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Ciudad Universitaria, 5000 Córdoba, Argentina
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We extend the proof-irrelevant model defined in Smith (1988) to the whole of Martin-Löf’s

logical framework. The main difference here is the existence of a type whose objects

themselves represent types rather than proof-objects. This means that the model must now

be able to distinguish between objects with different degree of relevance: those that denote

proofs are irrelevant whereas those that denote types are not. In fact a whole hierarchy of

relevance exists.

Another difference is the higher level of detail in the formulation of the formal theory, such

as the explicit manipulation of contexts and substitutions. This demands an equally detailed

definition of the model, including interpreting contexts and substitutions.

We are thus led to a whole reformulation of the proof-irrelevant model. We present a model

that is built up from an arbitrary model of the untyped lambda calculus. We also show how

to extend it when the logical framework itself is enlarged with inductive definitions. In doing

so, a variant of Church numerals is introduced.

As in Smith (1988), the model can only be defined in the absence of universes, and it is

useful to obtain an elementary proof of consistency and to prove the independence of

Peano’s fourth axiom.

1. Introduction

Type theory, as studied here, is a system invented by Martin-Löf for formalising construc-

tive mathematics. Different stages in the development of the system gave rise to several

formulations of type theory, see, for instance, Martin-Löf (1975), Martin-Löf (1984),

Nordström et al. (1990) and Martin-Löf (1992).

For the presentations of type theory in Martin-Löf (1975) and Martin-Löf (1984), Smith

defined a model in Smith (1988) in which types are interpreted as truth values, and in

which all the instances of a dependent type receive the same interpretation. The latter

means that proof-objects play no role in the interpretation of the types in which they
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occur. In other words, they are irrelevant to the interpretation of types. For that reason,

this model is sometimes said to be proof-irrelevant.

The importance of proof-irrelevant models is that they often make it evident that

a given proposition is not provable in type theory. In Smith (1988) they are used, for

instance, to give an elementary proof that Peano’s fourth axiom is not provable, and

hence, to give an elementary proof of consistency of type theory.

As mentioned in Smith (1988), the main limitation of proof-irrelevant models is that

they cannot be defined in the presence of universes, which make Peano’s fourth axiom

provable.

The proof-irrelevant model in Smith (1988) is defined in a direct way by the equations

[[N]] = true [[∀x ∈ A. B]] = [[A]]⇒ [[B]]

[[⊥]] = false [[∃x ∈ A. B]] = [[A]] ∧ [[B]]

[[A1 ∨ A2]] = [[A1]] ∨ [[A2]] [[a =A b]] = [[A]],

where N denotes the type of natural numbers and ⊥ the empty type. The variable x may

occur free in B, but since variables denote proof-objects, they will eventually be ignored

by the interpretation, as in the case of equality.

Intuitively, dependent types having inhabited instances are interpreted as true. For

example, x =N y is interpreted as true because the instance 0 =N 0 is inhabited. The

surprising consequence of this model is that it is impossible to have a dependent type B

such that both B and its negation (defined in terms of ∀ and ⊥) have inhabited instances.

Therefore, since x =N y has an inhabited instance, its negation does not, which means

that Peano’s fourth axiom is not provable.

In more recent formulations of type theory (Nordström et al. 1990) Martin-Löf put

forward a logical framework in which there is a type called Set whose objects represent

types. This implies a complete revision of the interpretation above, in which free variables

were ignored. Variables for objects of type Set do not represent proofs, they represent

types that are relevant and will not be ignored. Types like Set, whose objects are relevant,

and like N, whose objects are not, can be combined to generate a variety of types whose

objects will have different degrees of relevance.

In Martin-Löf (1992), Martin-Löf gave a very precise formulation of the logical frame-

work, the theory of types with explicit substitution, which was fully described in Tasistro

(1997). Contexts and substitutions, which were treated informally in the previous formu-

lations, are now defined by the rules of the formal system. Substitutions are explicit rather

than metaoperations on the expressions. Section 2 is a summary of this system.

This is the formulation of the logical framework for which we define the proof-irrelevant

model here. The high level of detail of the formulation of the system makes our proofs

tedious but it also makes it possible to ensure the correctness of the model without

relying on informal assumptions about the formal system. A merit of our model is that it

is defined for the exact formulation in Martin-Löf (1992) without making compromises

such as replacing abstraction à la Curry by abstraction à la Church, and that proof-

irrelevance is achieved in a non-trivial and rather subtle way (see Section 5 for further

discussion of this).

In order to define the proof-irrelevant model, Section 3 first presents an abstract
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construction in terms of an arbitrary extensional model of the untyped lambda calculus.

The desired model is then obtained by specialising this construction.

The model thus defined can be mechanically extended to interpret inductive definitions

in the style of Dybjer (Dybjer 1994). In doing so, a variant of Church numerals is used to

validate in the model the equality rules with which such inductive definitions are equipped.

This is illustrated through examples in Section 4.

In the literature, models of type theory are often defined by interpreting only well-typed

expressions. This is obtained by requiring the model to have a rather elaborate structure,

sometimes as complex as that of type theory itself. See, for instance, Hofmann (1997) and

Dybjer (1996), and Martin-Löf’s Tarski-style semantics of type theory (Gaspes 1997). In

contrast to this, the structure of our model is simple, each syntactic category is interpreted

separately and the interpretation is defined for all the expressions, even those that are ill

typed. Miquel’s model (Miquel 2000) has this in common with our model but, aiming as

it does to interpret impredicativity, universes, intersection types and subtyping, it involves

complex constructions in terms of coherence spaces, stable functions and inaccessible

cardinals. In contrast to this, our model is built elementarily from the notion of an

extensional model of the lambda calculus.

2. Type theory

We give a concise presentation of the formulation of type theory of Martin-Löf (1992).

It consists of a large number of forms of judgment and inference rules. The former are

displayed in Figure 1; the latter, in Figures 4 to 13. See Tasistro (1997) for complete

explanations of the intuitive meaning of the forms of judgment, and for justifications of

the rules of inference.

Γ context Γ is a context

Γ � ∆ Γ is a subcontext of ∆

α type [Γ] α is a type under Γ

α1=α2 type [Γ] α1 and α2 are equal types under Γ

a : α [Γ] a is an object of type α under Γ

a1=a2 : α [Γ] a1 and a2 are equal objects of type α under Γ

β : α→ type [Γ] β is a family of types over α under Γ

β1=β2 : α→ type [Γ] β1 and β2 are equal families of types over α under Γ

δ : Γ→ ∆ δ is a substitution for ∆ under Γ

δ1=δ2 : Γ→ ∆ δ1 and δ2 are equal substitutions for ∆ under Γ

Fig. 1. Forms of judgment

The abbreviations that we use for the forms of judgment are listed in Figure 1. A

context Γ declares variables that can then be used when making judgments under Γ.

A substitution δ for ∆ under Γ assigns well-typed objects under Γ to the variables

declared in ∆. A family of types β over α is a type indexed by the objects of α.
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There are expressions of five different syntactic categories: C, T, O, F and S. As is

customary, we call expressions in those categories precontext, pretype, preobject, prefamily

or presubstitution, respectively, unless there is a derivation of the corresponding judgment

proving that the expression in question is indeed a context, type, object, family of types

or substitution. Figure 2 establishes the convention of names for meta-variables ranging

over expressions in each of the syntactic categories. In addition to that, x, y, x1, x2, . . . ,

range over an infinite set V of variables, though in Section 4, for convenience, we name

variables more liberally.

precontexts: Γ,∆,Θ,Φ ∈ C
pretypes: α, α1, α2 ∈ T
preobjects: a, a1, a2, f, g ∈ O
prefamilies: β, β1, β2 ∈ F
presubstitutions: δ, δ1, δ2, γ, θ ∈ S

Fig. 2. Name conventions

Γ := () | (Γ, x : α)

α := Set | β a | α→ β | αδ
a := x | a1 a2 | [x]a | aδ
β := El | [x]α | βδ
δ := () | (δ, x=a) | δ1δ2

Fig. 3. Abstract syntax

Figure 3 describes the expressions by means of a grammar. Precontexts are sequences of

variable declarations. Prefamilies are expressions denoting functions that return pretypes.

They can be built up by abstracting a variable from a pretype ([x]α) or by substituting

in a prefamily (βδ). Pretypes can be obtained by applying a prefamily to a preobject

(β a), by forming the pretype of dependent functions (α→ β) or by substituting in a

pretype (αδ). Presubstitutions are built up from the empty substitution by extending with

assignments of preobjects to variables, and by composing with other presubstitutions

(δ1δ2). Preobjects are lambda terms with explicit substitutions. They are built up from

variables by application (a1 a2), abstraction ([x]a) and substitution (aδ).

In addition, there are a basic pretype Set and a basic prefamily El. The former denotes

the type whose objects are inductively defined sets. The latter denotes the following family

of types indexed by the objects of Set. For each set given as an object a in Set, El a is

the type whose objects are the elements of the set a. For example, the set N of natural

numbers will have type Set and every natural number will have type El N.

Observe that all prefamilies have arity 1 since El has arity 1 and in the prefamily [x]α, α is

a pretype. Notice also that substitution is not assumed as a meta-operation on expressions

but rather presubstitutions are explicit in the syntax and they are to be manipulated by

the rules of inference exclusively.

The symbol ‘→’ is being used in two very different ways. In Figure 3 it is used for

building pretypes. In Figure 1, however, it has exactly the same status as words like

context and type, it is only used for the sake of brevity. There are no such things as type,

α→ type or Γ→ ∆ in the abstract syntax.

In the pretype α→ β, β is a prefamily rather than a pretype. Intuitively, an object of

type α→ β will be a function f such that f a has type β a for every object a of type α. Such

an f is a dependent function, the type of its result depends on its argument. For example,

any object of type Set→ El is a dependent function, a function that, when applied to a

set, returns an element of that set. That is, a choice function.
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1 :
() context

2 :
Γ context α type [Γ]

(Γ, x : α) context
(x 6∈ Γ)

Fig. 4. Rules for contexts

1 :
Γ context
x : α [Γ]

(x : α ∈ Γ) 2 :
Γ � ∆ a : α [Γ]

a : α [∆]

3 :
α1=α2 type [Γ] a : α2 [Γ]

a : α1 [Γ]
4 :

a : α [∆] δ : Γ→ ∆

aδ : αδ [Γ]

5 :
f : α→ β [Γ] a : α [Γ]

f a : β a [Γ]
6 :

a : α1 [(Γ, x : α2)]

[x]a : α2 → [x]α1 [Γ]
(x 6∈ Γ)

Fig. 5. Rules for objects

1 :
Γ context

() : Γ→ Γ 2 :
δ : Γ→ ∆ a : αδ [Γ]

(δ, x=a) : Γ→ (∆, x : α)
(x 6∈ ∆)

3 :
θ : ∆→ Θ δ : Γ→ ∆

θδ : Γ→ Θ
4 :

δ : Γ→ ∆ Γ � Θ

δ : Θ→ ∆
5 :

δ : Γ→ ∆ Θ � ∆

δ : Γ→ Θ

Fig. 6. Rules for substitutions

1 :
Set type [()]

2 :
Γ � ∆ α type [Γ]

α type [∆]
3 :

α type [∆] δ : Γ→ ∆

αδ type [Γ]

4 :
β : α→ type [Γ] a : α [Γ]

β a type [Γ]
5 :

α type [Γ] β : α→ type [Γ]

α→ β type [Γ]

Fig. 7. Rules for types

1 :
El : Set→ type [()]

2 :
Γ � ∆ β : α→ type [Γ]

β : α→ type [∆]

3 :
α1=α2 type [Γ] β : α2 → type [Γ]

β : α1 → type [Γ]
4 :

β : α→ type [∆] δ : Γ→ ∆

βδ : αδ → type [Γ]

5 :
α1 type [(Γ, x : α2)]

[x]α1 : α2 → type [Γ]
(x 6∈ Γ)

Fig. 8. Rules for families

1 :
∆ context

() � ∆ 2 :
Γ � ∆

(Γ, x : α) � ∆
(x : α ∈ ∆, x 6∈ Γ)

Fig. 9. Rules for subcontexts
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1 :
Γ � ∆ a1=a2 : α [Γ]

a1=a2 : α [∆]
2 :

α1=α2 type [Γ] a1=a2 : α2 [Γ]

a1=a2 : α1 [Γ]

3 :
a1=a2 : α [∆] δ1=δ2 : Γ→ ∆

a1δ1=a2δ2 : αδ1 [Γ]

4 :
a : α [∆] δ : Γ→ ∆ γ : Φ→ Γ

(aδ)γ=a(δγ) : α(δγ) [Φ]
5 :

a : α [Γ]

a()=a : α [Γ]

6 :
δ : Γ→ ∆ a : αδ [Γ]

x(δ, x=a)=a : αδ [Γ]
(x 6∈ ∆) 7 :

f=g : α→ β [Γ] a1=a2 : α [Γ]

f a1=g a2 : β a1 [Γ]

8 :
f : α→ β [Γ] a : α [Γ] γ : Φ→ Γ

(f a)γ=(fγ) (aγ) : (β a)γ [Φ]

9 :
a : α1 [(Γ, x : α2)] γ : Φ→ Γ a′ : α2γ [Φ]

(([x]a)γ) a′=a(γ, x=a′) : α1(γ, x=a′) [Φ]
(x 6∈ Γ)

10 :
f x=g x : β x [(Γ, x : α)]

f=g : α→ β [Γ]
(x 6∈ Γ) reflexivity, symmetry and transitivity

Fig. 10. Rules for equal objects

1 :
δ1 : Γ→ () δ2 : Γ→ ()

δ1=δ2 : Γ→ ()
2 :

δ1=δ2 : Γ→ ∆ xδ1=xδ2 : αδ1 [Γ]

δ1=δ2 : Γ→ (∆, x : α)
(x 6∈ ∆)

3 :
δ1=δ2 : Γ→ ∆ Γ � Θ

δ1=δ2 : Θ→ ∆
4 :

δ1=δ2 : Γ→ ∆ Θ � ∆

δ1=δ2 : Γ→ Θ

5 :
θ1=θ2 : ∆→ Θ δ1=δ2 : Γ→ ∆

θ1δ1=θ2δ2 : Γ→ Θ

6 :
θ : ∆→ Θ δ : Γ→ ∆ γ : Φ→ Γ

(θδ)γ=θ(δγ) : Φ→ Θ

7 :
δ : Γ→ ∆

δ()=δ : Γ→ ∆
8 :

δ : Γ→ ∆
()δ=δ : Γ→ ∆

9 :
δ : Γ→ ∆ a : αδ [Γ] γ : Φ→ Γ

(δ, x=a)γ=(δγ, x=aγ) : Φ→ (∆, x : α)
(x 6∈ ∆)

10 :
δ : Γ→ ∆ a : αδ [Γ]

(δ, x=a)=δ : Γ→ ∆
(x 6∈ ∆) reflexivity, symmetry and transitivity

Fig. 11. Rules for equal substitutions
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1 :
Γ � ∆ α1=α2 type [Γ]

α1=α2 type [∆]
2 :

α1=α2 type [∆] δ1=δ2 : Γ→ ∆

α1δ1=α2δ2 type [Γ]

3 :
α type [∆] δ : Γ→ ∆ γ : Φ→ Γ

(αδ)γ=α(δγ) type [Φ]
4 :

α type [Γ]

α()=α type [Γ]

5 :
β1=β2 : α→ type [Γ] a1=a2 : α [Γ]

β1 a1=β2 a2 type [Γ]

6 :
β : α→ type [Γ] a : α [Γ] γ : Φ→ Γ

(β a)γ=(βγ) (aγ) type [Φ]

7 :
α1 type [(Γ, x : α2)] γ : Φ→ Γ a : α2γ [Φ]

(([x]α1)γ) a=α1(γ, x=a) type [Φ]
(x 6∈ Γ)

8 :
α1=α2 type [Γ] β1=β2 : α1 → type [Γ]

α1 → β1=α2 → β2 type [Γ]

9 :
α type [Γ] β : α→ type [Γ] γ : Φ→ Γ

(α→ β)γ=αγ → βγ type [Φ]

reflexivity, symmetry and transitivity

Fig. 12. Rules for equal types

1 :
Γ � ∆ β1=β2 : α→ type [Γ]

β1=β2 : α→ type [∆]

2 :
α1=α2 type [Γ] β1=β2 : α2 → type [Γ]

β1=β2 : α1 → type [Γ]

3 :
β1=β2 : α→ type [∆] δ1=δ2 : Γ→ ∆

β1δ1=β2δ2 : αδ1 → type [Γ]

4 :
β : α→ type [∆] δ : Γ→ ∆ γ : Φ→ Γ

(βδ)γ=β(δγ) : α(δγ)→ type [Φ]

5 :
β : α→ type [Γ]

β()=β : α→ type [Γ]
6 :

β1 x=β2 x type [(Γ, x : α)]

β1=β2 : α→ type [Γ]
(x 6∈ Γ)

reflexivity, symmetry and transitivity

Fig. 13. Rules for equal families
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We write x : α ∈ Γ for ‘x : α is among the variable declarations of Γ’, and, also, x ∈ Γ

for ‘x : α ∈ Γ for some α’. Since we are only concerned with formal aspects of type theory,

here we will omit explanations of the rules of inference displayed in Figures 4 to 13. The

omitted justifications can be found in Tasistro (1997). For brevity, we also omit obvious

premises, for example the premises Γ context, ∆ context and α type [Γ] are implicit in

Rule 2 of Figure 5.

3. The model

If we use Λ to denote the set of untyped lambda terms (writing [x]a for abstraction), we

have Λ ⊂ O. We show in this section that every extensional model of Λ can be extended

to obtain an interpretation of O, S,T,F and C. Finally, we prove that the interpretation

is indeed a model of type theory.

There are several different notions of models of the lambda calculus in the literature

(Barendregt 1984; Hindley and Seldin 1986). For our purposes, it is enough to consider

extensional models. Observe that the symbol ‘→’ is also used in the metalanguage to build

the standard set-theoretic function space between two sets.

Definition 3.1. Given a set D, a valuation is a function ρ : V → D. The set of all

the valuations is denoted by Val. An extensional model of the lambda calculus is a

triple (D, ·, [[]]) where D is a set with at least two elements, ‘·’ is a binary operation over D,

and [[]] is an interpretation function [[]] : Λ→ Val→ D such that the following hold:

1 if d1 · e = d2 · e for all e ∈ D, then d1 = d2, (extensionality)

2 [[x]]ρ = ρ(x),

3 [[a1 a2]]ρ = [[a1]]ρ · [[a2]]ρ,

4 [[[x]a]]ρ · d = [[a]](ρ, x=d),

where (ρ, x=d) is the valuation that assigns d to x and ρ(y) to all y 6= x.

The set Λ with α, β and η rules is an extensional model of the lambda calculus.

That is, taking D = Λ and · to be application, it is possible to define an interpretation

function [[]] satisfying the conditions in the definition above. This is an essentially trivial

statement but it is cumbersome to prove, since a precise definition of [[]] requires careful

considerations regarding substitutions and names of variables. The proof that D has at

least two elements, however, relies on the Church–Rosser property of the lambda calculus.

We assume hereafter that an extensional model (D, ·, [[]]) of the lambda calculus is

given. We use c, d, e, c1, d1, e1, c2, d2, e2, . . . to denote elements of D, and ρ, ρ1 and ρ2 to

denote elements of Val. The following proposition says that the only relevant information

provided by ρ when interpreting a lambda term a are the values that it assigns to the free

variables of a. The set of free variables of a is denoted by V(a).

Proposition 3.2. Given a ∈ Λ and ρ1, ρ2 ∈ Val, if for all x ∈ V(a), ρ1(x) = ρ2(x),

then [[a]]ρ1
= [[a]]ρ2

.

Proof. The proof is by induction on the syntax of lambda terms. The cases in which

the lambda term is a variable or an application are easy. When it is an abstraction, the

proof follows by extensionality.
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[[a]] : Val→ D [[α]] : Val→ Pow(D) [[Γ]] ∈ Pow(Val)

[[δ]] : Val→ Val [[β]] : Val→ D→ Pow(D) Val = V→ D
Fig. 14. Semantic categories

[[aδ]]ρ = [[a]][[δ]]ρ
[[Set]]ρ = Set [[El]]ρ = El

[[β a]]ρ = [[β]]ρ([[a]]ρ) [[[x]α]]ρ = d 7→ [[α]](ρ, x=d)

[[()]]ρ = ρ [[α→ β]]ρ = [[α]]ρ
D→ [[β]]ρ [[βδ]]ρ = [[β]][[δ]]ρ

[[θδ]]ρ = [[θ]][[δ]]ρ
[[αδ]]ρ = [[α]][[δ]]ρ

[[()]] = Val

[[(δ, x=a)]]ρ = ([[δ]]ρ, x=[[a]]ρ) [[(Γ, x : α)]] = {ρ ∈ [[Γ]] | ρ(x) ∈ [[α]]ρ}
Fig. 15. Interpretation of elements of O, S, T, F and C

3.1. Interpreting O, S, T, F and C
It is possible to extend the interpretation function to the whole of O, yielding a function

[[a]] : Val→ D. This involves interpreting presubstitutions as well, since they occur in

preobjects. We will also give interpretations to pretypes, prefamilies and precontexts.

The semantic categories are summarised in Figure 14 and the equations defining the

interpretation in Figure 15.

The interpretation of aδ in ρ is the interpretation of a in the new valuation [[δ]]ρ; and

similarly for θδ, αδ and βδ. The notation ‘(, )’ denotes different things on the left-hand and

right-hand sides of the equation for (δ, x=a), namely the extension of a presubstitution

and a valuation, respectively.

Intuitively, pretypes are collections of preobjects, and prefamilies, functions mapping

preobjects to pretypes. We realise this by interpreting – in a given valuation – pretypes as

subsets of D, and prefamilies as functions mapping elements in D to such subsets.

We do not need to make Set and El precise at this stage. It is enough to assume

that the former is a subset of D and the latter a function from D to Pow(D). In the

equation defining [[β a]]ρ, [[β]]ρ([[a]]ρ) denotes the application (in the metalanguage) of

the function [[β]]ρ to the element [[a]]ρ of D. For [[α→ β]]ρ we define for all subsets X
of D and all functions Y from D to Pow(D), the subset of D

X D→ Y = {d ∈ D | ∀e ∈ X. d · e ∈ Y(e)},
which expresses type dependency in the interpretation. For [[[x]α]]ρ we take the function

that maps d into the set [[α]](ρ, x=d).

Precontexts are used to declare variables denoting arbitrary preobjects of certain pre-

types. We realise this by interpreting a precontext Γ as the set of all the valuations that

respect Γ’s assignments of pretypes to variables. That is, [[Γ]] ⊆ Val is the set of those

valuations ρ that for all x : α ∈ Γ assign an element of the set [[α]]ρ to x.
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3.2. Preliminary properties

For each Γ we define an equivalence relation: given ρ1 and ρ2, we write ρ1=Γρ2 for

∀x ∈ Γ. ρ1(x) =ρ2(x). The following propositions can be proved easily by induction on

the syntax of precontexts: we omit the proofs here.

Proposition 3.3. For all Γ, ρ, d, x, if x 6∈ Γ, then (ρ, x=d)=Γρ.

Proposition 3.4. For all Γ, ρ, x, α, if x : α ∈ Γ and ρ ∈ [[Γ]], then ρ(x) ∈ [[α]]ρ.

3.3. Statement of the model

The following theorem states that the interpretation defined above is a model of type

theory. There is a remarkable similarity between the statement of the theorem and

Martin-Löf’s explanation of the meaning of the forms of judgment in Tasistro (1997).

Theorem 3.5. For all Γ, ∆, α, α1, α2, a, a1, a2, β, β1, β2, δ, δ1, δ2, the following hold:

1 If Γ context is derivable, then for all ρ1, ρ2 ∈ Val such that ρ1=Γρ2, if ρ2 ∈ [[Γ]],

then ρ1 ∈ [[Γ]].

2 If Γ � ∆ is derivable, then:

(a) [[∆]] ⊆ [[Γ]].

(b) for all ρ1, ρ2 ∈ Val, if ρ1=∆ρ2, then ρ1=Γρ2.

3 If α type [Γ] is derivable, then for all ρ1, ρ2 ∈ Val, if ρ1=Γρ2, then [[α]]ρ1
=[[α]]ρ2

.

4 If α1=α2 type [Γ] is derivable, then for all ρ ∈ Val, [[α1]]ρ=[[α2]]ρ.

5 If a : α [Γ] is derivable, then:

(a) for all ρ ∈ [[Γ]], [[a]]ρ ∈ [[α]]ρ.

(b) for all ρ1, ρ2 ∈ Val, if ρ1=Γρ2, then [[a]]ρ1
=[[a]]ρ2

.

6 If a1=a2 : α [Γ] is derivable, then for all ρ ∈ Val, [[a1]]ρ =[[a2]]ρ.

7 If β : α→ type [Γ] is derivable, then for all ρ1, ρ2 ∈ Val, if ρ1=Γρ2, then [[β]]ρ1
=[[β]]ρ2

.

8 If β1=β2 : α→ type [Γ] is derivable, then for all ρ ∈ Val, [[β1]]ρ=[[β2]]ρ.

9 If δ : Γ→ ∆ is derivable, then:

(a) for all ρ ∈ [[Γ]], [[δ]]ρ ∈ [[∆]].

(b) for all ρ1, ρ2 ∈ Val, if ρ1=Γρ2, then [[δ]]ρ1
=∆[[δ]]ρ2

.

10 If δ1=δ2 : Γ→ ∆ is derivable, then for all ρ ∈ Val, [[δ1]]ρ=∆[[δ2]]ρ.

A priori we might have to prove all the statements in the formulation of Theorem 3.5

simultaneously by induction on the derivations, considering all the rules of the calculus

collected in Figures 4 to 13. Fortunately, it is possible to separate them into different

small groups of statements. In every group the statements are proved simultaneously by

induction on the derivations, and only a few of those rules need to be considered. We

make each group into a lemma, and we have to prove the lemmas in a certain order.

Figure 16 describes the organisation of the proof of Theorem 3.5.

In statements 5(a) and 9(a) (and hence, in Theorem 3.15) ρ only ranges over [[Γ]]. In

all the remaining statements and lemmas, ρ, ρ1 and ρ2 range over the whole Val. This

technical subtlety is essential to the organisation of the proof as in Figure 16.
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Items of Theorem 3.5

Lemma 3.6 2 (b)

Lemma 3.7 5 (b) 9 (b)

Lemma 3.8 3 7

Lemma 3.9 1

Lemma 3.12 6 10

Lemma 3.13 4 8

Lemma 3.14 2 (a)

Theorem 3.15 5 (a) 9 (a)

Fig. 16. Proof of Theorem 3.5

Lemma 3.6. For all Γ, ∆, ρ1, ρ2, if Γ � ∆ is derivable, then ρ1=∆ρ2 implies ρ1=Γρ2.

Proof. The proof is by induction on the derivation of Γ � ∆. Any such derivation

ends with one of the rules in Figure 9. If that is Rule 1, the lemma is trivial, since any

two valuations are related in =(). If it is Rule 2, we assume ρ1=∆ρ2. By the induction

hypothesis, we get ρ1=Γρ2, and as x ∈ ∆, we get ρ1(x) =ρ2(x). Hence, ρ1=(Γ, x : α)ρ2.

Lemma 3.7. For all Γ, ∆, α, a, δ, ρ1, ρ2, if ρ1=Γρ2, then:

— If a : α [Γ] is derivable, then [[a]]ρ1
=[[a]]ρ2

.

— If δ : Γ→ ∆ is derivable, then [[δ]]ρ1
=∆[[δ]]ρ2

.

Proof. The proof is by induction on the derivation. Any derivation of a : α [Γ] ends

with one of the rules in Figure 5, and any derivation of δ : Γ→ ∆, with one of those in

Figure 6.

If the last rule is one of those in Figure 5, then the only non-trivial case is when

it is Rule 6. We prove [[[x]a]]ρ1
= [[[x]a]]ρ2

by extensionality, just as in the proof of

Proposition 3.2.

The remaining cases follow mechanically from the definition of the interpretation

in Definition 3.1 and Figure 15, the hypothesis ρ1=Γρ2 and the induction hypotheses

available in every particular case, as well as Lemma 3.6 in the case of Rule 2.

If the last rule applied is one of those in Figure 6, then in all the cases the proof

is automatic using the definition of the interpretation, the hypothesis ρ1=Γρ2 and the

induction hypotheses, as well as Lemma 3.6 in the case of Rules 4 and 5.

Lemma 3.8. For all Γ, α, β, ρ1, ρ2, if ρ1=Γρ2, then:

— If α type [Γ] is derivable, then [[α]]ρ1
=[[α]]ρ2

.

— If β : α→ type [Γ] is derivable, then [[β]]ρ1
=[[β]]ρ2

.
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Proof. The proof is by induction on the derivation. Any derivation of α type [Γ] ends

with one of the rules in Figure 7 and any derivation of β : α→ type [Γ], with one of

those in Figure 8.

If the last rule applied is one of those in Figure 7, then in all the cases the proof

is straightforward using the definition of the interpretation in Figure 15, the hypothesis

ρ1=Γρ2 and the induction hypotheses at our disposal in each case, as well as Lemma 3.6

in the case of Rule 2 and Lemma 3.7 in the case of Rules 3 and 4.

If the last rule is one of those in Figure 8, then the only non-trivial case is when it

concerns Rule 5. To prove that [[[x]α1]]ρ1
and [[[x]α1]]ρ2

are equal functions from D to

Pow(D), we prove that for any d the following holds

[[[x]α1]]ρ1
(d)=[[[x]α1]]ρ2

(d).

This follows from (ρ1, x=d)=(Γ, x : α2)(ρ2, x=d) by the definition of interpretation and the

induction hypothesis.

The remaining cases follow automatically from the definition of the interpretation in

Figure 15, the hypothesis ρ1=Γρ2 and the induction hypotheses available in every particu-

lar case, as well as Lemma 3.6 in the case of Rule 2 and Lemma 3.7 in the case of Rule 4.

Lemma 3.9. For all Γ, ρ1, ρ2, if Γ context is derivable, then ρ1=Γρ2 and ρ2 ∈ [[Γ]] imply

ρ1 ∈ [[Γ]].

Proof. The proof is by induction on the derivation. Any derivation of Γ context

ends with one of the rules in Figure 4. If that is Rule 1, the proof is trivial. If it is

Rule 2, we assume that ρ1=(Γ, x : α)ρ2, that is, ρ1=Γρ2 and ρ1(x) =ρ2(x). Assume also that

ρ2 ∈ [[(Γ, x : α)]], that is, ρ2 ∈ [[Γ]] and ρ2(x) ∈ [[α]]ρ2
. The former implies ρ1 ∈ [[Γ]] by the

induction hypothesis. Lemma 3.8 implies [[α]]ρ1
=[[α]]ρ2

. Therefore

ρ1(x) =ρ2(x) ∈ [[α]]ρ2
= [[α]]ρ1

,

and hence ρ1 ∈ [[(Γ, x : α)]].

Corollary 3.10. For all Γ, ρ, d, x, if Γ context is derivable, then x 6∈ Γ and ρ ∈ [[Γ]] imply

(ρ, x=d) ∈ [[Γ]].

Proof. The statement is an easy consequence of Lemma 3.9 and Proposition 3.3.

Corollary 3.11. For all Γ, ρ, d, x, α, if Γ context and α type [Γ] are derivable, then x 6∈ Γ,

ρ ∈ [[Γ]] and d ∈ [[α]]ρ imply (ρ, x=d) ∈ [[(Γ, x : α)]].

Proof. By Corollary 3.10, (ρ, x=d) ∈ [[Γ]]. By Proposition 3.3, (ρ, x=d)=Γρ. Then, by

Lemma 3.8, [[α]](ρ, x=d)=[[α]]ρ. Thus,

(ρ, x=d)(x) = d ∈ [[α]]ρ = [[α]](ρ, x=d),

and hence (ρ, x=d) ∈ [[(Γ, x : α)]].

Lemma 3.12. For all Γ, ∆, α, a1, a2, δ1, δ2, ρ, the following hold:

— If a1=a2 : α [Γ] is derivable, then [[a1]]ρ =[[a2]]ρ.

— If δ1=δ2 : Γ→ ∆ is derivable, then [[δ1]]ρ=∆[[δ2]]ρ.
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Proof. The proof is by induction on the derivation. Any derivation of a1=a2 : α [Γ]

ends with one of the rules in Figure 10 and any derivation of δ1=δ2 : Γ→ ∆ with one

of those in Figure 11.

When the derivation ends with one of the rules in Figure 10 in most cases the proof

is routine using the induction hypotheses and the definition of the interpretation in

Definition 3.1 and Figure 15.

The exceptions to this are the cases of Rules 3, 9 and 10. In the case of Rule 3, the

induction hypothesis on the derivation of δ1=δ2 : Γ→ ∆ yields [[δ1]]ρ=∆[[δ2]]ρ. From

this and the implicit premise a1 : α [∆] we get

[[a1]][[δ1]]ρ
=[[a1]][[δ2]]ρ

by Lemma 3.7 applied to the preobject a1 and the valuations [[δ1]]ρ and [[δ2]]ρ. Finally,

the induction hypothesis on the derivation of a1=a2 : α [∆] when applied to [[δ2]]ρ yields

[[a1]][[δ2]]ρ
=[[a2]][[δ2]]ρ

.

When the last rule applied is Rule 9, the proof follows from

[[[x]a]][[γ]]ρ
· [[a′]]ρ =[[a]]([[γ]]ρ, x=[[a′]]ρ),

which holds by Definition 3.1.

Finally, when the last rule applied is Rule 10, we want to prove [[f]]ρ =[[g]]ρ. By

extensionality, we take an arbitrary d, and prove [[f]]ρ · d =[[g]]ρ · d. As x 6∈ Γ, by Propo-

sition 3.3 (ρ, x=d)=Γρ. Thus, by Lemma 3.7,

[[f]](ρ, x=d) =[[f]]ρ [[g]](ρ, x=d) =[[g]]ρ

since f : α→ β [Γ] and g : α→ β [Γ] are implicit premises of Rule 10. Now, by the

induction hypothesis applied to (ρ, x=d), we obtain [[f]]ρ · d =[[g]]ρ · d.
When the derivation ends with one of the rules in Figure 11, in most cases the proof

is direct using the definition of interpretation and the induction hypotheses, as well as

Lemma 3.6 in the case of Rule 4 and the definitions of =() and =(∆, x : α) in the case of

Rules 1 and 2.

If the derivation ends with Rule 5, the situation is entirely analogous to the case of

Rule 3 of Figure 10. Finally, if the derivation ends with Rule 10, the proof follows from

Proposition 3.3, since x 6∈ ∆.

Lemma 3.13. For all Γ, α1, α2, β1, β2, ρ the following hold:

— If α1=α2 type [Γ] is derivable, then [[α1]]ρ=[[α2]]ρ.

— If β1=β2 : α→ type [Γ] is derivable, then [[β1]]ρ=[[β2]]ρ.

Proof. The proof is by induction on the derivation. Any derivation of α1=α2 type [Γ]

ends with one of the rules in Figure 12, and any derivation of β1=β2 : α→ type [Γ]

with one of those in Figure 13.

When the last rule of the derivation is one of those in Figure 12 the proof is always

direct from the definition of the interpretation in Figure 15 and the induction hypotheses,

except in the cases that concern Rules 2 or 5.
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In the former, we use, in addition, Lemmas 3.12 and 3.8 on the implicit premise

α1 type [∆], to obtain a proof analogous to the proof of the case of Rule 3 of Figure 10

in the proof of Lemma 3.12. For the latter, we use Lemma 3.12.

Most of the cases in which the last rule of the derivation is one of those in Figure 13

have a direct proof via the use of the definition of the interpretation and the induction

hypotheses. Apart from the case of Rule 3, which is provable in very much the same way

as the case of Rule 2 in Figure 12, the only non-trivial case is the one of Rule 6.

To prove that [[β1]]ρ=[[β2]]ρ, we take an arbitrary d and prove that [[β1]]ρ(d)=[[β2]]ρ(d).

As x 6∈ Γ, by Proposition 3.3, we get (ρ, x=d)=Γρ. Thus, by Lemma 3.8,

[[β1]](ρ, x=d)=[[β1]]ρ [[β2]](ρ, x=d)=[[β2]]ρ ,

since β1 : α→ type [Γ] and β2 : α→ type [Γ] are implicit premises of Rule 6. By the

induction hypothesis applied to (ρ, x=d), we get [[β1]]ρ(d)=[[β2]]ρ(d).

Lemma 3.14. For all Γ, ∆, if Γ � ∆ is derivable, then [[∆]] ⊆ [[Γ]].

Proof. The proof is by induction on the derivation. Any derivation of Γ � ∆ ends

with one of the two rules in Figure 9. In the case of the first rule, the proof is trivial.

For the second, take ρ ∈ [[∆]]. By the induction hypothesis, ρ ∈ [[Γ]]. As x : α ∈ ∆, by

Proposition 3.4, ρ(x) ∈ [[α]]ρ. Hence ρ ∈ [[(Γ, x : α)]].

Theorem 3.15. For all Γ, ∆, α, a, δ, ρ, if ρ ∈ [[Γ]], the following hold:

— if a : α [Γ] is derivable, then [[a]]ρ ∈ [[α]]ρ.

— if δ : Γ→ ∆ is derivable, then [[δ]]ρ ∈ [[∆]].

Proof. The proof is by induction on the derivation. Any derivation of a : α [Γ] ends

with one of the rules in Figure 5 and any derivation of δ : Γ→ ∆, with one of those in

Figure 6.

If the last rule used is one of those in Figure 5, we can analyse the different possibilities:

1: This is easy by Proposition 3.4.

2: By Lemma 3.14, ρ ∈ [[Γ]] and then, by the induction hypothesis, [[a]]ρ ∈ [[α]]ρ.

3: By the induction hypothesis, [[a]]ρ ∈ [[α2]]ρ. Lemma 3.13 implies that [[α1]]ρ=[[α2]]ρ,

thus [[a]]ρ ∈ [[α1]]ρ.

4: The induction hypothesis on δ : Γ→ ∆ yields [[δ]]ρ ∈ [[∆]]. By the induction hypoth-

esis on a : α [∆] applied to [[δ]]ρ, we get [[aδ]]ρ ∈ [[αδ]]ρ.

5: By the induction hypotheses, we have [[a]]ρ ∈ [[α]]ρ, and [[f]]ρ ∈ [[α]]ρ
D→ [[β]]ρ,

that is, for all d ∈ [[α]]ρ, [[f]]ρ · d ∈ [[β]]ρ(d). In particular, when d is [[a]]ρ, we get

[[f a]]ρ ∈ [[β a]]ρ.

6: We have to verify that [[[x]a]]ρ · d ∈ [[α1]](ρ, x=d) holds for every d ∈ [[α2]]ρ. Since, by

Definition 3.1, [[[x]a]]ρ · d = [[a]](ρ, x=d), by the induction hypothesis, it is enough to

prove that (ρ, x=d) ∈ [[(Γ, x : α2)]], which follows from Corollary 3.11.

If the last rule in the derivation is one of those in Figure 6 it is always immediate using

the definition of the interpretation and the induction hypotheses, as well as Lemma 3.14

in the cases of Rules 4 and 5, and Corollary 3.11 in the case of Rule 2.

https://doi.org/10.1017/S0960129502003766 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003766


A proof-irrelevant model of Martin-Löf ’s logical framework 785

3.4. Consistency

Since by Proposition 3.2 the valuation ρ has no significance when evaluating a closed

lambda term a, we are entitled to use a itself to denote [[a]]ρ. From now on we will use

> to denote [x][y]x and ⊥ to denote [x][y]y. These are different elements of D, since

otherwise we would have that d1 = > · d1 · d2 = ⊥ · d1 · d2 = d2 for all d1, d2 ∈ D. But

Definition 3.1 does not allow D to be a singleton.

To obtain a proof-irrelevant model of the logical framework, we only need to define

Set and El since their definition was postponed from Section 3.1. Therefore, we define:

Set = {>,⊥}
El = d 7→ {e ∈ D | d = >}.

Observe that El(>) = D and El(⊥) = {}. Observe also that for all d and e the following

equivalences hold:

e ∈ El(d) ⇐⇒ El(d) is inhabited ⇐⇒ El(d) = D ⇐⇒ d = >.
This observation will be generalised by Remark 4.1.

An immediate consequence of the definitions of Set and El is that the logical framework

is consistent, that is, that there is no preobject a such that

a : Set→ El [()]

is derivable. By Theorem 3.15, it is enough to show that for every environment ρ, the

interpretation of Set→ El in ρ is {}:
[[Set→ El]]ρ = Set

D→ El = {d ∈ D | ∀e ∈ Set. d · e ∈ El(e)} = {},
since, if there were such a d, we would have d · ⊥ ∈ El(⊥) = {}, which is impossible.

3.5. Proof irrelevance

With these definitions of Set and El we achieve proof-irrelevance. By this we mean that

the interpretation of a family of sets f over a given set a (a : Set and f : El a → [x]Set)

will not actually vary with the interpretation of the elements of the set a. On the contrary,

the interpretation of f in the model represents a constant function.

In effect, a being a set, it would be interpreted as a d1 ∈ Set. The family f would be

interpreted as a d such that for all e1 ∈ El(d1), d · e1 ∈ Set. Corollary 3.19 below says that

such a d represents a constant function. First we introduce the notion of Set-sequences.

Definition 3.16. Given n > 0 and d1, . . . , dn, a sequence e1, . . . , en is an El-sequence for

d1, . . . , dn if e1 ∈ El(d1), . . . , en ∈ El(dn · e1 · . . . · en−1). A sequence d1, . . . , dn is a Set-sequence

if for all 1 6 i 6 n and all El-sequences e1, . . . , ei−1 for d1, . . . , di−1, di · e1 · . . . · ei−1 ∈ Set.

The set of El-sequences for d1, . . . , dn is denoted El(d1, . . . , dn).

Many sequences can easily be turned into Set-sequences. For example, from d1, d2 ∈ Set

we obtain a Set-sequence d1, d by defining d = > · d2. Thus, we can restrict our attention

to the notion of Set-sequence in Definition 3.16 without losing generality.
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Theorem 3.17. For all d, if for all e1, . . . , en, d · e1 · . . . · en ∈ Set, then either for all e1, . . . , en,

d · e1 · . . . · en = >, or for all e1, . . . , en, d · e1 · . . . · en = ⊥.

Proof. Take any c1, . . . , cn (for example ci = d) and assume without loss of generality

that d · c1 · . . . · cn = >. Taking any d1, . . . , dn, we want to show that d · d1 · . . . · dn = > as

well. Let i be the greatest such that d · d1 · . . . · di−1 · ci · . . . · cn = >. If i = n+ 1, we obtain

what we require. Otherwise, i 6 n, which will lead to a contradiction. Define

e = ([y][x1] . . . [xi−1][xi+1] . . . [xn][xi]y x1 . . . xn) · d · d1 · . . . · di−1 · ci+1 · . . . · cn.
We have e ·ci = >, e ·di = ⊥ and for all ei, we have e ·ei ∈ Set. This is impossible. The proof

of that fact is very similar to the proof of a theorem attributed to Scott on page 144 of

Barendregt (1984). It uses the fact that all the elements of D have a fixpoint, which can be

obtained, for instance, using the fixpoint combinator Y = [y](([x]y x x) ([x]y x x)) ∈ D.

Define c = ([y][x1][x2][x]y x x2 x1) · e · ci · di. It satisfies c · ci = di, c · di = ci, and

c · ei ∈ {ci, di} for all ei. Thus the fixpoint of c must be ci or di. In either case it yields

ci = di, which is impossible since > 6= ⊥.

Corollary 3.18. For all Set-sequences d1, . . . , dn, El(d1, . . . , dn) is either Dn or {}.
Proof. The proof is by induction on n. If n = 0, then El() is the singleton set whose

element is the empty sequence, that is, D0.

Assume now that the corollary is true for n. We must show that it is also true for n+ 1.

If El(d1, . . . , dn) is empty, then so is El(d1, . . . , dn+1). If it is Dn, by Theorem 3.17 there are

two possibilities for dn+1: either dn+1 ·e1 · . . . ·en = > for all e1, . . . , en, or dn+1 ·e1 · . . . ·en = ⊥
for all e1, . . . , en. In the former case El(d1, . . . , dn+1) is Dn+1, and in the latter it is {}.

Notice that if El(d1, . . . , dn) = Dn, then for all 0 6 i 6 n, El(d1, . . . , di) = Di.
Corollary 3.19 (Proof irrelevance). For all Set-sequence d1, . . . , dn+1, the element dn+1

represents a constant function, that is, either

— for all El-sequence e1, . . . , en for d1, . . . , dn, dn+1 · e1 · . . . · en = >, or

— for all El-sequence e1, . . . , en for d1, . . . , dn, dn+1 · e1 · . . . · en = ⊥.

Proof. By Corollary 3.18, El(d1, . . . , dn+1) is either Dn+1 or {}. In the former case, the

first item holds, and in the latter, the second.

4. Inductive definitions

In this section we show how to extend the definition of the proof-irrelevant model to

inductively defined sets in the scheme of Dybjer (1994). It is possible to determine a

general method to interpret every inductive definition that follows that scheme, but we

prefer to avoid a too formal presentation hoping that a few examples will be illustrative

enough.

Each inductive definition consists of adding a new preobject for each constant and new

rules of two kinds: for objects and for equality between objects. In order to extend the

model, we must define the interpretation of the new constants and revise the proof of
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Theorem 3.5 for the extended system. The only items that need revision are 5 (a) and 6,

since only rules for objects and for equality between objects are incorporated. Item 5 (b)

will continue to hold trivially because the interpretation of the new constants will be

independent of the valuation ρ. This also explains why we drop the subindex ρ, below,

denoting the interpretation of the new constants directly using [[∀]], [[λ]], [[∀E]], and so on.

Thus, we have to check that the interpretation of each new constant belongs to the

interpretation of its type, and that in every new equality the preobjects involved are

interpreted as the same element of D.

The reader will notice that the new constants are interpreted in two different ways

depending on whether they denote set formers or not. Those that denote set formers are

given interpretations such that, not only do they belong to the interpretation of their

types, but they also make the interpretation of the types of the remaining constants of the

definition become D. Thus, regardless of what interpretation the remaining constants are

given, they will belong trivially to the interpretation of their types. These constants are

interpreted by means of a variant of Church’s numerals like the one used in Parigot (1988)

in such a way that the equalities introduced in the definition hold in the model.

4.1. Preliminaries

In order to stress the intuitive reading of > and ⊥ as Boolean values, we will write

a1 ⇒ a2 for a1 a2 >, a1 ∧ a2 for a1 a2 ⊥ and a1 ∨ a2 for a1 > a2. Similarly, d1 ⇒ d2, d1 ∧ d2

and d1 ∨ d2 stand for d1 · d2 · >, d1 · d2 · ⊥ and d1 · > · d2, respectively. These clearly behave

as Boolean expressions, for example, for all d1, d2 ∈ Set, d1 ⇒ d2 ∈ Set and d1 ⇒ d2 = >
iff d2 = > whenever d1 = >.

From Corollary 3.18, it is possible to derive the following useful remark.

Remark 4.1. For all Set-sequence d1, . . . , dn, all e1, . . . , en and all eij for 0 < j 6 i < n, the

following are equivalent:

— e1, . . . , en is an El-sequence for d1, . . . , dn,

— El(d1, . . . , dn) is inhabited,

— El(d1, . . . , dn) = Dn,
— d1 ∧ d2 · e1

1 ∧ . . . ∧ dn · en−1
1 · . . . · en−1

n−1 = >,

— d1 ∧ d2 · e1
1 ∧ . . . ∧ dn · en−1

1 · . . . · en−1
n−1 6= ⊥,

— d1 = d2 · e1
1 = . . . = dn · en−1

1 · . . . · en−1
n−1 = >,

— for all 0 < i 6 n, di · ei−1
1 · . . . · ei−1

i−1 6= ⊥.

Proof. The equivalence of the first three items is an obvious consequence of Corol-

lary 3.18. To prove that the fourth and fifth items are equivalent to the third one, we

prove that φn = > if El(d1, . . . , dn) = Dn, and φn = ⊥ otherwise, where φn stands for

d1 ∧ d2 · e1
1 ∧ . . . ∧ dn · en−1

1 · . . . · en−1
n−1. This can be proved by reasoning very much as in

the proof of Corollary 3.18: induction on n followed by an analysis of the two cases for

El(d1, . . . , dn) in the inductive step, followed by considering the two possibilities for dn+1

in the case when El(d1, . . . , dn) = Dn. A similar trick can be used to prove the equivalence

between the last two items and the third one.
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The truth of each of the last items does not depend on the particular choice of

e1
1, . . . , e

n−1
n−1, since these do not occur in the first three items. We replace them by ‘∗’

whenever we find it convenient to ignore their precise value. Thus, ‘∗’ stands for arbitrary

closed expressions and x ∗1 . . . ∗n says that x is applied to n such expressions.

Taking Σn = [x1 . . . xn]x1 ∧ . . . ∧ xn ∗1 . . . ∗n−1, Remark 4.1 implies that for all Set-sequences

d1, . . . , dn, we have Σn · d1 · . . . · dn ∈ Set. Thus, it states that Σn · d1 · . . . · dn can then

be handled as a Boolean value, which is ⊥ iff di · ∗1 · . . . · ∗i−1 = ⊥ for some i.

Defining Πn = [x1 . . . xn+1]Σnx1 . . . xn ⇒ xn+1 ∗1 . . . ∗n, it also follows that Πn · d1 · . . . · dn+1

denotes a Boolean value whenever d1, . . . , dn+1 is a Set-sequence, since it is then equal to

Σn · d1 · . . . · dn ⇒ Σn+1 · d1 · . . . · dn+1. That Boolean value is > iff dn+1 · ∗1 · . . . · ∗n = >
follows from d1 = . . . = dn · ∗1 · . . . · ∗n−1 = >.

Observe that ⊥, d is a Set-sequence for all d. Thus, in spite of Remark 4.1, it is possible

to have a Set-sequence d1, . . . , dn such that for some i, di · ∗1 · . . . · ∗i−1 6∈ Set. But then, we

would necessarily have j < i such that dj · ∗1 · . . . · ∗j−1 = ⊥.

4.2. Interpretation of inductive sets

From now on we will omit occurrences of the prefamily El in pretypes of the form El a since

they can always be inferred: whenever a preobject is placed in a position corresponding

to a pretype, the prefamily El is implicitly applied to it. We write (x: α1)α2 for the pretype

α1 → [x]α2, (x: α1; y: α2)α3 for (x: α1)(y: α2)α3 and (x, y: α1)α2 for (x: α1; y: α1)α2.

Proposition 4.2. For all pretypes (x1: α1; . . . ; xn: αn)α the following holds.

d ∈ [[(x1: α1; . . . ; xn: αn)α]]ρ ⇐⇒ (∀di ∈ [[αi]]ρi−1
)i∈{1...n} d · d1 · . . . · dn ∈ [[α]]ρn

where ρ0 = ρ and ρi+1 = (ρi, xi+1=di+1).

Proof. The proof is by induction on n.

Each inductive definition introduces new constants of certain types. For each such

constant c and type Tc we have to define the interpretation [[c]], and verify that [[c]] ∈ [[Tc]]

holds and that certain equations for the constant c hold for [[c]]. The type Tc of c and the

equations for c are specified by means of new rules for objects and for equality between

objects. In the presentation of the rules the occurrences of the empty context are omitted.

4.3. Empty set

This extension consists of adding the preobjects Bot and abort and the rules in Figure 17.

Bot : Set abort : (C: (p: Bot)Set; p: Bot)C p

Fig. 17. Rules for the empty set

Define [[Bot]] = ⊥ ∈ Set = [[TBot]]. By Proposition 4.2, d ∈ [[Tabort]] if and only if

(∀e1 ∈ El([[Bot]]) d1 · e1 ∈ Set) ∧ d2 ∈ El([[Bot]]) =⇒ d · d1 · d2 ∈ El(d1 · d2),
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which is always true because, by Remark 4.1, d2 ∈ El([[Bot]]) iff > = [[Bot]] = ⊥.

Thus, [[Tabort]] = D, so [[abort]] ∈ [[Tabort]] regardless of the value of [[abort]].

To be consistent with the remaining examples of inductive definitions, we take

[[abort]] = [C][p]p.

This example already illustrates the use of Proposition 4.2 and Remark 4.1, which will

be used implicitly in the remaining examples. The latter, for example, would in addition

allow us to rewrite the implication above as

[[Bot]], d1 Set-sequence ∧ [[Bot]] = > =⇒ d1 · ∗ = >,
and further to

[[Bot]], d1 Set-sequence =⇒ Π1 · [[Bot]] · d1 = >,
the truth of which can now be computed.

4.4. Singleton set

For this extension we add the preobjects Unit, unit and UnitE and the rules in Figure 18.

Unit : Set unit : Unit UnitE : (C: (p: Unit)Set; x:C unit; p: Unit)C p

Γ context
UnitE C x unit=x : C unit [Γ]

C, x ∈ Γ with expected type

Fig. 18. Rules for the singleton set

Define [[Unit]] = > ∈ Set = [[TUnit]]. We now have

[[unit]] ∈ D = El(>) = El([[Unit]]) = [[Tunit]]

regardless of the value of [[unit]]. Finally, d ∈ [[TUnitE ]] if and only if

>, d1 Set-sequence ∧ d1 · ∗ = > =⇒ d1 · ∗ = >,
which is trivially true. Thus, [[TUnitE ]] = D, so [[UnitE]] ∈ [[TUnitE ]] regardless of the

value of [[UnitE]]. We define [[unit]] and [[UnitE]] so that the equation

[[UnitE]] · d1 · d2 · [[unit]] = d2

holds. For example [[unit]] = [x]x and [[UnitE]] = [C][x][p]p x.

4.5. Universal quantifier

This extension consists of adding the preobjects ∀, λ and ∀E and the rules in Figure 19.

Define [[∀]] = Π1. We must check that it belongs to the interpretation of T∀:

[[∀]] ∈ [[T∀]] ⇐⇒ d1, d2 Set-sequence =⇒ Π1 · d1 · d2 ∈ Set,

which is true. In addition, for all d we have d ∈ [[Tλ]] if and only if

d1, d2 Set-sequence ∧ (d1 = > ⇒ d2 · ∗ = >) =⇒ [[∀]] · d1 · d2 = >,
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∀ : (A: Set;U: (a:A)Set)Set λ : (A: Set;U: (a:A)Set; u: (a:A)U a)∀ A U

∀E : (A: Set;U: (a:A)Set;C: (p: ∀ A U)Set; x: (u: (a:A)U a)C (λ A U u); p: ∀ A U)C p

Γ context
∀E AU C x (λAU u)=x u : C (λAU u) [Γ]

A,U, C, x, u ∈ Γ with expected type

Fig. 19. Rules for universal quantifier

which, is equivalent to

d1, d2 Set-sequence ∧Π1 · d1 · d2 = > =⇒ Π1 · d1 · d2 = >,
which is trivially true. This means that [[Tλ]] = D, hence [[λ]] ∈ [[Tλ]] regardless of the

value of [[λ]]. Similarly, d ∈ [[T∀E ]] is equivalent to

d1, d2 Set-sequence ∧
Π1 · d1 · d2, d3 Set-sequence ∧
Π1 · d1 · d2 = > ⇒ d3 · ∗ = >

 =⇒ Π1 · (Π1 · d1 · d2) · d3 = >,

which is true. Thus [[T∀E ]] = D, so [[∀E]] ∈ [[T∀E ]] regardless of the value of [[∀E]]. We

define [[λ]] and [[∀E]] so that the equation

[[∀E]] · d1 · d2 · d3 · d4 · ([[λ]] · d1 · d2 · e1) = d4 · e1

holds. For example, [[λ]] = [A][U][u][x]x u and [[∀E]] = [A][U][C][x][p]p x.

4.6. Disjunction

This extension consists of adding the preobjects Or, l, r and when and the rules in

Figure 20.

Or : (A,B: Set)Set l : (A,B: Set; a:A)OrAB r : (A,B: Set; b:B)OrAB

when : (A,B: Set;C: (p: OrAB)Set; x: (a:A)C (lAB a); y: (b:B)C (rAB b); p: OrAB)C p

Γ context
whenAB C xy (lAB a)=x a : C (rAB a) [Γ]

A,B, C, x, y, a ∈ Γ with expected type

Γ context
whenAB C xy (rAB b)=y b : C (rAB b) [Γ]

A,B, C, x, y, b ∈ Γ with expected type

Fig. 20. Rules for disjunction

Define [[Or]] = [A][B]A ∨ B ∈ [[TOr]]. For all d,

d ∈ [[Tl]] ⇐⇒ d1, d2 ∈ Set ∧ d1 = > ⇒ d1 ∨ d2 = >,
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which is true. Thus [[Tl]] = D, so [[l]] ∈ [[Tl]] regardless of the value of [[l]]. The same

applies for [[r]]. Also, d ∈ [[Twhen]] if and only if

d1, d2 ∈ Set ∧
d1, d3 Set-sequence ∧ d2, d3 Set-sequence ∧
Π1 · d1 · d3 = > ∧Π1 · d2 · d3 = >

 =⇒


d1 = > ⇒ d3 · ∗ = >
∧

d2 = > ⇒ d3 · ∗ = >.
Here we have used, on the left-hand side, the fact that ∀e1. d1 ∨ d2 = > ⇒ d3 · e1 ∈ Set

is equivalent to (∀e1. d1 = > ⇒ d3 · e1 ∈ Set) ∧ (∀e1. d2 = > ⇒ d3 · e1 ∈ Set), if

d1, d2 ∈ Set. This yielded that d1, d3 and d2, d3 are Set-sequences. Similarly, on the right-

hand side, we have used the fact that d1 ∨ d2 = > ⇒ d3 · ∗ = > is equivalent to

(d1 = > ⇒ d3 · ∗ = >) ∧ (d2 = > ⇒ d3 · ∗ = >).

The implication above is trivially true. Thus [[Twhen]] = D, and hence

[[when]] ∈ [[Twhen]] = D regardless of the value of [[when]]. We define [[l]], [[r]] and

[[when]] so that the equations

[[when]] · d1 · d2 · d3 · d4 · d5 · ([[l]] · d1 · d2 · e1) = d4 · e1

[[when]] · d1 · d2 · d3 · d4 · d5 · ([[r]] · d1 · d2 · e1) = d5 · e1

hold: [[l]] = [A][B][a][x][y]x a, [[r]] = [A][B][b][x][y]y b and

[[when]] = [A][B][C][x][y][p]p x y.

4.7. Existential quantifier

This extension consists of adding the preobjects ∃, pr and ∃E and the rules in Figure 21.

∃ : (A: Set;U: (a:A)Set)Set pr : (A: Set;U: (a:A)Set; a:A; u:U a)∃AU

∃E : (A: Set;U: (a:A)Set;C: (p: ∃AU)Set; x: (a:A; u:U a)C (prAU au); p: ∃AU)C p

Γ context
∃E AU C x (prAU au)=x a u : C (prAU au) [Γ]

Fig. 21. Rules for existential quantifier: conditions on Γ omitted

Define [[∃]] = Σ2 ∈ [[T∃]]. It is easy to prove that [[pr]] ∈ [[Tpr]] and [[∃E]] ∈ [[T∃E ]]

regardless of the values of [[pr]] and [[∃E]]. We define [[pr]] and [[∃E]] so that the equation

[[∃E]] · d1 · d2 · d3 · d4 · ([[pr]] · d1 · d2 · e1 · e2) = d4 · e1 · e2

holds. For example [[pr]] = [A][U][a][u][x]x a u and [[∃E]] = [A][U][C][x][p]p x.

4.8. Natural numbers

This extension consists of adding the preobjects N, 0, s, and Nrec and the rules in

Figure 22.
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N : Set 0 : N s : (n: N)N Nrec : (C: (n: N)Set; x:C 0; y: (n: N; i:C n)C (s n); p: N)C p

Γ context
NrecC xy 0=x : C 0 [Γ]

Γ context
NrecC xy (s n)=y n (NrecC xy n) : C (s n) [Γ]

Fig. 22. Rules for natural numbers: conditions on Γ omitted

Define [[N]] = > ∈ Set = [[TN]]. Obviously, [[T0]] = [[Ts]] = [[TNrec]] = D. We define

[[0]], [[s]] and [[Nrec]] so that the equations

[[Nrec]] · d1 · d2 · d3 · [[0]] = d2

[[Nrec]] · d1 · d2 · d3 · ([[s]] · e1) = d3 · e1 · ([[Nrec]] · d1 · d2 · d3 · e1)

hold. For example, [[0]] = [x][y]x, [[s]] = [n][x][y]y n (n x y), and [[Nrec]] = [C][x][y][p]p x y.

These numerals were used in Parigot (1988).

4.9. Equality

This extension consists of adding the preobjects Eq, eq, and peel and the rules in

Figure 23.

Eq : (A: Set; a, b:A)Set eq : (A: Set; a:A)EqAa a

peel : (A: Set;C: (a, b:A; p: EqAa b)Set; x: (a:A)C a a (eqAa); a, b:A; p: EqAa b)C a b p

Γ context
peelAC xa a (eqAa)=x a : C a a (eqAa) [Γ]

Fig. 23. Rules for equality: conditions on Γ omitted

Define [[Eq]] = [A][a][b]A. Clearly, [[Eq]] ∈ [[TEq]] and [[Teq]] = D. Also, d ∈ [[Tpeel]]

if and only if

d1, [x]>, [x][y]>, d2 Set-sequence ∧
Π3 · d1 · [x]> · [x][y]> · d2 = > ∧
d1 = >

 =⇒ d2 · ∗ · ∗ · ∗ = >.

In order to satisfy the hypotheses of Remark 4.1, we have turned d1, d2 (which, because

of the arity of d2, is not a Set-sequence) into the Set-sequence d1, [x]>, [x][y]>, d2. The

implication above holds, so [[Tpeel]] = D. We define [[eq]] and [[peel]] so that the

equation

[[peel]] · d1 · d2 · d3 · d4 · d4 · ([[eq]] · d1 · d4) = d3 · d4

holds, for instance [[eq]] = [A][a][x]x a and [[peel]] = [A][C][x][a][b][p]p x.
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4.10. Peano’s fourth axiom

Peano’s fourth axiom states that zero is not equal to the successor of any natural number.

It can be stated as follows:

(n: N; h: Eq N 0 (s n))Bot.

We denote this type Tp4. We show that Peano’s fourth axiom is not provable in this

version of type theory by showing that [[Tp4]] = {}. For all d, we have d ∈ [[Tp4]] iff

[[N]] = > ∧ [[Eq]] · [[N]] · [[0]] · ([[s]] · ∗) = > =⇒ [[Bot]] = >,
which is trivially false since the antecedent holds and the consequent does not. Hence

Peano’s fourth axiom is not provable.

4.11. Reflecting proof irrelevance

Moreover, it is easy to see that [[(A: Set; a, b:A)EqAa b]] = D, which means that it would

be possible to interpret a constant

irrelevance: (A: Set; a, b:A)EqAa b.

Therefore, having such a constant would maintain consistency, reflect proof-irrelevance at

the level of the theory, and imply the negation of Peano’s fourth axiom.

5. Conclusion

We have presented a detailed and elementary proof of consistency of Martin-Löf’s theory

of types for the exact formulation in Martin-Löf (1992), without easing the task by

introducing modifications into (or making informal assumptions about) the theory. The

level of detail of the presentation is such that this paper could be used as a basis for a

direct formalisation in a proof assistant.

We have shown that the model provides an elementary proof of consistency of the

theory, and a proof that Peano’s fourth axiom is not provable. We have also given a

technique for interpreting inductive definitions by using a variant of Church numerals.

We have thus extended Smith’s proof-irrelevant model (Smith 1988) to the whole logical

framework. This can be compared to Gentzen’s extension (Gentzen 1936) of Hilbert and

Ackermann’s elementary proof of consistency (Hilbert and Ackermann 1928) to the simple

theory of types. In both cases the extension implies going from a first-order to a higher-

order language, but Gentzen’s proof is for a language with a predefined hierarchy of

types, whereas in our language, the type system is more complex, the types themselves are

defined within the language.

There are in principle two ways of achieving proof-irrelevance in a model of type

theory. The first method, which is simpler and more direct, consists of interpreting all

the proof-objects by the same denotation, and all the types by Boolean values. This is

essentially how it was done in Smith (1988). The second method, which is non-trivial and

subtler, allows different proof-objects to receive different denotations, but the denotation
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of predicates cannot distinguish between proof-objects, not even between proof-objects

having different denotations. This is how proof-irrelevance was obtained in this paper.

We defined our model by interpreting precontexts, pretypes, preobjects, prefamilies and

presubstitutions separately rather than interpreting whole derivations. For this reason,

there was no hope of using the direct method mentioned above, since that would imply

that [x][y]x and [x][y]y should receive, at the same time, identical denotations as objects

of type (x, y : N)N, and different denotations as objects of type (x, y : Set)Set. Notice that

this problem appears as a consequence of having abstraction à la Curry and large types

such as Set in the theory.

This paper is an improved and simplified version of a part of my thesis (Fridlender

1997), which presents a concrete model in terms of the lambda calculus itself rather than

in terms of an arbitrary extensional model of it. The thesis presents in addition more

examples than were given in Section 4.
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