We present a model that is built up from an arbitrary model of the untyped lambda calculus. We also show how to extend it when the logical framework itself is enlarged with inductive definitions. In doing so, a variant of Church numerals is introduced.

As in Smith (1988), the model can only be defined in the absence of universes, and it is useful to obtain an elementary proof of consistency and to prove the independence of Peano's fourth axiom.

Type
Research Article
Copyright
2002 Cambridge University Press