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We show that a measurement µ on a continuous dcpo D extends to a measurement µ̄ on the

convex powerdomain CD iff it is a Lebesgue measurement. In particular, ker µ must be

metrisable in its relative Scott topology. Moreover, the space ker µ̄ in its relative Scott

topology is homeomorphic to the Vietoris hyperspace of ker µ, that is, the space of

non-empty compact subsets of ker µ in its Vietoris topology – the topology induced by any

Hausdorff metric. This enables one to show that Hutchinson’s theorem holds for any finite

set of contractions on a domain with a Lebesgue measurement. Finally, after resolving the

existence question for Lebesgue measurements on countably based domains, we uncover the

following relationship between classical analysis and domain theory: for an ω-continuous

dcpo D with max(D) regular, the Vietoris hyperspace of max(D) embeds in max(CD) as the

kernel of a measurement on CD.

1. Introduction

In analysis, each hyperbolic iterated function system on a complete metric space (X, d)

gives rise to a contraction on the complete metric space of compact sets in their Hausdorff

metric (Pcom(X), dH ). The resulting unique attractor of this higher order contraction can,

for instance, be used to model fractals. It has been shown in two separate papers that

domain theory could be used to derive this result.

First, Edalat (1995) used the upper space construction to prove it for compact metric

spaces, and then Edalat and Heckmann (1998) used the formal ball model to give the

proof for complete metric spaces in general (minus the convergence in the Hausdorff

metric). But while analysis has a formal theory to describe the progression from (X, d)

to (Pcom(X), dH ), domain theory does not. In fact, because Edalat (1995) and Edalat and

Heckmann (1998) deal only with two specific examples of domains, it is reasonable to ask

whether such a theory even exists. In this paper, we will prove that one does exist.

The essential analogies to keep in mind as we progress are as follows: a complete

metric space (X, d) will be replaced by a domain with a measurement (D, µ) such that

ker µ � X, the hyperspace (Pcom(X), dH ) of compact sets will be replaced by the convex

powerdomain (CD, µ̄) such that ker µ̄ � Pcom(X), and the Banach fixed point theorem will

be eliminated and replaced by one of the standard measurement based results. We might

say that Edalat (1995) and Edalat and Heckmann (1998) offer applications of domain

theory to an area of analysis and that the results presented here establish a connection

between two different parts of mathematics.
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There are at least two immediate benefits of this more abstract stance. The first, for

domain theorists, is the homeomorphism ker µ̄ � Pcom(X) between the Scott topology on

ker µ̄ and the Vietoris topology on Pcom(X). This allows us to prove the convergence in

the Hausdorff metric left open from Edalat and Heckmann (1998), and to establish that

the convex powerdomain provides a domain theoretic way of constructing Pcom(X). The

second benefit, for analysts, is a persuasive argument that in order to prove Hutchinson’s

theorem complete metrisability of the underlying space is necessary.

After reviewing some basic ideas about domains, measurement and the convex power-

domain, we determine exactly when it is that a measurement µ on a domain D extends

to a measurement µ̄ on the convex powerdomain CD. It turns out that only some

measurements extend, these are called Lebesgue measurements. They become a remarkable

class of measurements when one realises that, in addition to their extensible nature, they

also capture metrisability: a space X is (completely) metrisable iff X � ker µ for some

Lebesgue measurement µ on a continuous poset (dcpo). We also prove the domain

theoretic version of Hutchinson’s result for Lebesgue measurements, develop simple ways

to recognise Lebesgue measurements in ordinary situations, and resolve the question of

their existence.

2. Domain theory

Let (P ,�) be a partially ordered set or poset (Abramsky and Jung 1994). A non-empty

subset S ⊆ P is directed if (∀x, y ∈ S)(∃z ∈ S) x, y � z. The supremum
⊔
S of S ⊆ P is the

least of its upper bounds when it exists.

For elements x, y of a poset P , we write x � y iff for every directed set S with a

supremum, if y �
⊔
S , we have x � s, for some s ∈ S . Intuitively, x � y means that any

computational path to y must pass through x.

Definition 2.1. Let (P ,�) be a poset. We set

• ↓↓x := {y ∈ P : y � x} and ↑↑x := {y ∈ P : x � y}
• ↓x := {y ∈ P : y � x} and ↑x := {y ∈ P : x � y}
and say that B ⊆ P is a basis for P if ↓↓x∩B is directed with supremum x for each x ∈ P .

A poset is continuous if it has a basis and ω-continuous if it has a countable basis.

For X ⊆ P , we define ∗X :=
⋃

x∈X ∗x whenever ∗ ∈ { ↓, ↑, ↓↓, ↑↑ }.

Definition 2.2. A subset U of a poset P is Scott open if U = ↑U and
⊔

S ∈ U ⇒ S ∩ U �= �,

for any directed S ⊆ P with a supremum. The collection of all Scott open sets is called

the Scott topology.

On a continuous poset P , the collection {↑↑x : x ∈ P } forms a basis for the Scott

topology. A function f between posets is Scott continuous if it reflects Scott open sets.

This is equivalent to saying that f is monotone,

(∀x, y) x � y ⇒ f(x) � f(y),

https://doi.org/10.1017/S0960129504004384 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004384


Fractals and domain theory 835

and that it preserves directed suprema:

f(
⊔

S) =
⊔

f(S),

for all directed S with a supremum.

Definition 2.3. A dcpo is a poset in which every directed set has a supremum. A domain

is a continuous dcpo.

In this paper, all topological statements about domains are made with respect to the

Scott topology.

3. Measurement

Let [0,∞)∗ denote the set of non-negative reals in the order dual to the usual one:

x � y ⇔ x � y.

Definition 3.1. A continuous map µ : D → [0,∞)∗ is a measurement if for all x ∈ D with

µx = 0 and all open sets U ⊆ D,

x ∈ U ⇒ (∃ ε > 0) x ∈ µε(x) ⊆ U,

where µε(x) := {y ∈ D : y � x & µy < ε} are the ε-approximations of x.

The kernel of a measurement µ is ker µ := {x ∈ D : µx = 0}. The set of maximal elements

in a poset D is max(D) := {x ∈ D : ↑x = {x}}.

Proposition 3.2. Let (D, µ) be a domain with a measurement. Then

(i) An element with measure zero is maximal, that is, ker µ ⊆ max(D).

(ii) For all x ∈ ker µ, if (xn) is a sequence with xn � x, then

lim
n→∞

µxn = µx ⇒
⊔

n�1

xn = x,

and this supremum is directed.

Proof. (i) Let x ∈ ker µ. If x � y, then y ∈ ker µ. But since µ is a measurement, ↓↓y ⊆ ↓↓x,

which gives y � x by the continuity of D, and thus x = y. This proves x ∈ max(D).

(ii) If a = xn and b = xm, then ↑↑a ∪ ↑↑b is a Scott open set containing x. Because µ is a

measurement and µxn → 0, eventually some c := xk lands in ↑↑a ∪ ↑↑b, which means (xn)

is directed. As a directed set, it has a supremum, which by (i) is maximal, and so equal

to x.

Though we have not done so here, the definition works equally well on a continuous

poset – a fact we will use briefly at the end of this paper. All the results of this section

hold more generally as well. The reader unfamiliar with the following examples will find

them discussed in more detail in Martin (2000b).
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Example 3.3. Domains and their canonical measurements.

(i) (Σ∞, 1/2|·|) the domain of streams in the prefix order with

µs =
1

2|s| ,

where | · | : Σ∞ → [0,∞] is the length of a string.

(ii) (Pω, | · |) the powerset of the naturals ordered by inclusion with

|x| = 1 −
∑

n∈x

1

2n+1
.

(iii) ([� ⇀ �], |dom|) the partial functions on the naturals ordered by extension with

µf = |dom(f)|

using the measurement on Pω from (ii).

(iv) (I�, µ) the interval domain with the length measurement µ[a, b] = b − a.

(v) (UX , diam) the upper space of a locally compact metric space (X, d) with

diamK = sup{d(x, y) : x, y ∈ K}.

(vi) (BX, π) the formal ball model (Edalat and Heckmann 1998) of a complete metric

space (X, d) with π(x, r) = r.

In each case above, we have a pair (D, µ) with ker µ = max(D).

4. Contractions on domains

Definition 4.1. Let D be a continuous dcpo with a measurement µ. A monotone map

f : D → D is a contraction if there is a constant 0 � c < 1 with

µf(x) � c · µx

for all x ∈ D. The constant c is called a Lipschitz constant.

A proof of the next result can be found in Martin (2000b).

Theorem 4.2. Let D be a domain with a measurement µ such that

( ∀ x, y ∈ D )( ∃ z ∈ D ) z � x, y.

If f : D → D is a contraction and there is an x ∈ D with x � f(x), then

x� =
⊔

n�0

fn(x) ∈ ker µ

is the unique fixed point of f on D. Further, x� is an attractor in two different senses:

(i) for all x ∈ ker µ, we have fn(x) → x� in the Scott topology on ker µ; and

(ii) for all x � x�, we have
⊔

n�0 f
n(x) = x�, and this supremum is a limit in the Scott

topology on D.

We can use the upper space (UX , diam) to prove the Banach contraction theorem for

compact metric spaces by applying the result above, or the formal ball model (BX, π) to

prove it for any complete metric space X.
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Example 4.3. Let f : X → X be a contraction on a complete metric space X with Lipschitz

constant c < 1. The mapping f : X → X extends to a monotone map f̄ : BX → BX on

the formal ball model BX (Edalat and Heckmann 1998) given by

f̄(x, r) = (fx, c · r),

which satisfies

πf̄(x, r) = c · π(x, r),

where π : BX → [0,∞)∗, π(x, r) = r, is the standard measurement on BX. For all

(x, r), (y, s) ∈ BX, there is z = (x, r + s + d(x, y)) ∈ BX with z � (x, r), (y, s). Given x ∈ X,

we can choose r so that (x, r) � f̄(x, r). By Theorem 4.2, f̄ has a unique attractor, which

implies that f does too.

There are also measurement based fixed point theorems that guarantee the existence

of unique non-maximal fixed points for monotone maps (Martin 2001), as well as those

which apply to non-monotonic mappings (Martin 2000b).

5. The convex powerdomain

A useful technique for constructing domains is to take the ideal completion of an abstract

basis.

Definition 5.1. An abstract basis is given by a set B together with a transitive relation <

on B which is interpolative, that is,

M < x ⇒ ( ∃ y ∈ B ) M < y < x

for all x ∈ B and all finite subsets M of B.

Abstract bases are covered in Abramsky and Jung (1994), which is where one finds the

following.

Definition 5.2. An ideal in (B,<) is a non-empty subset I of B such that:

(i) I is a lower set: ( ∀ x ∈ B )( ∀ y ∈ I ) x < y ⇒ x ∈ I.

(ii) I is directed: ( ∀ x, y ∈ I )( ∃ z ∈ I ) x, y < z.

The collection of ideals of an abstract basis (B,<) ordered under inclusion is a partially

ordered set called the ideal completion of B. We denote this poset by B̄.

The set {y ∈ B : y < x} for x ∈ B is an ideal that leads to a natural mapping from B

into B given by i(x) = {y ∈ B : y < x}.

Proposition 5.3. If (B,<) is an abstract basis, then:

(i) Its ideal completion B̄ is a dcpo.

(ii) For I, J ∈ B̄,

I � J ⇔ (∃ x, y ∈ B) x < y & I ⊆ i(x) ⊆ i(y) ⊆ J.

(iii) B̄ is a continuous dcpo with basis i(B).
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If one takes any basis B of a domain D and restricts the approximation relation � on

D to B, they are left with an abstract basis (B,�) whose ideal completion is D. Thus,

all domains arise as the ideal completion of an abstract basis. We now use this technique

to construct a domain called the convex powerdomain. This is discussed in more detail in

Abramsky and Jung (1994).

Definition 5.4. Let D be a continuous dcpo. For subsets A,B ⊆ D, we define relations:

— A �
L
B ⇔ (∀a ∈ A)(∃b ∈ B) a � b

— A �
U
B ⇔ (∀b ∈ B)(∃a ∈ A) a � b

— A �
EM

B ⇔ A �
L
B & A �

U
B.

In the same way, we derive �
L
,�

U
and �

EM
from the order � on D.

Definition 5.5. The non-empty finite subsets of a space X are denoted Pf in(X), while its

non-empty compact subsets are written as Pcom(X).

The set Pf in(D) together with �
EM

is an abstract basis.

Definition 5.6. The convex powerdomain CD of a continuous dcpo D is the ideal completion

of the abstract basis (Pf in(D),�
EM

).

Definition 5.7. For a Scott compact K ∈ Pcom(D), we set

K∗ = {F ∈ Pf in(D) : F �
EM

K}.

Notice that this operation is also defined for elements of Pf in(D).

Proposition 5.8. For a continuous dcpo D, we have:

(i) If K ∈ Pcom(D), then K∗ = {F ∈ Pf in(D) : F �
EM

K} ∈ CD.

(ii) For ideals I, J ∈ CD,

I � J ⇔ (∃F,G ∈ Pf in(D)) F �
EM

G & I ⊆ F∗ ⊆ G∗ ⊆ J.

(iii) For F ∈ Pf in(D) and I ∈ CD, F ∈ I ⇔ F∗ � I .

(iv) For F,G ∈ Pf in(D), F∗ � G∗ in CD ⇔ F �
EM

G.

Here is how we extend continuous maps on D to ones on CD.

Definition 5.9. If f : D → D is monotone, we extend it to a mapping

f̄ : CD → CD

by setting

f̄(I) =
⋃

F∈ I

f(F)∗

for an ideal I ∈ CD.

In addition, CD has a union operation we will need later on.

Definition 5.10. The function + : CD × CD → CD is given by

I + J = {H ∈ Pf in(D) | ∃F ∈ I, G ∈ J : H �
EM

F ∪ G }.
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Lemma 5.11. Let D be a continuous dcpo. Then:

(i) If f : D → D is monotone, then f̄ : CD → CD is Scott continuous.

(ii) The operation + : CD × CD → CD is Scott continuous, commutative, associative

and idempotent. For K,L ∈ Pcom(D), K∗ + L∗ = (K ∪ L)∗.

Proof. To see (i), note that for F ∈ Pf in(D), F∗ � I ⇔ F ∈ I . Thus, the definition of f̄

may be recast as

f̄(I) =
⊔

{f̄(F∗) : F∗ � I, F ∈ Pf in(D)}.
But this is the general technique by which a monotone map defined on a basis is extended

to a Scott continuous map on the entire domain.

Part (ii) is in Edalat and Heckmann (1998).

Here is the question around which the present work revolves: if we have a measurement

µ on a domain D, how can we obtain a measurement on CD?

6. A measurement on the convex powerdomain

By induction, a continuous map µ :D → [0,∞)∗ is a measurement iff for all finite F ⊆ ker µ

and all open sets U ⊆ D,

F ⊆ U ⇒ (∃ ε > 0)(∀x ∈ F) µε(x) ⊆ U.

If we require this to hold not just for finite sets F , but for all compact sets K , we have

exactly a Lebesgue measurement.

Definition 6.1. A Lebesgue measurement µ : D → [0,∞)∗ is a continuous map such that

for all compact sets K ⊆ ker µ and all open sets U ⊆ D,

K ⊆ U ⇒ (∃ ε > 0)(∀x ∈ K) µε(x) ⊆ U.

Not all measurements are Lebesgue (see Martin (2000a, Example 5.3.2)). Lebesgue mea-

surements are the measurements that extend to the convex powerdomain.

Definition 6.2. Let µ : D → [0,∞)∗ be a monotone map on a continuous dpco. We first

extend it to the abstract basis (Pf in(D),�
EM

) via

µf : Pf in(D) → [0,∞)∗

F �→ max{µx : x ∈ F},
and then to the convex powerdomain CD by

µ̄ : CD → [0,∞)∗

I �→ inf{µf(F) : F ∈ I}.

When we speak of a measurement µ extending to CD, we mean that the mapping µ̄ is

a measurement.
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Lemma 6.3. If µ : D → [0,∞)∗ is Scott continuous on a domain, then:

(i) The map µ̄ : CD → [0,∞)∗ is Scott continuous.

(ii) For all F ∈ Pf in(D), µ̄(F∗) = µf(F).

(iii) If K ∈ Pcom(ker µ), then µ̄(K∗) = 0.

Proof. (i) If µ is monotone, then µf is monotone on an abstract basis. The map µ̄

is defined by µ̄(I) =
⊔

F∈I µf(F). Thus, it is the greatest Scott continuous map on CD

satisfying µ̄(F∗) � µf(F) for all F ∈ Pf in(D). This technique works for any abstract basis;

the details may be found in Abramsky and Jung (1994).

(ii) Let F ∈ Pf in(D) and choose x ∈ F with µx = µf(F). From (i), we have µf(F) � µ̄(F∗).

Now let n � 1 be arbitrary. For each xi ∈ F , use the continuity of µ to choose ai � xi
with

µxi � µai < µx + 1/n,

which is possible since µxi � µx. Then for the finite set Gn = {ai : xi ∈ F}, we see that

Gn �
EM

F , which gives

µ̄(F∗) � µf(Gn) < µx + 1/n = µf(F) + 1/n,

and hence µ̄(F∗) � µf(F).

(iii) Let n � 1 be fixed. For each k ∈ K , there is ak � k with µak < 1/n. Then a finite

number of the ak cover K by compactness. This yields a finite set F with F �
EM

K and

µf(F) < 1/n. Hence, µ̄(K∗) < 1/n for each n � 1.

Naturally, we now wonder when it is that µ̄ is a measurement on CD. Before we can

answer this, we need an important lemma.

Lemma 6.4. Let µ :D → [0,∞)∗ be a Lebesgue measurement on a continuous dcpo.

Suppose that F ∈ Pf in(D) and K ∈ Pcom(ker µ) with F �
EM

K . Then there is λ > 0

such that for every G ∈ Pf in(D),

G �
EM

K & µf(G) < λ ⇒ F �
EM

G.

Proof. For each xi ∈ F , choose ki ∈ K with xi � ki. Because µ is a measurement,

(∃ εi > 0) ki ∈ µεi(ki) ⊆ ↑↑xi. In addition, µ is a Lebesgue measurement and K ⊆ ↑↑F is

compact, so

(∃δ > 0)(∀k ∈ K) k ∈ µδ(k) ⊆ ↑↑F.
Let 0 < λ < min({εi : xi ∈ F} ∪ {δ}). If G ∈ Pf in(D) with G �

EM
K and µf(G) < λ, we

claim that F �
EM

G.

To see that F �
L
G, let xi ∈ F . Then we know xi � ki ∈ K . Since G �

EM
K , there is

y ∈ G with y � ki. Because µy � µf(G) < λ < εi, we see that y ∈ µεi (ki) ⊆ ↑↑xi, which gives

xi � y ∈ G.

For F �
U
G, let y ∈ G. Since G �

EM
K , there is k ∈ K with y � k. Then µy � µf(G) <

λ < δ, so y ∈ µδ(k) ⊆ ↑↑F. Hence, there is x ∈ F with x � y.
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Theorem 6.5. For a Scott continuous µ :D → [0,∞)∗ on a continuous dcpo D, the following

are equivalent:

(i) The mapping µ is a Lebesgue measurement.

(ii) The canonical extension of µ to the convex powerdomain

µ̄ : CD → [0,∞)∗

is a measurement.

In either case, ker µ̄ = {K∗ : K ∈ Pcom(ker µ)}.

Proof. (i) ⇒ (ii) Let A � I in CD with µ̄(I) = 0. By the directedness of I , there is a

sequence of finite sets (Fn) such that

Fn ∈ I, µf(Fn) < 1/n & Fn �
EM

Fn+1

for all n � 1. Set K =
⋂

n�1 ↑Fn. This set is non-empty and compact by the Hofmann-

Mislove Theorem. In addition, notice that we also have Fn �
EM

K ⊆ ker µ for all n � 1.

First we prove that I ⊆ K∗. Let F ∈ I be arbitrary. Using the directedness of I , choose

M1 ∈ I with F, F1 �
EM

M1, and given any Mn, choose Mn+1 ∈ I with Mn, Fn+1 �
EM

Mn+1.

Let M =
⋂

↑Mn and notice again that M ∈ Pcom(ker µ). Because F �
EM

M, Fn �
EM

M

for all n � 1, and µf(Fn) → 0, Lemma 6.4 implies that F �
EM

Fi for all i sufficiently

large. But we also know that Fi �
EM

K , so transitivity of �
EM

gives F ∈ K∗. Hence

I ⊆ K∗.

Finally, µ̄ is a measurement. Since A � I , there are F,G ∈ Pf in(D) with F �
EM

G and

A ⊆ F∗ ⊆ G∗ ⊆ I , by Proposition 5.8. Because F ∈ G∗ ⊆ K∗, we have F �
EM

K . Using

Lemma 6.4, choose a λ > 0 with respect to F �
EM

K . We will prove that

I ∈ µ̄λ(I) ⊆ ↑↑A.

If J ⊆ I and µ̄(J) < λ, there is an H ∈ J with µf(H) < λ. But then we see H ∈ I ⊆ K∗

and µf(H) < λ, so by the choice of λ, F �
EM

H . Hence,

A ⊆ F∗ ⊆ H∗ ⊆ J & F �
EM

H,

which gives J ∈ ↑↑A. Thus, µ̄ is a measurement.

(ii) ⇒ (i) Let K ⊆ ker µ be Scott compact and U ⊆ D be Scott open with K ⊆ U. By the

compactness of K , there is a finite set F ⊆ U with K ⊆ ↑↑F and F �
EM

K . Thus, F∗ � K∗,

using Proposition 5.8(iii). By Lemma 6.3(iii), K∗ ∈ ker µ̄, and since µ̄ is a measurement,

there is a λ > 0 with

K∗ ∈ µ̄λ(K
∗) ⊆ ↑↑F∗.

We claim that k ∈ µλ(k) ⊆ U for all k ∈ K.

First suppose that k ∈ K and x � k with µx < λ. By compactness of K and continuity

of µ, there is a finite set G with x ∈ G, µf(G) < λ and G �
EM

K . But then

G∗ � K∗ & µ̄(G∗) = µf(G) < λ,

which means F∗ �G∗. Hence, F �
EM

G, by Proposition 5.8(iv). Thus, there is a y ∈ F with

y � x since x ∈ G. Then x ∈ ↑F ⊆ U.
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In general, if x ∈ µλ(k), use the directedness of ↓↓x and continuity of µ to choose a � x

with µa < λ. By the previous argument, a ∈ U, and since U = ↑U, we get x ∈ U. Hence,

k ∈ µλ(k) ⊆ U for all k ∈ K , which means µ is a Lebesgue measurement.

Now we calculate ker µ̄. The inclusion {K∗ : K ∈ Pcom(ker µ)} ⊆ ker µ̄ is clear by

Lemma 6.3(iii). For the other, suppose that µ̄(I) = 0. Then, as in the proof of (i) ⇒ (ii),

there is a compact K ⊆ ker µ with I ⊆ K∗. But µ̄ is a measurement, so I ∈ max(CD).

Hence I = K∗, and we are finished.

In fact, the relationship between the kernel of µ̄ and the compact subsets of ker µ is

much stronger than the last theorem shows.

7. A model of Vietoris hyperspace

We now exhibit the fundamental topological relationship that exists between ker µ̄ and

ker µ.

Definition 7.1. The Vietoris hyperspace of a Hausdorff space X is the set of all non-empty

compact subsets Pcom(X) with the. Vietoris topology: it has a basis given by all sets of the

form

σ(U1, · · · , Un) := {K ∈ Pcom(X) : K ⊆
n⋃

i=1

Ui and K ∩ Ui �= �, 1 � i � n},

where Ui is a non-empty open subset of X, for each 1 � i � n.

Notice that if B is a basis for the topology on X, then the collection

{σ(B1, · · · , Bn) : Bi ∈ B, 1 � i � n} is a basis for the Vietoris topology on Pcom(X).

We make use of this in the proof of Theorem 7.3 below.

Lemma 7.2. The kernel of a Lebesgue measurement is Hausdorff.

Proof. If distinct points a, b ∈ ker µ cannot be separated by open sets, we can use the

continuity of D and the measurement µ to find a sequence xn ∈ ker µ with xn → a and

xn → b. Now let z � a.

Because ↑↑z is Scott open around a, there is an integer K1 with xi ∈ ↑↑z for i � K1. Since

{xi : i � K1} ∪ {a} is a compact subset of ker µ and µ is Lebesgue,

(∃λ > 0) µλ(xi) ⊆ ↑↑z

for all i � K1. Now choose bλ � b with µbλ < λ. Then there is also K2 with xj ∈ ↑↑bλ for

j � K2. Thus, for n � max(K1, K2), we have

bλ � xn & µλ(xn) ⊆ ↑↑z,

which gives z � bλ � b.

Since z was arbitrary, we have shown ↓↓a ⊆ ↓↓b, which gives a � b. But ker µ ⊆ max(D),

so a = b, contradicting a �= b.
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Theorem 7.3. If µ :D → [0,∞)∗ is a Lebesgue measurement on a domain, then the cor-

respondence

Pcom(ker µ) → ker µ̄

K �→ K∗

is a homeomorphism between the Vietoris hyperspace of ker µ and ker µ̄ in its relative

Scott topology.

Proof. The surjectivity follows from Theorem 6.5. Suppose that we have K∗ = L∗ for

L,K ∈ Pcom(ker µ). Let x ∈ K and use µ to choose an increasing sequence (xn) with

xn � x and µxn < 1/n. By the compactness of K , for each n � 1 there is a finite set Fn

with xn ∈ Fn and Fn �
EM

K. Then Fn ∈ L∗, so

(∀n � 1)(∃ an ∈ L) xn � an.

As the sequence (xn) is increasing, it is clear that an → x in ker µ. But ker µ is Hausdorff,

so L ⊆ ker µ being compact must also be closed, which puts lim an = x ∈ L. Thus, K ⊆ L.

The same argument proves L ⊆ K.

To see that this mapping is a homeomorphism, note that for F = {a1, · · · , an} ⊆ D, we

have

K∗ ∈ ↑↑F∗ ∩ ker µ̄ ⇔ K ∈ σ(↑↑a1 ∩ ker µ, · · · , ↑↑an ∩ ker µ).

Using the remark after Definition 7.1, this map preserves and reflects basic open sets,

finishing the proof.

Thus, if a domain D models a space X, the convex powerdomain CD models the

Vietoris hyperspace of X.

8. Contractions on the convex powerdomain

We now show that contractions on domains extend to contractions on the convex

powerdomain. First recall the following definition.

Definition 8.1. Let D be a continuous dcpo with a measurement µ. A monotone map

f : D → D is a contraction if there is a constant 0 � c < 1 with

µf(x) � c · µx

for all x ∈ D. The constant c is called a Lipschitz constant.

From now on in this section, we assume that D is a continuous dcpo with a Lebesgue

measurement µ. Its convex powerdomain CD then carries the measurement µ̄ studied in

the last two sections. We also assume that all contractions are Scott continuous. Notice

that f̄(F∗) = (f(F))∗ for F ∈ Pf in(D) when f : D → D is Scott continuous.

Proposition 8.2. If f, g : D → D are contractions with respect to µ, then

h : CD → CD

hx = f̄x + ḡx

is a contraction with respect to µ̄.
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Proof. Let f and g have Lipschitz constants cf and cg , respectively. We will show that

h has Lipschitz constant max{cf, cg}. First suppose F ∈ Pf in(D). By Lemma 5.11,

h(F∗) = f̄(F∗) + ḡ(F∗) = (f(F))∗ + (g(F))∗ = (f(F) ∪ g(F))∗,

which enables the estimate

µ̄(h(F∗)) = µ̄(f(F) ∪ g(F))∗

= max(µf(F) ∪ µg(F))

� max{cf, cg} · max µ(F)

= max{cf, cg} · µ̄(F∗),

where the second and third equalities follow from Lemma 6.3(ii). Now let I ∈ CD be
arbitrary. If F ∈ I , then F∗ � I , which gives

µ̄(h(I)) � µ̄(h(F∗)) � max{cf, cg} · µ̄(F∗) = max{cf, cg} · µf(F),

and so by the definition of µ̄, we have µ̄(h(I)) � max{cf, cg} · µ̄(I).

The contraction theorem (Theorem 4.2) can now be applied to f̄ + ḡ. We follow this

idea to its natural conclusion, which is a significant extension of Theorem 4.2.

Proposition 8.3. If f : D → D is a contraction with respect to µ, then

f̄(K∗) = (f(K))∗

for all non-empty compact subsets K ⊆ ker µ.

Proof. First, if K ∈ Pcom(ker µ), then f(K) ∈ Pcom(ker µ), since f|ker µ is a continuous

selfmap on ker µ. Thus, (f(K))∗ is an element of CD.

Now we show f̄(K∗) � (f(K))∗. If G ∈ f̄(K∗), then

G ∈ f̄(K∗) =
⋃

F∈K∗

(f(F))∗,

so there is F ∈ Pf in(D) with F �
EM

K and G �
EM

f(F). Then G �
EM

f(F) �
EM

f(K),

which gives G �
EM

f(K), and hence G ∈ (f(K))∗.

Finally, f̄ is a contraction on CD, by Proposition 8.2 (applied with f = g), and K∗ ∈ ker µ̄,

by Theorem 6.5, so f̄(K∗) ∈ ker µ̄ ⊆ max(CD). Thus, f̄(K∗) = (f(K))∗.

This brings us to the main result of this section – the domain theoretic analogue of

Hutchinson’s theorem (Hutchinson 1981).

Theorem 8.4. Let D be a continuous dcpo such that

( ∀ x, y ∈ D )( ∃ z ∈ D ) z � x, y.

If f : D → D and g : D → D are contractions for which

( ∃ x ∈ D ) x � f(x) & x � g(x),

then there is a unique K ∈ Pcom(ker µ) such that f(K) ∪ g(K) = K . In addition, it is an

attractor,

(∀C ∈ Pcom(ker µ)) (f ∪ g)n(C) → K,

in the Vietoris topology on Pcom(ker µ).
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Proof. First we prove that CD has the same property as we have assumed for D. Let

I, J ∈ CD and F ∈ I, G ∈ J . The set F ∪ G is finite, so, by induction, there is z ∈ D with

{z} �
EM

F and {z} �
EM

G. Thus,

{z}∗ � F∗ � I and {z}∗ � G∗ � J.

Next, for the mapping h = f̄ + ḡ we see that {x}∗ � h{x}∗, by first noting h{x}∗ =

{f(x), g(x)}∗, and then {x} �
EM

{f(x), g(x)}, which finally gives {x}∗ � {f(x), g(x)}∗ =

h{x}∗.
Then, since h is a contraction with respect to µ̄ (Proposition 8.2), Theorem 4.2 ensures

that it has a unique fixed point given by

fix(h) =
⊔

n�0

hn{x}∗ = K∗ ∈ ker µ̄,

where K ∈ Pcom(ker µ).

Now observe that for any C ∈ Pcom(ker µ),

h(C∗) = f̄(C∗) + ḡ(C∗) = (f(C))∗ + (g(C))∗ = (f(C) ∪ g(C))∗,

where the second equality follows from Proposition 8.3. Then, since h(K∗) = K∗, we have

(f(K) ∪ g(K))∗ = K∗, which gives f(K) ∪ g(K) = K , using the bijection of Theorem 7.3.

For the uniqueness of K , if C ∈ Pcom(ker µ) satisfies f(C) ∪ g(C) = C , then h(C∗) = C∗,

which by the uniqueness of K∗ gives K∗ = C∗. But then once again (Theorem 7.3 yields)

K = C.

Finally, the fact that K is an attractor for the map

f ∪ g : Pcom(ker µ) → Pcom(ker µ) :: C �→ f(C) ∪ g(C)

in the Vietoris topology follows from the fact that h is a contraction with respect to

µ̄, the equality h(C∗) = (f(C) ∪ g(C))∗ for C ∈ Pcom(ker µ), and the homeomorphism

ker µ̄ � Pcom(ker µ) (Theorem 7.3).

Corollary 8.5. If f :D →D and g :D →D are contractions on a domain with least element

⊥, then there is a unique K ∈ Pcom(ker µ) such that f(K) ∪ g(K) = K. In addition, K is

an attractor for f ∪ g in the Vietoris topology.

Nothing but the desire for elegance prevents us from extending these results from two

to n contractions. Later though, when proving Hutchinson’s theorem, the extension to n

maps will be worth remembering.

9. Examples of Lebesgue measurements

In order to apply the previous results, we need a simple and clear way to recognise

Lebesgue measurements. Let f : [0,∞)2 → [0,∞) be a function such that f(xn, yn) → 0

whenever xn, yn → 0.

Theorem 9.1. If µ : D → [0,∞)∗ is a measurement such that for all pairs x, y ∈ D with an

upper bound

( ∃ z � x, y ) µz � f(µx, µy),

then µ is a Lebesgue measurement.
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Proof. First, ker µ is Hausdorff. Let x, y ∈ ker µ be distinct. Using µ, we can find

increasing sequences (an) and (bn) such that an � x,
⊔
an = x and bn � y,

⊔
bn = y. If

↑↑an ∩ ↑↑bn = �, the proof is done. Otherwise, there is cn ∈ ↑↑an ∩ ↑↑bn ∩ ker µ, and then, by

assumption, we have

(∃dn � an, bn) µdn � f(µan, µbn).

Since µan, µbn → 0, we have f(µan, µbn) → 0, so µdn → 0. But dn � an � x and dn � bn � y,

so Proposition 3.2(ii) gives
⊔

dn = x = y,

contradicting x �= y. Thus ker µ is Hausdorff, which ensures that compact sets are closed

in the remainder of the proof.

Let U be an open set containing a compact set K ⊆ ker µ. To produce a contradiction,

suppose that

(∀n � 1)(∃ xn ∈ K) µ1/n(xn) �⊆ U.

The compactness of K lets us assume that (xn) has a limit x ∈ K . Then there is a sequence

(yn) with yn � xn, µyn < 1/n and yn �∈ U. For the contradiction, we will show that some

yn belongs to U.

Let ak � x with µak < 1/k. For each k � 1, let nk � k be the first integer for which

xnk ∈ ↑↑ak. Then ynk and ak are bounded above by xnk . Thus,

(∀k � 1)(∃zk � ynk , ak) µzk � f(µynk , µak).

As k → ∞, nk → ∞, so µynk , µak → 0, which means µzk → 0. But zk � ak � x. Because µ

is a measurement, the sequence (zk) is directed with supremum x, by Proposition 3.2(ii).

Then some zk ∈ U, which puts ynk ∈ U, since U = ↑U.

The value of this result is that it identifies a condition satisfied by many of the Lebesgue

measurements encountered in practice. For instance, just consider the number of examples

covered by f(s, t) = 2 · max{s, t}.

Example 9.2. Lebesgue measurements.

(i) The domain of streams (Σ∞, 1/2|·|).

(ii) The powerset of the naturals (Pω, | · |).
(iii) The domain of partial maps ([� ⇀ �], |dom|).
(iv) The interval domain (I�, µ).

(v) The upper space (UX , diam) of a locally compact metric space (X, d).

(vi) The formal ball model (BX, π) of a complete metric space (X, d).

In fact, f(s, t) = s + t applies to (i)–(v).

10. Hyperbolic iterated function systems

We are now going to apply Theorem 8.4 to obtain the classical result of Hutchinson (1981)

for hyperbolic iterated function systems on complete metric spaces.
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Definition 10.1. An iterated function system (IFS) on a space X is a non-empty finite

collection of continuous selfmaps on X. We write an IFS as (X; f1, . . . , fn).

Definition 10.2. An IFS (X; f1, . . . , fn) is hyperbolic if X is a complete metric space and fi
is a contraction for all 1 � i � n.

Definition 10.3. Let (X, d) be a metric space. The Hausdorff metric on Pcom(X) is

dH (A,B) = max{sup
a∈A

d(a, B), sup
b∈B

d(b, A), }

for A,B ∈ Pcom(X).

Hyperbolic iterated function systems are used to model fractals: given a fractal image,

one searches for a hyperbolic IFS that models it. But what does it mean to model an

image? The answer is given by Hutchinson’s fundamental result (Hutchinson 1981).

Theorem 10.4 (Hutchinson). If (X; f1, . . . , fn) is a hyperbolic IFS on a complete metric

space X, then there is a unique non-empty compact subset K ⊆ X such that

K =

n⋃

i=1

fi(K).

Moreover, for any non-empty compact set C ⊆ X, we have (
⋃n

i=1 fi)
k(C) → K in the

Hausdorff metric dH as k → ∞.

At this stage, we can see that what will be most difficult in proving such a result is the

convergence in the Hausdorff metric. Luckily, this topology is independent of the metric d

on X.

Theorem 10.5. Let (X, d) be a metric space. Then the topology induced by the Hausdorff

metric dH on Pcom(X) is the Vietoris topology on Pcom(X).

In Edalat (1995), the upper space UX is used to give a domain theoretic proof of

Theorem 10.4 in the special case of a compact metric space X. Here is an alternative

proof using Theorem 8.4.

Example 10.6. If we have two contractions f, g : X → X on a compact metric space X,

they have Scott continuous extensions

f̄, ḡ : UX → UX

that are contractions on UX with respect to λ = diam. But λ is a Lebesgue measurement

on a domain UX with bottom element ⊥ = X. Thus,

( ∃!K ∈ Pcom(ker λ)) f̄(K) ∪ ḡ(K) = K,

by the Corollary to Theorem 8.4. Because ker λ � X and the mappings f̄, ḡ extend f and

g, it is clear that

( ∃!K ∈ Pcom(X)) f(K) ∪ g(K) = K.

In addition, by Theorem 8.4, (f ∪ g)n(C) →K for any C ∈ Pcom(X) in the Vietoris topology

on Pcom(X), which is convergence in the Hausdorff metric dH , by Theorem 10.5.
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In Edalat and Heckmann (1998), the formal ball model BX is used to give a domain

theoretic proof of the existence and uniqueness of the set K in Theorem 10.4 for any

complete metric space (X, d). What is missing from that discussion is the important issue

that K is also an attractor with respect to the Hausdorff metric dH .

Example 10.7. If we have two contractions f, g : X → X on a complete metric space X,

they have Scott continuous extensions

f̄, ḡ : BX → BX

that are contractions on BX with respect to π(x, r) = r. But π is a Lebesgue measurement

on a domain that has the property that for all (x, r), (y, s) ∈ BX, there is an element

z = (x, r + s + d(x, y)) ∈ BX with z � (x, r), (y, s). In addition, for any x ∈ X, choosing r

so that

r �
d(x, fx)

1 − cf
and r �

d(x, gx)

1 − cg
,

where cf, cg < 1 are the Lipschitz constants for f and g, respectively, gives a point

(x, r) � f̄(x, r), ḡ(x, r). By Theorem 8.4,

( ∃!K ∈ Pcom(ker π)) f̄(K) ∪ ḡ(K) = K.

However, because ker π � X and the mappings f̄, ḡ extend f and g, it is clear that

( ∃!K ∈ Pcom(X)) f(K) ∪ g(K) = K.

Finally, by Theorems 8.4 and 10.5, K is an attractor for f ∪ g on Pcom(X).

If a space may be realised as the kernel of a Lebesgue measurement on a continuous

dcpo D, then Theorem 8.4 implies that Hutchinson’s result holds for any finite family of

contractions that extend to D. Necessarily, two questions arise:

(a) Which spaces arise as the kernel of a Lebesgue measurement?

(b) When does a domain admit a Lebesgue measurement?

They are not the same question.

11. The existence of Lebesgue measurements

On the surface, it might appear that Theorem 8.4 can be applied to spaces more general

than the complete metric spaces required by Hutchinson. Unfortunately, this is not the

case.

Theorem 11.1 (Martin 2000a). A space is completely metrisable iff it is the kernel of a

Lebesgue measurement on a continuous dcpo.

The ‘completeness’ comes from the fact that we are on a continuous dcpo (Martin

2003b); what a Lebesgue measurement captures is metrisability.

Theorem 11.2 (Martin 2000a). A space is metrisable iff it is the kernel of a Lebesgue

measurement on a continuous poset.

https://doi.org/10.1017/S0960129504004384 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004384


Fractals and domain theory 849

Thus, not only are Lebesgue measurements the measurements that extend to CD, they

also capture precisely the class of metrisable spaces. This answers our first question from

the end of the last section.

The other question can now be phrased as follows: if D is a continuous dcpo with

max(D) metrisable, is there a Lebesgue measurement µ with ker µ = max(D)? For domains

in general, the answer is no. For countably based domains, we now answer in the affirm-

ative.

Definition 11.3. A continuous map µ : D → E between domains is a Lebesgue measurement

if for any compact K ⊆ ker µ and open set U ⊆ D, we have

K ⊆ U ⇒ (∃ ε ∈ E)(∀x ∈ K) x ∈ µε(x) ⊆ U

where ker µ := {x ∈ D : µx ∈ max(E)} and µε(x) := {y ∈ D : y � x & ε � µy}.

Notice that in the case of E = [0,∞)∗ the definition above collapses to the usual definition

of Lebesgue measurement.

Lemma 11.4. If λ : • → E and µ : D → • are Lebesgue measurements with

µ(ker µ) ⊆ ker λ,

then λ ◦ µ : D → E is a Lebesgue measurement.

Proof. Let K ⊆ ker λµ compact and U ⊆ D open with K ⊆ U. Then we must have

K ⊆ ker µ, so the fact that µ is Lebesgue applies to give ε ∈ codom(µ) with x ∈ µε(x) ⊆ U

for all x ∈ K .

Because K ⊆ ker µ, we have L := µ(K) ⊆ ker λ. By continuity of µ, L is compact. Since

L ⊆ ↑↑ε, the fact that λ is Lebesgue gives δ ∈ E with y ∈ λδ(y) ⊆ ↑↑ε for all y ∈ L. We have

x ∈ (λµ)δ(x) ⊆ U for all x ∈ K .

We now revisit the technique introduced in Martin (2003a).

Lemma 11.5. Let X be a countable set. Then there is a measurement

| · | : P(X) → [0,∞)∗

with ker | · | = {X}.

Trivially, the measurement | · | is Lebesgue.

Theorem 11.6. Let D be an ω-continuous dcpo. Then the following are equivalent:

(i) The space max(D) is regular.

(ii) There is a Lebesgue measurement µ : D → [0,∞)∗ that satisfies ker µ = max(D).

(iii) The space max(D) is Polish.
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Proof. The direction (ii) ⇒ (i) is covered by Theorem 11.2. The equivalence of (i) and

(iii) will follow immediately from Theorem 11.1 once we have shown (i) ⇒ (ii).

For (i) ⇒ (ii), let B ⊆ D be a countable basis for D. As in Martin (2003a), let

I = {(a, b) ∈ B2 : Clσ(↑↑b) ∩ max(D) ⊆ ↑↑a ∩ max(D)},

and notice that this is a countable set. Define λ : D → P(I) by

λ(x) = {(a, b) ∈ I : x ∈ Uab},

where Uab = (D \ Clσ(↑↑b)) ∪ ↑↑a. In Martin (2003a), it is shown that λ is Scott continuous

with λ → σmax(D) and ker λ = max(D). What is new is that λ is actually Lebesgue.

Let U ⊆ D be an open set containing a compact K ⊆ max(D). Using the regularity of

max(D) followed by the compactness of K , there is a finite set ε= {(ai, bi) : 1 � i� n} ⊆ I

such that K ⊆
⋃n

i=1
↑↑bi ∩ max(D) and ai � bi with ai ∈U for 1 � i� n. We claim

x ∈ λε(x) ⊆ U for all x ∈ K .

Let x ∈ K be arbitrary. First, ε is finite and ε � λx, so ε � λx. This means x ∈ λε(x).

For any other y ∈ λε(x), we have y � x and ε � λy. By construction, there is (ai, bi) ∈ ε

with x ∈ Clσ(↑↑bi) ∩ max(D) ⊆ ↑↑ai ∩ max(D). Because (ai, bi) ∈ ε� λy, we have

y ∈ (D \ Clσ(↑↑bi)) ∪ ↑↑ai.
But x ∈ Clσ(↑↑bi) and y � x, so y ∈ Clσ(↑↑bi). Then we must have y ∈ ↑↑ai ⊆ U. This

proves x ∈ λε(x) ⊆ U for all x ∈ K . Thus, λ is Lebesgue.

Finally, by Lemma 11.5, there is a measurement | · | : PI → [0,∞)∗ with ker | · | = {I}.
Then the composition

D
λ−→ PI

|·|
−→ [0,∞)∗

is a Lebesgue measurement µ : D → [0,∞)∗ with ker µ = max(D) by Lemma 11.4.

A quick glance at the preceding proof shows that it applies unchanged to establish

the equivalence of (i) and (ii) for any ω-continuous poset whose maximal elements meet

every non-empty compact K = ↑K . Notice that this means we have shown that max(D)

is metrisable when regular for countably based domains without using Urysohn’s lemma.

Corollary 11.7. Let D be an ω-continuous dcpo with max(D) regular. Then the Vietoris

hyperspace of max(D) embeds in max(CD) as the kernel of a measurement on CD.

Proof. An explicit homeomorphism is given by K �→ K∗.

A moment of reflection is in order here. As opposed to having shown that the convex

powerdomain of some countably based model of a metric space can represent Vietoris

hyperspace, we have shown that this is always the case. It is a phenomenon exhibited by

all countably based models of metric spaces. This is not the first time a powerdomain

construction has been shown to provide the domain theoretic analogue of a well-known

classical consideration. The normalised probabilistic powerdomain P1D is another example.

Theorem 11.8. Let D be an ω-continuous dcpo with X = max(D) regular in its relative

Scott topology. Then the space of normalised Borel measures in their weak topology M1X

embeds into max(P1D).
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The way this result is proved in Martin (2003a) is as follows. First, in Edalat (1997) it is

shown that the theorem is true if max(D) is regular and is a Gδ subset of D. Given this, a

result like Theorem 11.6 gives a measurement µ such that ker µ = max(D). In particular,

max(D) is a Gδ subset of D.

12. Closing remarks

In our study of the map f ∪ g : Pcom(ker µ) → Pcom(ker µ) for two contractions f and g

on a domain with a Lebesgue measurement (D, µ), two properties seem indispensable. The

first is that ker µ is always a Hausdorff space; the second is that K∗ ∈ max(CD) for K ∈
Pcom(ker µ). Apart from these two, it would seem that extensions of Theorem 8.4 should

be possible to a class of spaces beyond (but including) the completely metrisable. This

idea has influenced our presentation; things are written so that anyone wishing to pursue

such an extension will be able to clearly identify the main issues in need of resolution.

13. Ideas

(1) Characterise max(CD). When do we have ker µ̄ = max(CD)?

(2) Prove that µ̄ is a Lebesgue measurement iff it is a measurement.

(3) What is a measurement on an abstract basis?
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