Hostname: page-component-6bf8c574d5-vmclg Total loading time: 0 Render date: 2025-02-23T23:25:03.460Z Has data issue: false hasContentIssue false

Fractals and domain theory

Published online by Cambridge University Press:  16 November 2004

KEYE MARTIN
Affiliation:
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD Email: Keye.Martin@comlab.ox.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that a measurement $\mu$ on a continuous dcpo $D$ extends to a measurement $\skew3\bar{\mu}$ on the convex powerdomain ${\mathbf C} D$ iff it is a Lebesgue measurement. In particular, $\ker\mu$ must be metrisable in its relative Scott topology. Moreover, the space $\ker\skew3\bar{\mu}$ in its relative Scott topology is homeomorphic to the Vietoris hyperspace of $\ker\mu$, that is, the space of non-empty compact subsets of $\ker\mu$ in its Vietoris topology – the topology induced by any Hausdorff metric. This enables one to show that Hutchinson's theorem holds for any finite set of contractions on a domain with a Lebesgue measurement. Finally, after resolving the existence question for Lebesgue measurements on countably based domains, we uncover the following relationship between classical analysis and domain theory: for an $\omega$-continuous dcpo $D$ with $\max(D)$ regular, the Vietoris hyperspace of $\max(D)$ embeds in $\max({\mathbf C} D)$ as the kernel of a measurement on ${\mathbf C} D$.

Type
Paper
Copyright
© 2004 Cambridge University Press