Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-02-07T00:55:54.415Z Has data issue: false hasContentIssue false

A quadratic large sieve inequality over number fields

Published online by Cambridge University Press:  03 October 2012

LEO GOLDMAKHER
Affiliation:
Department of Mathematics, University of Toronto, Toronto, ON, Canada. e-mail: leo.goldmakher@utoronto.ca
BENOÎT LOUVEL
Affiliation:
Mathematisches Institut Göttingen, Bunsenstr. 3-5, 37073 Göttingen, Germany. e-mail: blouvel@uni-math.gwdg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We formulate and prove a large sieve inequality for quadratic characters over a number field. To do this, we introduce the notion of an n-th order Hecke family. We develop the basic theory of these Hecke families, including versions of the Poisson summation formula.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2012

References

REFERENCES

[BGL]Blomer, V., Goldmakher, L. and Louvel, B.L-functions with n-th order twists, preprint.Google Scholar
[CF]Cassels, J. W. S. and Fröhlich, A. (eds.), Algebraic Number Theory (Academic Press, 1967).Google Scholar
[FF]Fisher, B. and Friedberg, S.Double Dirichlet series over function fields. Compos. Math. 140 (2003), 613630.CrossRefGoogle Scholar
[FHL]Friedberg, S., Hoffstein, J. and Lieman, D.Double Dirichlet series and the n-th order twists of Hecke L-series. Math. Ann. 327 (2003), 315338.CrossRefGoogle Scholar
[Ha]Hasse, H.Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. Teil II: Reziprozitätsgesetz (Physica-Verlag, Würzburg 1965).CrossRefGoogle Scholar
[HB]Heath–Brown, D. R.A mean value estimate for real character sums. Acta Arith. 72 (1995), 237275.CrossRefGoogle Scholar
[HB2]Heath–Brown, D. R.Kummer's conjecture for cubic Gauss sums. Israel J. Math. 120 part A (2000), 97124.CrossRefGoogle Scholar
[HBP]Heath–Brown, D. R. and Patterson, S. J.The distribution of Kummer sums at prime arguments. J. Reine Angew. Math. 310 (1979), 111130.Google Scholar
[Mo]Montgomery, H. L.The analytic principle of the large sieve. Bull. AMS 84, No. 4 (1978), 547567.CrossRefGoogle Scholar
[On]Onodera, K.Bound for the sum involving the Jacobi symbol in. Funct. Approx. Comment. Math. 41 (2009), 71103.CrossRefGoogle Scholar
[SD]Swinnerton–Dyer, H. P. F.A brief guide to algebraic number theory. London Math. Soc. Student Texts, Vol. 50 (Cambridge University Press, Cambridge 2001).CrossRefGoogle Scholar